
Water Quality in the Danube River Basin - 2011

TNMN - Yearbook 2011

Imprint

Published by:

ICPDR - International Commission for the Protection of the Danube River

Overall coordination and preparation of the TNMN Yearbook and database in 2011:

Lea Mrafkova, Slovak Hydrometeorological Institute, Bratislava

in cooperation with the Monitoring and Assessment Expert Group of the ICPDR.

Editor: Igor Liska, ICPDR Secretariat

© ICPDR 2013

Contact

ICPDR Secretariat

Vienna International Centre / D0412

P.O. Box 500 / 1400 Vienna / Austria

T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895

icpdr@unvienna.org / www.icpdr.org

Table of content

1. Introduction	4
History of the TNMN Revision of the TNMN to meet the objectives of EU WFD	4
2. Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures	5
Objectives Selection of monitoring sites Quality elements Parameters indicative of selected biological quality elements Priority pollutants and parameters indicative of general physico-chemical quality elements Analytical Quality Control (AQC) TNMN Data Management	5 6 10 10 10 11
Results of basic statistical processing	13
4. Profiles and trend assessment of selected determinands	17
5. Load Assssment	37
Introduction Description of load assessment procedure Monitoring Data in 2011 Calculation Procedure Results	37 37 38 39 41
6. Groundwater monitoring	51
GW bodies of basin-wide importance Reporting on groundwater quality	51 52
7. Abbreviations	53

1. Introduction

History of the TNMN

In June 1994, the Convention on Cooperation for the Protection and Sustainable Use of the Danube River (DRPC) was signed in Sofia, coming into force in October 1998 with the main objectives of achieving sustainable and equitable water management, including the conservation, improvement and the rational use of surface and ground waters in the Danube catchment area. The DRPC also emphasizes that the Contracting Parties shall cooperate in the field of monitoring and assessment. In this respect, the operation of the Trans National Monitoring Network (TNMN) in the Danube River Basin aims to contribute to the implementation of the DRPC. This Yearbook reports on results of the basin-wide monitoring programme and presents TNMN evaluated data for 2011.

The TNMN has been in operation since 1996, although the first steps towards its creation were taken about ten years earlier. In December 1985 the governments of the Danube riparian countries signed the Bucharest Declaration. The Declaration had as one of its objectives to observe the development of the water quality of the Danube, and in order to comply with this objective, a monitoring programme containing 11 cross-sections of the Danube River was established.

Revision of the TNMN to meet the objectives of EU WFD

The original objective of the TNMN was to strengthen the existing network set up by the Bucharest Declaration, to enable a reliable and consistent trend analysis for concentrations and loads of priority pollutants, to support the assessment of water quality for water use and to assist in the identification of major pollution sources. In 2000, having the four-year experience of the TNMN operation, the main objective of the TNMN was reformulated: to provide a structured and well-balanced overall view of the status and long-term development of quality and loads in terms of relevant constituents in the major rivers of the Danube Basin in an international context. Implementation of the EU Water Framework Directive (2000/60/EC, short WFD) after 2000 necessitated the revision of the TNMN in the Danube River Basin District. In line with the WFD Art. 8, the revision process has been completed in 2007.

The major objective of the revised TNMN is to provide an overview of the overall status and long-term changes of surface water and – where necessary – groundwater status in a basinwide context with a particular attention paid to the transboundary pollution load. In view of the link between the nutrient loads of the Danube and the eutrophication of the Black Sea, it is necessary to monitor the sources and pathways of nutrients in the Danube River Basin District and the effects of measures taken to reduce the nutrient loads into the Black Sea.

To meet the requirements of both EU WFD and the Danube River Protection Convention the revised TNMN for surface waters consists of following elements:

- Surveillance monitoring I: Monitoring of surface water status
- Surveillance monitoring II: Monitoring of specific pressures
- Operational monitoring
- Investigative monitoring

Surveillance monitoring II is a joint monitoring activity of all ICPDR Contracting Parties that produces annual data on concentrations and loads of selected parameters in the Danube and major tributaries.

Surveillance monitoring I and the operational monitoring is based on collection of the data on the status of surface water and groundwater bodies in the DRB District to be published in the DRBM Plan once in six years.

Investigative monitoring is primarily a national task but at the basin-wide level the concept of Joint Danube Surveys was developed to carry out investigative monitoring as needed, e.g. for harmonization of the existing monitoring methodologies, filling the information gaps in the monitoring networks operating in the DRB, testing new methods or checking the impact of "new" chemical substances in different matrices. Joint Danube Surveys are carried out every 6

A new element of the revised TNMN is monitoring of groundwater bodies of basin-wide importance. More information on this issue is provided in the respective chapter in this Yearbook.

Detailed description of the revised TNMN is given in the Summary Report to EU on monitoring programmes in the Danube River Basin District designed under WFD Article 8.

This Yearbook presents the results of the Surveillance monitoring II: Monitoring of specific pressures.

2. Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures

Objectives

Surveillance Monitoring II aims at long-term monitoring of specific pressures of basin-wide importance. Selected quality elements are monitored annually. Such denser monitoring programme is needed to identify the specific pressures in the Danube River Basin District in order to allow a sound and reliable long-term trend assessment of specific quality elements and to achieve a sound estimation of pollutant loads being transferred across states of Contracting Parties and into the Black Sea.

Surveillance Monitoring II is based on the set-up of the original TNMN and is fitted to respond to pressures of basin-wide importance. The monitoring network is based on the national monitoring networks and the operating conditions are harmonized between the national and basin-wide levels to minimise the efforts and maximise the benefits.

Selection of monitoring sites

The selection of monitoring sites is based on the following criteria:

- Monitoring sites that have been monitored in the past and are therefore suitable for long-term trend analysis; these include sites
 - o located just upstream/downstream of an international border,
 - located upstream of confluences between Danube and main tributaries or main tributaries and larger sub-tributaries (to enable estimation of mass balances),
 - located downstream of the major point sources,
 - located to control important water uses.
- Sites required to estimate pollutant loads (e.g. of nutrients or priority pollutants) which are transferred across boundaries of Contracting Parties, and which are transferred into the marine environment.

The sites are located in particular on the Danube and its major primary or secondary tributaries near crossing boundaries of the Contracting Parties. List of monitoring sites is in the Table 1.

Table 1: List of monitoring sites

No.	Country	DEFF	TNMN	River	Name of site	Locations	x- coord.	y-coord.	River-	Altitu	Catch-
	code	Code	code						km	de	ment
1	DE	L2130	DE2	Danube	Jochenstein	М	13.703	48.520	2 204	290	77 086
2	DE		DE5	Danube	Dillingen	L	10.499	48.568	2 538	420	11 315
3	DE	L2150	DE3	/Inn	Kirchdorf	M	12.126	47.782	195	452	9 905
4	DE	L2160	DE4	/Inn/Salzach	Laufen	L	12.933	47.940	47	390	6 113
5	AT	L2220	AT1	Danube	Jochenstein	M	13.703	48.521	2 204	290	77 086
6	AT		AT5	Danube	Enghagen	R	14.512	48.240	2 113	241	84 869
7	AT	L2180	AT3	Danube	Wien-Nussdorf	R	16.371	48.262	1 935	159	101 700
8	AT		AT6	Danube	Hainburg	R	16.993	48.164	1 879	136	130 759
9	CZ	L2100	CZ1	/Morava	Lanzhot	M	16.989	48.687	79	150	9 725
10	CZ	L2120	CZ2	/Morava/Dyje	Pohansko	M	16.885	48.723	17	155	12 540
11	SK	L1840	SK1	Danube	Bratislava	LMR	17.104	48.139	1 869	128	131 329
12	SK	L1860	SK2	Danube	Medveďov	M	17.652	47.794	1 806	108	132 168
13	SK	L1960	SK4	/Váh	Komárno	MR	18.142	47.761	1	106	19 661
14	SK	L1871	SK5	Danube	Szob	M	18.964	47.787	1 707	100	183 350
15	SK		SK6	/Morava	Devín	M	48.188	16.976	1	145	26 575
16	SK		SK7	/Hron	Kamenica	M	47.826	18.723	1.7	114	5 417
17	SK		SK8	/lpoly	Salka	M	47.886	18.763	12	110	5 060
18	HU	L1470	HU1	Danube	Medvedov	M	17.652	47.792	1 806	108	131 605
19	HU	L1475	HU2	Danube	Komarom	LMR	18.121	47.751	1 768	101	150 820
20	HU	L1490	HU3	Danube	Szob	LMR	18.964	47.787	1 708	100	183 350
21	HU	L1520	HU4	Danube	Dunafoldvar	LMR	18.934	46.811	1 560	89	188 700
22	HU	L1540	HU5	Danube	Hercegszanto	LMR	18.814	45.909	1 435	79	211 503
23	HU	L1604	HU6	/Sio	Szekszard-Palank	M	18.720	46.380	13	85	14 693
24	HU	L1610	HU7	/Drava	Dravaszabolcs	M	18.200	45.784	78	92	35 764
25	HU	L1770	HU8	/Tisza/Sajo	Sajopuspoki	M	20.340	48.283	124	148	3 224
26	HU	L1700	HU9	/Tisza	Tiszasziget	LMR	20.105	46.186	163	74	138 498
27	HU		HU10	/Tisza	Tiszabecs	M	22.830	48.102	757	114	9707
28	HU		HU11	/Tisza/Szamos	Csenger	M	22.404	47.513	45	113	15283
29	HU		HU12	/Tisza/Hármas- Körös/Sebes- Körös	Korosszakal	М	21.392	47.011	59	92	2489
30	HU		HU13	/Tisza/Hármas- Körös/Kettős- Körös/Fekete- Körös	Sarkad	М	21.255	46.414	16	85	4302
31	HU		HU14	/Tisza/Hármas- Körös/Kettős-	Gyulavari	М	21.201	46.374	9	85	4251

33 SI L1330 SI Dirava Ormoz LM 16.156 46.403 300 192 155 101	No.	Country code	DEFF Code	TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
12 HU												
St	32	HU		HU15		Nagylak	R	20.421	46.094	51	80	30149
Section						Ormoz	LM					15 356
18												10 878
187												210 250
18												243 147
198												15356
HR												31 038
HR												10 834
1	40		L1220	пко	/Sava			16.090	45.040	129	133	10 034
HR10						Jasenovac						30 953
44 RS			L1060									62 890
46			1.0050									10 878
46												210 250
48												251 253 254 085
48 RS L2390 RSS Danube Pancevo L 20,594 44,856 1155 70 525												412 762
49 RS L2400 RS6 Danube Banatska Palanka M 21,345 44,826 1,077 69 568 50 RS L2410 RS7 Danube Telkija R 22,246 44,700 955 0 574 511 RS L2420 RS8 Danube Radujevac R 22,866 44,263 851 32 577 52 RS L2430 RS9 Danube Backa Palanka L 19,366 44,263 851 32 577 52 RS L2440 RS10 //Tisza (Tisa) Martonos R 20,087 46,114 552 76 140 558 65 78 L2460 RS10 //Tisza (Tisa) Martonos R 20,087 46,114 552 76 140 558 65 RS L2460 RS11 //Tisza (Tisa) Martonos R 20,087 45,206 0 73 157 558 RS L2460 RS12 //Tisza (Tisa) Title M 20,320 45,205 9 73 157 558 RS L2420 RS13 //Sawa Jamena L 20,320 45,205 9 78 64 65 78 78 64 78 78 78 78 78 78 78 7												525 009
50											-	568 648
51 RS											-	574 307
Second												577 085
SR											-	253 737
Feb Fig. Conf. Fig.	53		L2440	RS10	/Tisza (Tisa)	Martonos	R	20.087		152	76	140 130
Feb Feb					/Tisza (Tisa)	Novi Becej	L			66		145 415
For the content of					\ /							157 147
Fig. RS												64 073
Fig. RS												87 996
For the color of												89 490
BA												37 320
BA			L2510	_		· · · · · · · · · · · · · · · · · · ·						
BA												
BA										_		6 023
65 BA BA9 /Sava/Drina Foca M 18.833 43.344 234 442 3 86 66 BA BA10 /Sava/Drina Badovinci M 19.344 44.779 16 90 192 67 BA BA11 /Sava/Una Raca M 19.335 44.891 190 80 64 68 BA BA12 /Sava/Una Novi Grad M 16.295 44.988 70 137 457 69 BA BA13 /Sava/Bosna Usora M 18.074 44.664 78 148 73 70 BG L0730 BG1 Danube Novo Selo harbour LURR 22.785 44.165 834 35 580 71 BG BG9 Danube Lom R 23.270 43.835 741 24 588 72 BG BG10 Danube Bajkal R 24.400 43.711						•						10 500
66 BA BA10 /Sava/Drina Badovinci M 19.344 44.779 16 90 19.2 67 BA BA11 /Sava Raca M 19.335 44.891 190 80 64.1 68 BA BA11 /Sava/Una Novi Grad M 16.295 44.988 70 137 45.7 69 BA BA13 /Sava/Posna Usora M 18.074 44.664 78 148 73 70 BG L0730 BG1 Danube Novo Selo harbour LMR 22.785 44.165 834 35 580 71 BG BG9 Danube Lom R 23.277 43.835 741 24 588 72 BG BG10 Danube Orjahovo R 23.997 43.729 679 22 607 73 BG L0810 BG2 Danube Nikopol R 25.927 43.701 <td></td> <td>3 884</td>												3 884
For BA							М			16	90	19 226
69 BA BA13 /Sava/Bosna Usora M 18.074 44.664 78 148 7.31 70 BG L0730 BG1 Danube Novo Selo harbour LMR 22.785 44.165 834 35 580 71 BG BG9 Danube Lorm R 23.270 43.835 741 24 588 72 BG BG10 Danube Orjahovo R 23.997 43.729 679 22 607 73 BG L0780 BG2 Danube Bigial R 23.997 43.729 679 22 607 73 BG L0780 BG2 Danube Nikopol R 25.927 43.711 641 20 608 74 BG BG8 BG31 Danube Svishtov R 25.945 43.623 554 16 650 76 BG L0820 BG4 Danube Sl	67	BA		BA11	/Sava	Raca	М	19.335	44.891	190	80	64 125
TO		BA		BA12		Novi Grad				70	137	4 573
71 BG BG9 Danube Lom R 23.270 43.835 741 24 588 72 BG BG10 Danube Orjahovo R 23.997 43.729 679 22 607 73 BG L0780 BG2 Danube Bajkal R 24.400 43.711 641 20 608 74 BG BG11 Danube Nikopol R 25.927 43.701 598 21 648 75 BG L0810 BG3 Danube Svishtov R 25.345 43.623 554 16 650 76 BG L0820 BG4 Danube Upstream Russe R 25.907 43.793 503 12 669 77 BG L0820 BG4 Danube Silistra LMR 27.268 44.125 375 7 698 78 BG L0850 BG12 /Iskar mouth <td></td> <td>7 313</td>												7 313
T22 BG			L0730									580 100
T3												588 860
T4			1.0700			,						607 260
T5			L0780									608 820
76 BG L0820 BG4 Danube Upstream Russe R 25.907 43.793 503 12 669 77 BG L0850 BG5 Danube Silistra LMR 27.268 44.125 375 7 698 78 BG BG12 //skar mouth M 24.461 43.706 4 27 8 64 79 BG BG13 //vit Guljantzi M 24.728 43.644 7 29 3 22 80 BG BG13 //vit Guljantzi M 24.728 43.603 4 25 7 864 81 BG BG15 //Russenski Lom mouth M 25.579 43.603 4 25 7 864 81 BG BG15 //Russenski Lom mouth M 25.936 43.813 1 17 2 97 82 RO L0020 RO1 Danube Bazias LMR			1.0010									648 620
77 BG L0850 BG5 Danube Silistra LMR 27.268 44.125 375 7 698 78 BG BG12 //skar mouth M 24.461 43.706 4 27 8 64 79 BG BG13 //it Guljantzi M 24.728 43.644 7 29 3 22 80 BG BG14 /Jantra mouth M 25.579 43.603 4 25 7 86 81 BG BG15 /Russenski Lom mouth M 25.579 43.603 4 25 7 86 81 BG BG15 /Russenski Lom mouth M 25.936 43.813 1 17 2 9 82 80 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1 071 70 570 84 RO L0090 RO2 Danube Pristol/Novo Selo												650 340 669 900
78 BG BG12 /Iskar mouth M 24.461 43.706 4 27 8 64 79 BG BG13 /Vit Guljantzi M 24.728 43.644 7 29 3 22 80 BG BG14 /Jantra mouth M 25.579 43.603 4 25 7 86 81 BG BG15 /Russenski Lom mouth M 25.936 43.813 1 17 2 97 82 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1 071 70 570 83 RO RO18 Danube Gruia/Radujevac LMR 21.384 44.816 1 071 70 570 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.684 44.274 831 3 2 577 84 RO L0240 RO3 Danube Pristol/Novo Selo												698 600
79 BG BG13 /Vit Guljantzi M 24.728 43.644 7 29 3 22 80 BG BG14 /Jantra mouth M 25.579 43.603 4 25 7 86 81 BG BG15 /Russenski Lom mouth M 25.936 43.813 1 17 2 97 82 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1 071 70 570 83 RO RO18 Danube Gruia/Radujevac LMR 22.684 44.270 851 32 577 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0240 RO3 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0280 RO4 Danube <			L0000									8 646
80 BG BG14 /Jantra mouth M 25.579 43.603 4 25 7.86 81 BG BG15 /Russenski Lom mouth M 25.936 43.813 1 17 2.97 82 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1.071 70 570 83 RO RO18 Danube Gruia/Radujevac LMR 22.684 44.270 851 32 577 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0240 RO3 Danube Dunare - upstream Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0450										7		3 225
81 BG BG15 /Russenski Lom mouth M 25.936 43.813 1 17 2 97 82 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1 071 70 570 83 RO RO18 Danube Gruia/Radujevac LMR 22.684 44.270 851 32 577 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0240 RO3 Danube Dunare - upstream Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO										4		7 869
82 RO L0020 RO1 Danube Bazias LMR 21.384 44.816 1 071 70 570 83 RO RO18 Danube Gruia/Radujevac LMR 22.684 44.270 851 32 577 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0240 RO3 Danube Dunare - upstream Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm/Kilia arm LMR 29.553 45.406 18 1 817 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 974</td></t<>												2 974
83 RO RO18 Danube Gruia/Radujevac LMR 22.684 44.270 851 32 577 84 RO L0090 RO2 Danube Pristol/Novo Selo LMR 22.676 44.214 834 31 580 85 RO L0240 RO3 Danube Dunare - upstream Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817			L0020									570 896
RO L0240 RO3 Danube Dunare - upstream Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 <td>83</td> <td>RO</td> <td></td> <td>RO18</td> <td>Danube</td> <td></td> <td>LMR</td> <td></td> <td>44.270</td> <td>851</td> <td></td> <td>577 085</td>	83	RO		RO18	Danube		LMR		44.270	851		577 085
85 RO L0240 ROS Danube Arges (Oltenita) LMR 26.619 44.056 432 16 676 86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5<	84	RO	L0090	RO2	Danube		LMR	22.676	44.214	834	31	580 100
86 RO L0280 RO4 Danube Chiciu/Silistra LMR 27.268 44.128 375 13 698 87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8	85	RO	L0240	RO3	Danube		LMR	26.619	44.056	432	16	676 150
87 RO L0430 RO5 Danube Reni LMR 28.232 45.463 132 4 805 88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8		RO	L0280	RO4	Danube		LMR					698 600
88 RO L0450 RO6 Danube Vilkova-Chilia arm/Kilia arm LMR 29.553 45.406 18 1 817 89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8												805 700
89 RO L0480 RO7 Danube Sulina - Sulina arm LMR 29.530 45.183 0 1 817 90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8						Vilkova-Chilia arm/Kilia						
90 RO L0490 RO8 Danube Sf. Gheorghe-Ghorghe arm LMR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8												817 000 817 000
90 RO L0490 ROS Darlube arm LWR 29.609 44.885 0 1 817 91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8	υσ							25.550	45.163	0	+'	017 000
91 RO L0250 RO9 /Arges Conf. Danube (Clatesti) M 26.599 44.145 0 14 12.5 92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8	90	RO	L0490	RO8	Danube	•	LMR	29.609	44.885	0	1	817 000
92 RO L0380 RO10 /Siret Conf. Danube (Sendreni) M 27.933 45.406 0 4 42.8		RO	L0250	RO9	/Arges		М					12 550
92 RO L0380 RO10 /Siret (Sendreni) M 27.933 45.406 0 4 42.8											1	
						(Sendreni)		27.933			4	42 890
	93	RO	L0420	RO11	/Prut	Conf. Danube	М	28.203	45.469	0	5	27 480

L: Left bank

No.	Country code	DEFF Code	TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
					(Giurgiulesti)						
94	RO		RO12	/Tisza/Somes	Dara (frontiera)	M	22.720	47.815	3	118	15 780
95	RO		RO13	/Tisza/Hármas- Körös/Sebes- Körös/Crisul Repede	Cheresig	М	21.692	47.030	3	116	2 413
96	RO		RO14	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Negru	Zerind	М	21.517	46.627	13	86.4	3 750
97	RO		RO15	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Alb	Varsand	М	21.339	46.626	0.2	88.9	4 240
98	RO		RO16	/Tisza/Mures	Nadlac	М	20.727	46.145	21	85.6	27 818
99	RO		RO17	/Tisza/Bega	Otelec	М	20.847	45.620	7	46	2 632
100	RO		RO19	/Jiu	Zaval	М	23.845	43.842	9	30.9	10 046
101	RO		RO20	/Olt	Islaz	М	24.797		3	32	24 050
102	RO		RO21	/lalomita	Downstream Tandarei	M	27.665	44.635	24	8.5	10 309
103	MD	L2230	MD1	/Prut	Lipcani	L	26.483	48.152	658	100	8 750
104	MD	L2270	MD3	/Prut	Conf. Danube- Giurgiulesti	LMR	28.124	45.285	0	5	27 480
105	MD		MD5	/Prut	Costesti Reservoir	L	27.145	47.513	557	91	11 800
106	MD		MD6	/Prut	Braniste	L	27.145	47.475	546	63	12 000
107	MD		MD7	/Prut	Valea Mare	L	27.515	47.075	387	55	15 200
108	UA	L0630	UA1	Danube	Reni	M	28.241	45.463	132	4	805 700
109	UA	L0690	UA2	Danube	Vylkove	M	29.246	45.436	18	1	817 000
110	UA		UA4	/Tisza	Chop	M	22.184	48.416	342	92	33000
111	UA		UA5	/Tisza/Bodrog/Lat oritsa	Strazh	М	22.212	48.454	144	97	4418
112	UA		UA6	/Prut	Tarasivtsi	M	26.336	48.183	262	122	9836
113	UA		UA7	/Siret	Porubne	М	26.030	47.981	100	303	2070
114	UA		UA8	/Uzh	Storozhnica	R	22.200	48.617	106	112	1582
115	ME		ME1	/Lim	Dobrakovo	L	19º46'22"	43º07'17"	112	609	2875
116	ME		ME2	/Cehotina	Gradac	L	19º09'14"	43°23'45"	55.5	55	809.8
·	Distance: The distance in km from the mouth of the mentioned river Sampling location in profile:										

Altitude: The mean surface water level in meters above sea level


Catchment: The area in square km, from which water drains through the station

M: Middle of river ds. Downstream of R: Right bank

us. Upstream of

Confluence tributary/main river Conf.

Indicates tributary to river in front of the slash. No name in front of the slash means Danube

Quality elements

Parameters indicative of selected biological quality elements

To cover pressures of basin-wide importance as organic pollution, nutrient pollution and general degradation of the river, following biological quality elements have been agreed for SM2:

- Phytoplankton (chlorophyll-a)
- Benthic invertebrates (mandatory parameters: Saprobic index and number of families once yearly, both Pantle&Buck and Zelinka&Marvan SI are acceptable; optional parameters: ASPT and EPT taxa)
- Phytobenthos (benthic diatoms an optional parameter)

Priority substances and parameters indicative of general physicochemical quality elements

The list of parameters for assessment of trends and loads and their monitoring frequencies are given in Table 2

Table 2: Determinand list for water for TNMN

	Surveillance Monitoring 2							
	Water	Water						
	concentrations	load assessment						
Parameter								
Flow	annually / 12 x per year	daily						
Temperature	annually / 12 x per year							
Transparency (1)	annually / 12 x per year							
Suspended Solids (5)	annually / 12 x per year	annually / 26 x per year						
Dissolved Oxygen	annually / 12 x per year							
pH (5)	annually / 12 x per year							
Conductivity @ 20 °C (5)	annually / 12 x per year							
Alkalinity (5)	annually / 12 x per year							
Ammonium (NH ₄ ⁺ -N) (5)	annually / 12 x per year	annually / 26 x per year						
Nitrite (NO ₂ -N)	annually / 12 x per year	annually / 26 x per year						
Nitrate (NO ₃ ⁻ -N)	annually / 12 x per year	annually / 26 x per year						
Organic Nitrogen	annually / 12 x per year	annually / 26 x per year						
Total Nitrogen	annually / 12 x per year	annually / 26 x per year						
Ortho-Phosphate (PO ₄ ³⁻ -P) (2)	annually / 12 x per year	annually / 26 x per year						
Total Phosphorus	annually / 12 x per year	annually / 26 x per year						
Calcium (Ca ²⁺) (3, 4, 5)	annually / 12 x per year							
Magnesium (Mg ²⁺) (4, 5)	annually / 12 x per year							
Chloride (Cl ⁻)	annually / 12 x per year							
Atrazine	annually / 12 x per year							
Cadmium (6)	annually / 12 x per year							

	Surveillance	Monitoring 2
	Water	Water
	concentrations	load assessment
Parameter		
Lindane (7)	see below	
Lead (6)	annually / 12 x per year	
Mercury (6)	annually / 12 x per year	
Nickel (6)	annually / 12 x per year	
Arsenic (6)	annually / 12 x per year	
Copper (6)	annually / 12 x per year	
Chromium (6)	annually / 12 x per year	
Zinc (6)	annually / 12 x per year	
p,p'-DDT and its derivatives (7)	see below	
COD _{Cr} (5)	annually / 12 x per year	
COD _{Mn} (5)	annually / 12 x per year	
Dissolved Silica		annually / 26 x per year
BOD ₅	annually / 12 x per year	

- (1) Only in coastal waters
- (2) Soluble reactive phosphorus SRP
- (3) Mentioned in the tables of the CIS Guidance document but not in the related mind map
- (4) Supporting parameter for hardness-dependent eqs of PS metals
- (5) Not for coastal waters
- (6) Measured in a dissolved form. Measurement of total concentration is optional
- (7) In areas with no risk of failure to meet the environmental objectives for DDT and Lindane the monitoring frequency is 12 x per a RBMP period; in case of risk the frequency is 12 x year

Analytical Quality Control (AQC)

The 2011 analytical quality control scheme involved quarterly distribution of surface water samples to be analysed for general parameters, nutrients, metals and organic pollutants. After a considerable decline in participation in 2010, number of laboratories further dwindled in 2011 in all component groups: 48 laboratories from 8 Danube countries participated in the scheme. This trend results in the increasing uncertainty of assigned values and decreases the reliability of evaluation.

Following the Youden-pair experimental design and evaluation technique, samples were prepared in duplicates, i.e. two samples of identical matrix and similar concentration were sent out for each determinand. In accordance with previous expericence, general components were measured with negligible problem. The same holds true for nutrients and metals as well, traditionally among the successful determinations. Total nitrogen is increasingly the component of choice instead of Kjeldahl nitrogen. In case of organic indicator components, the improved agreement of results experienced in 2010 remained also in 2011. Similarly to previous years, the most problematic component group was organic micropollutants. Lowered concentrations of PCBs were a major challenge. Further decrease of organic micropollutant concentration ranges - rightfully asked by some participants - is not feasible within the current organisational setup.

Financial constraint leads to an increasing share of synthetic samples in the programme.

TNMN Data Management

The procedure of TNMN data collection is organized at a national level. The National Data Managers (NDMs) are responsible for data acquisition from TNMN laboratories as well as for data checking, conversion into an agreed data exchange file format (DEFF) and sending it to the TNMN data management centre in the Slovak Hydrometeorological Institute in Bratislava. This centre performs a secondary check of the data and uploads them into the central TNMN database. In cooperation with the ICPDR Secretariat, the TNMN data are uploaded into the ICPDR website (www.icpdr.org).

3. Results of basic statistical processing

150 sites at 112 TNMN monitoring stations were monitored in the Danube River Basin in 2011 (some monitoring stations contain two or three sampling sites - left, middle and/or right side of the river). The data was collected from 73 sampling sites at 40 stations on the Danube river and from 77 sampling sites at 72 stations at the tributaries.

The basic processing of the TNMN data includes the calculation of selected statistical characteristics for each determinand/monitoring site. Results are presented in tables in the Annex I using the following format:

Term used	Explanation
Determinand name	name of the determinand measured according to the agreed method
Unit	unit of the determinand measured
N	number of measurements
Min	minimum value of the measurements done in the year 2011
Mean	arithmetical mean of the measurements done in the year 2011
Max	maximum value of the measurements done in the year 2011
C50	50 percentile of the measurements done in the year 2011
C90	90 percentile of the measurements done in the year 2011

When processing the TNMN data and presenting them in the tables of the Annex, the following rules have been applied:

- If "less than the quantification limit" values were present in the dataset for a given determinand, then the $\frac{1}{2}$ value of the limit of quantification was used in statistical processing of the data.
- If the number of measurements for a particular determinand was lower than four, then only the minimum, maximum and mean are reported in the tables of the Annex.
- The statistic value "C90" is equal to 90 percentile (10 percentile for dissolved oxygen and lower limit of pH value) if the number of measurements in a year was at least eleven. If the number of measurements in a year was lower than eleven, then the "C90" value is represented by a maximum value from a data set (a minimum value for dissolved oxygen and lower limit of pH value).

Problem is the reduced monitoring frequency for certain determinands such as dissolved phosphorus, biological determinands, heavy metals and specific organic micropollutants, primarily in the lower part of the Danube River Basin.

Table 3, created on the basis of data in tables in the Annex I, shows in an aggregated way the concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2011. These include indicators of the oxygen regime, nutrients, heavy metals, biological determinands and organic micropollutants.

Table 3 also includes information about the number of monitoring locations and sampling sites providing measurements of the determinands.

The table provides the minimal and maximal values for all determinands calculated for all data from Danube and tributary stations and minimal and maximal values for all determinands calculated from mean (average) values from all Danube or tributary stations.

* For some heavy metals in Table 3, the statistical values for dissolved form are in certain cases higher than those for the total content. The reason is that not all countries report on the dissolved metals which lead to differences in the processed statistical values.

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2011

Determinand name	Unit	Danube					Tributaries					
		No.of monitoring					No.of monitoring					
		locations / No. of					locations / No. of					
		monitoring sites with					monitoring sites					
		measurements	Range o		Me		with	Range of		Mea		
			Min	Max	Min _{avg}	Max _{avg}	measurements	Min	Max	Min _{avg}	Max _{avg}	
Temperature	°C	70/40	0.6	28.1	11.2	27.0	72/70	0.0	29.2	8.427	20.4	
Suspended Solids	mg/l	66/38	< 0.25	281	4	95	72/70	< 0.15	1067	< 0.15	283	
Dissolved Oxygen	mg/l	70/40	5.1	18.1	7.5	11.2	72/70	< 0.25	93	7.74	16.83	
BOD₅	mg/l	71/41	< 0.25	8.2	8.0	_	73/71	< 0.1	12	0.89	8.63	
COD_Mn	mg/l	59/33	1.3	10.0	2.3	5.8	43/41	< 0.5	29	1.82	8.41	
COD _{Cr}	mg/l	60/30	2.0	50.0	5.6	24.9	60/58	< 0.5	294.18	3.46	68.65	
тос	mg/l	53/33	< 0.5	11.0	1.7	6.1	36/34	< 0.5	65.3	1.34	18.23	
DOC	mg/l	6/6	1.1	7.6	2.1	2.7	2/2	0.5	3.3	1.406	1.408	
рН		64/38	6.6	9.0	7.5	8.4	72/70	4.94	9.17	7.13	8.5	
Alkalinity	mmol/l	69/39	1.4	5.4	1.7	4.8	58/56	0.59	290	1.24	208.25	
Ammonium-N	mg/l	70/40	< 0.001	0.76	0.02	0.19	73/71	< 0.001	6.1	0.028	2.563	
Nitrite-N	mg/l	69/39	< 0.0010	2.152	0.011	0.049	73/71	0.001	0.491	0.0041	0.1317	
Nitrate-N	mg/l	71/41	< 0.003	4.40	0.60	3.02	73/71	< 0.035	9.5	0.298	4.948	
Total Nitrogen	mg/l	64/34	0.7	5.9	1.4	3.9	60/58	0.3	14.074	0.625	8.02	
Organic Nitrogen	mg/l	33/23	< 0.025	3.30	< 0.1	1.57	29/27	0.038	4.318	0.108	1.376	
Ortho-Phosphate-P	mg/l	64/38	< 0.001	0.670	0.025	0.137	69/67	< 0.001	1.75	0.0078	1.185	
Total Phosphorus	mg/l	69/39	< 0.0035	0.960	0.054	0.262	59/57	< 0.0035	2.44	0.0278	0.5195	
Total Phosphorus - Dissolved	mg/l	69/39	0.01	0.190	0.045	0.124	20/20	< 0.0025	0.44	0.0149	0.1527	
Chlorophyll-a	μg/l	63/35	0.30	132.00	2.70	27.69	48/46	0.09	315.24	1.45	114.63	
Conductivity 20°C	μS/cm	64/36	8	2011	353	585	67/65	104	1660	209	1308	
Calcium	mg/l	70/40	12.6	98.0	46.2	86.7	67/65	10.4	183	31.63	109.99	
Sulphates	mg/l	66/40	8.0	207.4	18.8	62.5	55/53	< 5.0	189	12.18	140.5	
Magnesium	mg/l	67/39	5.0	53.7	11.2	21.8	68/66	2.43	79	4.9	65.91	
Potassium	mg/l	61/37	1.0	16.8	< 2.00	4.5	42/40	< 0.05	97	0.64	17.73	
Sodium	mg/l	61/37	1.90	32.20	10.87	25.54	42/40	2.5	86	3.95	50.82	
Manganese	mg/l	38/20	< 0.0005	0.10	0.0028	0.14	23/23	< 0.0025	24.9	0.018	6.24	
Iron	mg/l	35/19	< 0.005	1.6	0.01	1.616	26/26	< 0.005	14.5	0.049	2.89	
Chlorides	mg/l	71/41	11.0	477.0	18.1	44.7	73/71	0.5	383	3.32	218.32	
Silicates (SiO2)	mg/l	8/6	0.7	7.8	2.4	11.7	9/7	3.3	23.9	5.1	18.9	
Silicates (SiO2), dissolved	mg/l	38/20	< 0.04	13.8	2.3	10.9	24/24	<0.25	31.38	2.34	15.38	
Macrozoobenthos-saprobic index		5/5	2.06	2.13	2.06	2.52	7/7	1.84	2.45	1.84	2.45	
Macrozoobenthos - no.of taxa		0/0				49	7/7	34	56240	34	26747	
Macrozoobenthos-number of families		1/1	13	13	13	16	4/4	8	30	8	30	

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2011 (cont.)

4. Profiles and trend assessment of selected determinands

The 90 percentiles (C90) of selected determinands (dissolved oxygen, BOD₅, COD_{Cr}, N-NH₄. N-NO₃, P-PO₄, P_{total} and Cd) measured in last ten years are displayed in the Figures 4.1-4.16. Due to revision of the TNMN in 2006 following monitoring points on the Danube were replaced: AT2 rkm 2120 to AT5 rkm 2113, AT4 rkm 1874 to AT6 rkm 1879, DE1 rkm 2581 to DE5 rkm 2538. Among tributaries the site HR3 rkm 288 was replaced by HR9 rkm 300 BG8 rkm 54 to BG14 rkm 4 and BG8 rkm 13 to BG15 rkm 1. In 2008 HR6 rkm 729 was replaced by HR10 rkm 728.8. In 2009 SK3 was replaced with SK5; this monitoring site is in graphs also referred to as the Hungarian point HU3. For trend graphs SK3 and HU3 were used, because for SK5 only two years of monitoring are available.

To indicate the long-term trends in the upper, middle and lower Danube a more detailed analysis for the selected parameters (BOD₅, N-NO₃, P_{total}) is provided for the sites SK1 Bratislava, HU5 Hercegszanto and RO5 Reni (Figures 4.17-4.33).

The highest values of dissolved oxygen were observed in the upper part of the Danube, in the lower Danube dissolved oxygen levels decrease (Figure 4.1). The lowest value was observed at the monitoring point BG2. Low values of dissolved oxygen were measured in 2011 in tributaries Arges, Prut, Sio and Tisza.

Decreasing tendencies of biodegradable organic matter were observed in the upper Danube and also at some stations of the lower Danube (see Figure 4.3). The BOD levels were increased in 2011 at SK1, HU5 and RO5 (Figure 4.17-4.19).

A decreasing tendency of levels the BOD in the tributaries Dyje, Arges and Siret have been observed (Figure 4.4).

The decreasing concentration of ammonium-N was recorded in the whole Danube River. During the last ten years of TNMN operation, concentration of ammonium was decreasing in the Inn, Salzach, Morava, Dyje, Sajo, Siret, Sava, Tisza and Prut rivers. In 2011 concentration of ammonium-N in increased the tributary Arges (Figure 4.8).

The level of nitrate-N concentrations is rather stable during recent years. A decrease was observed at several stations in the Danube (for example RS1, RS6, RO1, see Figure 4.9). The nitrate-N has a decreasing tendency in the tributaries Sio, Sava, Arges, Prut and Siret (Figure 4.10).

The nitrate level in the monitoring points SK1 and RO5 was decreased in 2011, but it increased in HU5 (see in Figure 4.20-4.22).

In the last decade a decreasing tendency of ortho-phosphate-P concentrations is mostly seen in the upper part of the Danube, last year concentration decreased also in some sites in the lower part (BG2, RO6, RO7, Figure 4.11). Decreasing tendency of ortho-phosphate-P was observed in the tributaries Vah, Sajo and Sava (Figure 4.12). In 2011 ortho-phosphate-P concentration increased in the tributary Arges.

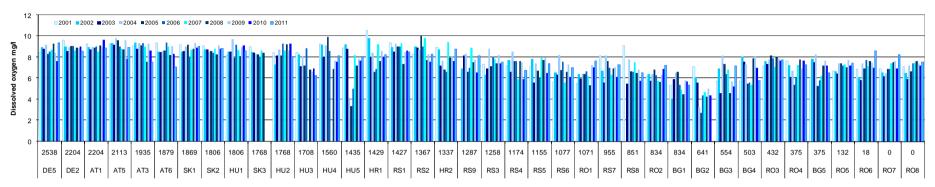
P-total concentration decreased in the tributaries Vah, Sio and Sava (see Figure 4.14).

In SK1 Bratislava P-total concentration has a decreasing tendency over the last decade, while HU5 Hercegszanto and RO5 Reni keep a rather stable pattern (Figure 4.23-4.25).

The trends of COD in Danube river was rather stable during last ten years, the highest concentrations was in lower part of Danube river. The highest COD concentrations in 2011 were observed in tributaries Prut, Siret and Russenski Lom.

The 90 and 10 percentiles of selected determinands (N-NH₄, P-PO₄, COD_{Cr}, BOD₅) measured in 2011 are displayed in the Figures 4.26-4.33. Pictures indicate the margins of a usual annual concentration range for a given parameter and site. In graphs for tributaries there are rkm of Danube, where tributary discharge to the Danube river.

Lower concentrations of N-NH₄ were observed in the upper part of Danube (Figure 4.26), the highest concentration was in RO5. In tributaries the highest values were observed in Ialomita (Figure 4.27).


The highest values of percentiles of P-PO₄ were observed in the Serbian part of the Danube (Figure 4.28). The highest value among tributaries was observed in Russenski Lom (Figure 4.29).

The maximal values of COD_{Cr} percentiles were found in the lower Danube and in tributaries Ialomita, Russenski Lom, Siret, Olt and Szamos (Figure 4.30 and Figure 4.31).

The highest values of BOD₅ were in the middle and lower part of the Danube in Hungary and Bulgaria and points (Figure 4.32). In tributaries the highest values were observed in Ialomita, Russenski Lom, Vit, Iskar and Szamos (Figure 4.33).

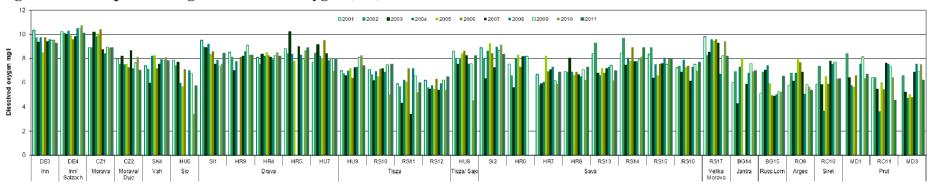

The annual differences between C90 and C10 has an insignificant variation for P-PO₄ and COD_{cr} in the whole Danube and in the upper and middle section tributaries. The visible differences were observed BOD₅ along the whole Danube. Differences were observed also for BOD₅ in the tributaries.

Figure 4.1.: Temporal changes of dissolved oxygen (c10) in the Danube river.

Monitoring sites / distance from the mouth [km]

Figure 4.2.: Temporal changes of dissolved oxygen (c10) in tributaries.

Monitoring site / Tributary

Figure 4.3.: Temporal changes of BOD₅ (c90) in the Danube river.

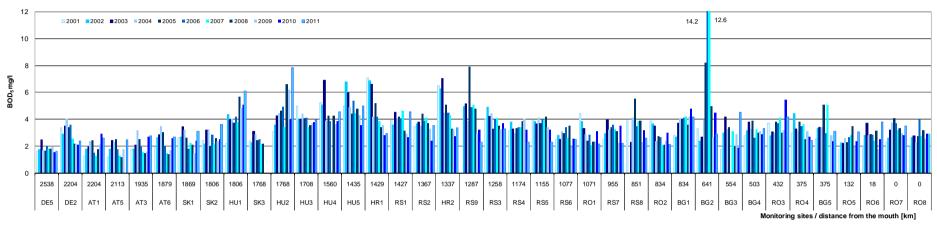


Figure 4.4.: Temporal changes of BOD₅ (c90) in tributaries.

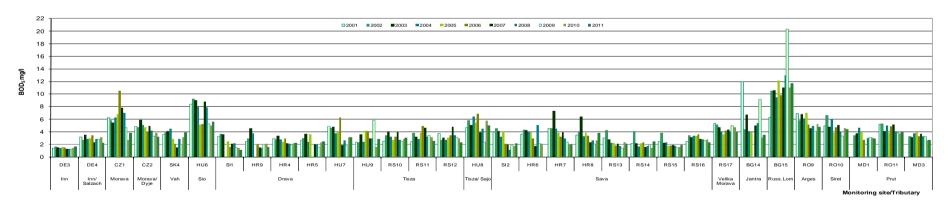


Figure 4.5.: Temporal changes of COD_{Cr} (c90) in the Danube river.

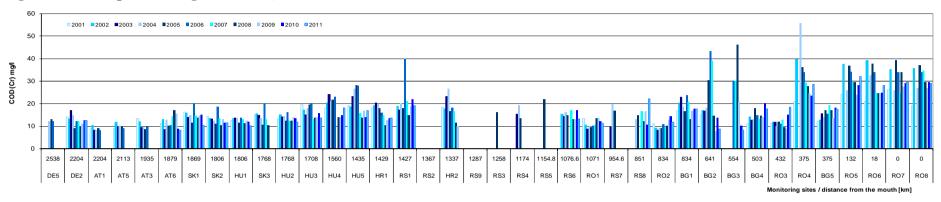


Figure 4.6.: Temporal changes of $COD_{Cr}(c90)$ in tributaries.

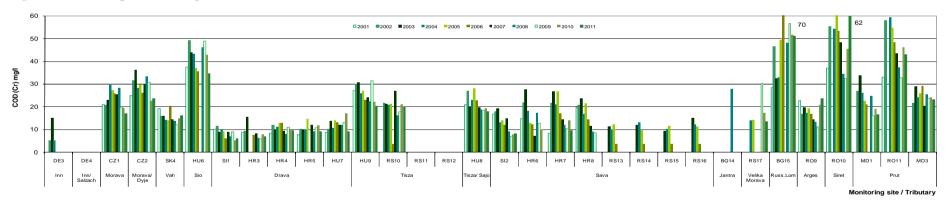


Figure 4.7.: Temporal changes of ammonium-nitrogen (c90) in the Danube river.

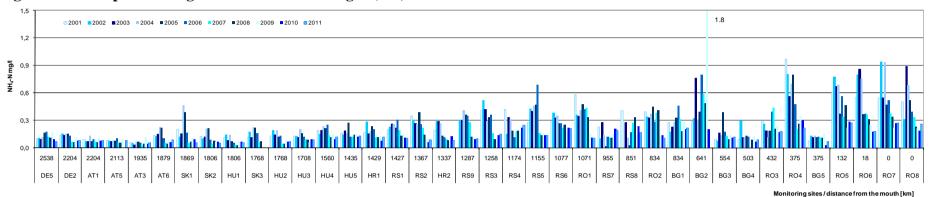


Figure 4.8.: Temporal changes of ammonium-nitrogen (c90) in tributaries.

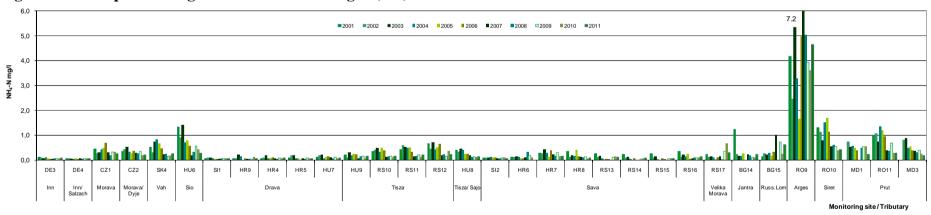


Figure 4.9.: Temporal changes of nitrate-nitrogen (c90) in the Danube river.

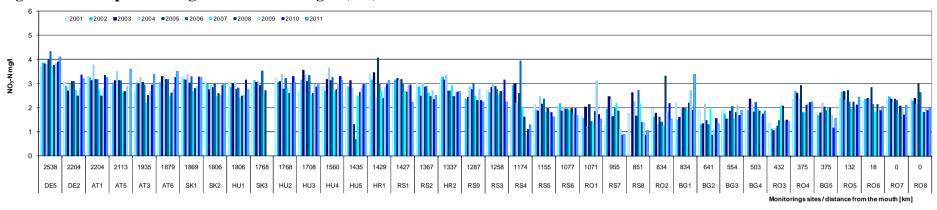


Figure 4.10.: Temporal changes of nitrate-nitrogen (c90) in tributaries.

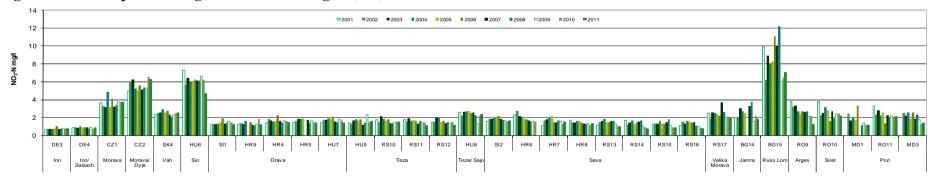


Figure 4.11: Temporal changes of ortho-phosphate-phosphorus (c90) in the Danube river.

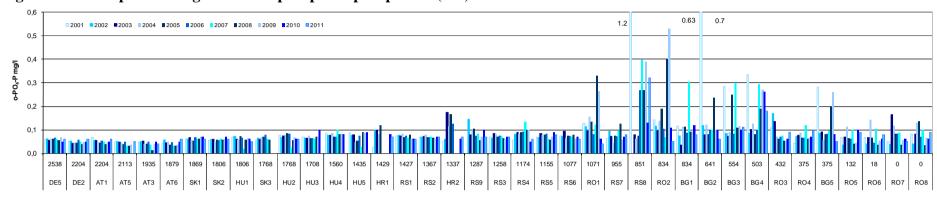


Figure 4.12: Temporal changes of ortho-phosphate-phosphorus (c90) in tributaries

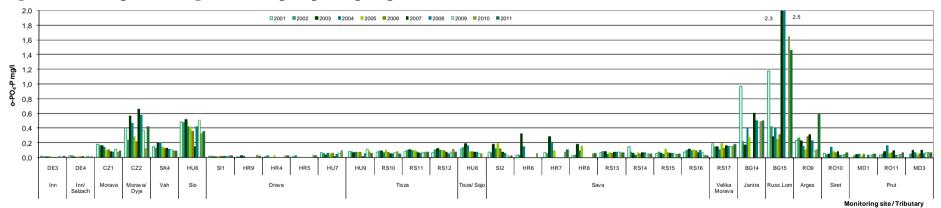


Figure 4.13: Temporal changes of total phosphorus (c90) in the Danube river.

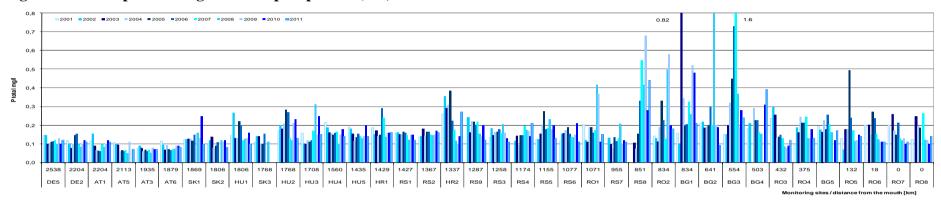


Figure 4.14: Temporal changes of total phosphorus (c90) in tributaries.

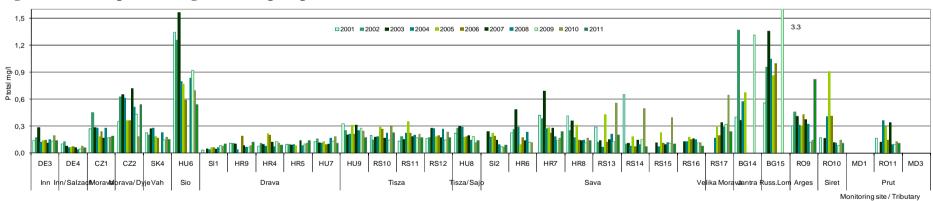
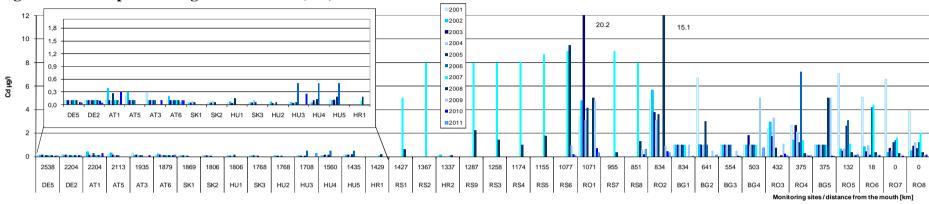
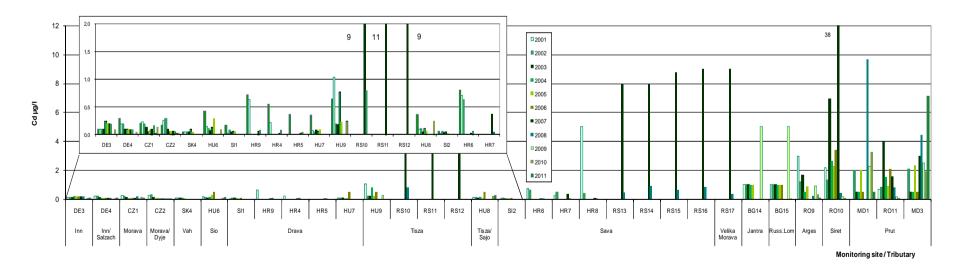
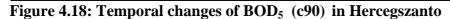
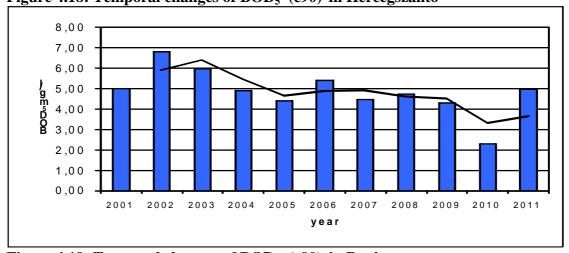


Figure 4.15: Temporal changes of cadmium (c90) in the Danube river.


Figure 4.16: Temporal changes of cadmium (c90) in tributaries.

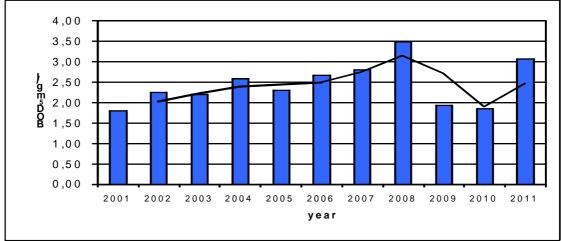
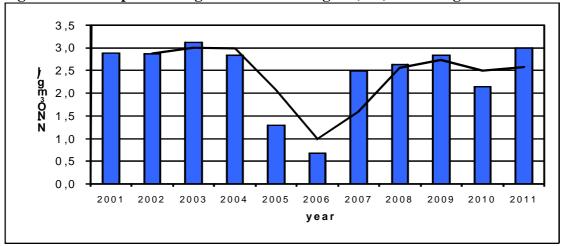
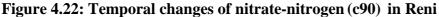

4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 2005 2001 2002 2003 2004 2006 2007 2008 year

Figure 4.17: Temporal changes of BOD₅ (c90) in Bratislava





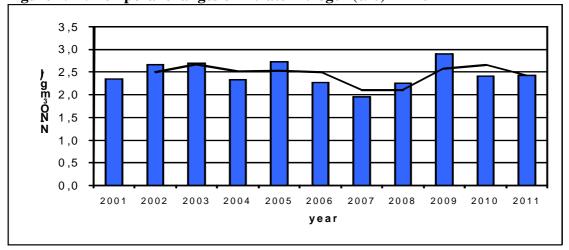

4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0 2002 2003 2004 2005 2006 2007 2008 2009 2001 year

Figure 4.20: Temporal changes of nitrate-nitrogen (c90) in Bratislava

0,18 0,16 0,14 0,12 g 0,12 m 0,10 a 0,08 0,06 0,04 0,02 0,00 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 year

Figure 4.23: Temporal changes of total phosphorus (c90) in Bratislava

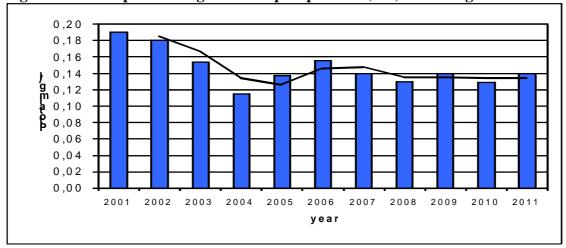
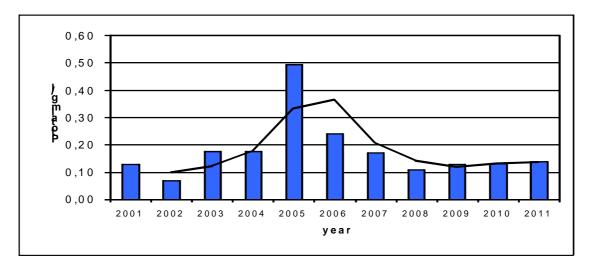
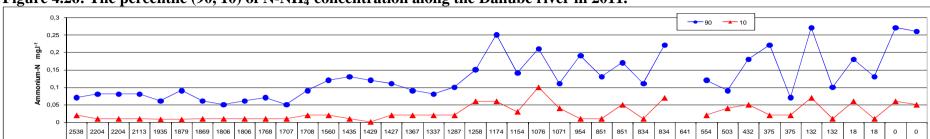




Figure 4.25: Temporal changes of total phosphorus (c90) in Reni

М

RS3 RS4

М М

RS5

М R М М

RS7 RO18 RS8 RO2

М

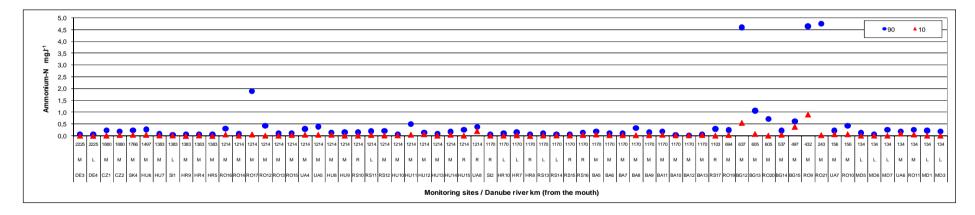
BG2 BG3 BG4 RO3 RO4

М М

BG5 RO5

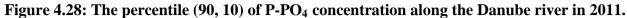
Figure 4.26: The percentile (90, 10) of N-NH₄ concentration along the Danube river in 2011.

М М


HU5

HR1 RS1

RS2


Figure 4.27: The percentile (90, 10) of N-NH₄ concentration in the tributaries in 2011.

HU2 SK5 HU3 HU4

М М М М М

SK2

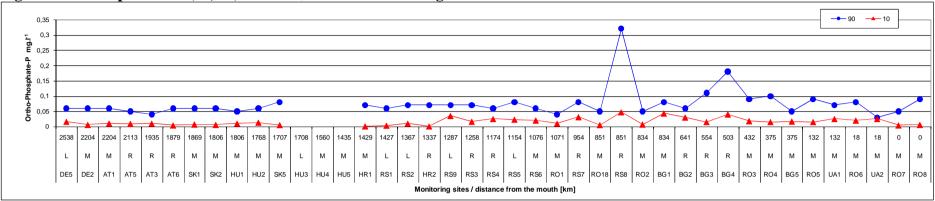
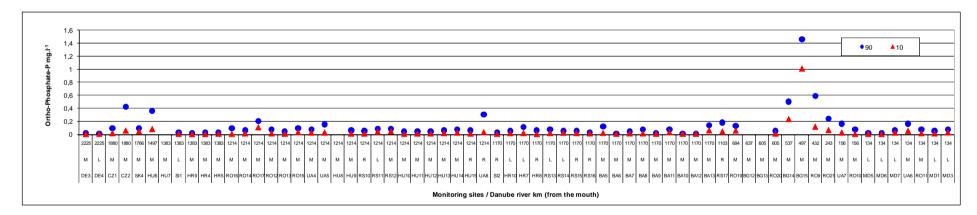
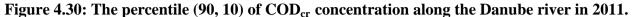
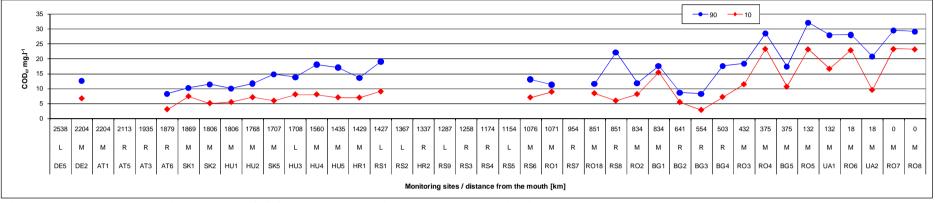
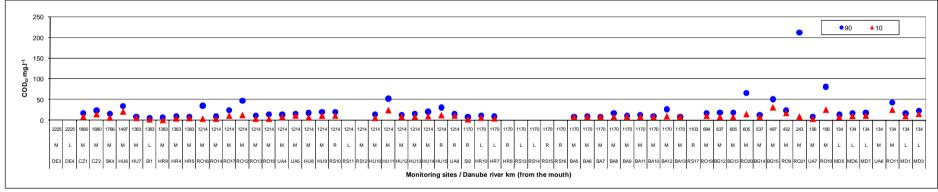
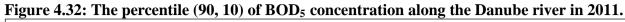
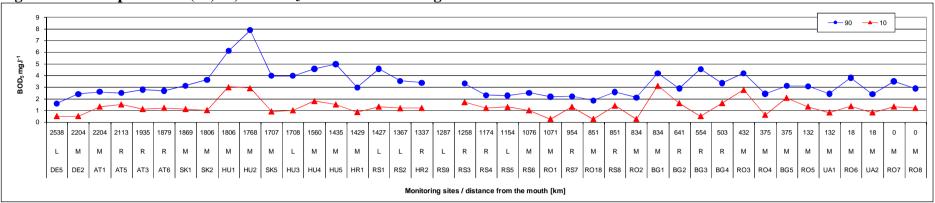
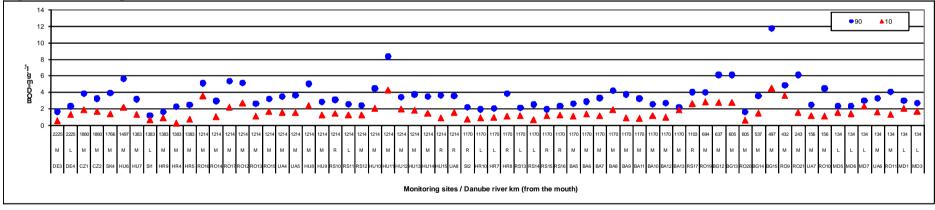
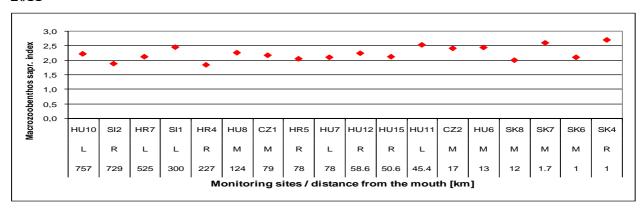




Figure 4.29: The percentile (90, 10) of P-PO₄ concentration in the tributaries in 2011.


Figure 4.31: The percentile (90, 10) of COD_{cr} concentration in the tributaries in 2011.



3,5 3,0 2,5 2,0 Nacrozoobenthos sapr. index 1,5 1,0 0,5 0,0 R AT1 AT5 АТ3 АТ6 SK1 HU1 SK2 HU2 низ SK5 HU4 HU5 HR1 1935 1869 1768 1708 1707 1560 1435 1429 2204 1879 1806 1806 Monitoring sites / distance from the mouth [km]

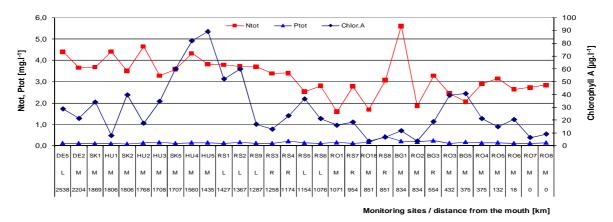

Figure 4.34: The maximum of Macrozoobenthos- saprobic index along the Danube river in 2011.

Figure 4.35: The maximum of Macrozoobenthos- saprobic index in the tributaries in 2011

The maximum of macrozoobenthos- saprobic index in the Danube river and its tributaries is presented in the Figures 4.34 and 4.35. The macrozoobenthos data was delivered in 2011 for 13 monitoring points located in the Danube River and for 18 monitoring points in the tributaries. The maximal value of saprobic index in the Danube was determined in SK5 Szob. As for the tributaries, the highest macrozoobenthos- saprobic index was found in the Vah (SK4).

Figure 4.36: The percentile (90) of total nitrogen, phosphorus and chlorophyll-A concentration along the Danube river in 2011.

The concentration of nutrients and chlorophyll A are presented in Figure 4.36 (it shows only those monitoring sites where all three determinands were measured). The maximal concentration of chlorophyll A was observed in the middle part of the Danube at HU5. The highest concentration of N_{total} was observed in the lower Danube at BG1 and maximal concentration of P_{total} was observed in RS8.

Figure 4.37: The percentile (90) of $N_{tot.}$, N-NH₄ and N-NO₃ concentration along the Sava river in 2011.

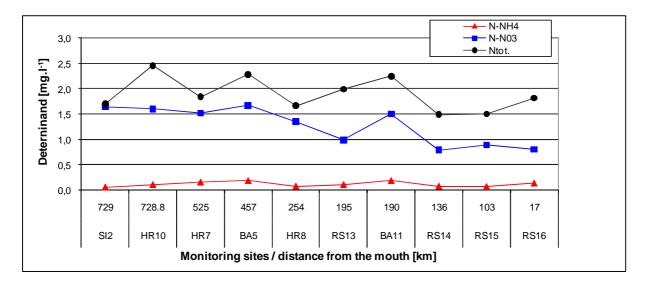
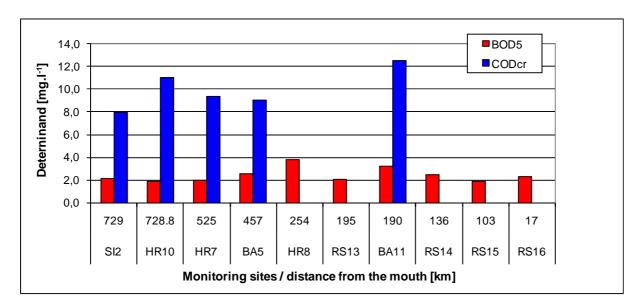



Figure 4.38: The percentile (90) of BOD₅ and COD_{cr} concentration along the Sava river in 2011.

The 90 percentiles of nutrients and COD_{cr} & BOD_5 measured in 2011 in Sava and Tisza rivers are presented in the Figures 4.37-4.40. The highest value of N-NH₄ in Sava river was found in monitoring point BA11 (rkm 190). The maximal concentration of N-NO₃ was observed in BA5 (rkm 457) and the maximum of N_{total} was measured in HR10 (rkm 728.8, Figure 4.37). The highest values of BOD_5 in Sava river was measured in monitoring point HR8 rkm 254 and the highest COD_{cr} value was measured in monitoring point BA11 (rkm 190), Figure 4.38).

Figure 4.39: The percentile (90) of total nitrogen, N-NH₄ and N-NO₃ concentration along the Tisza river in 2011.

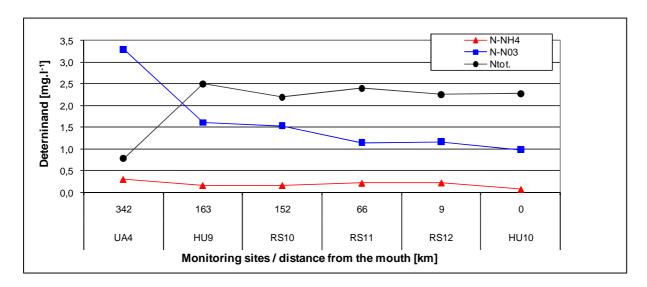
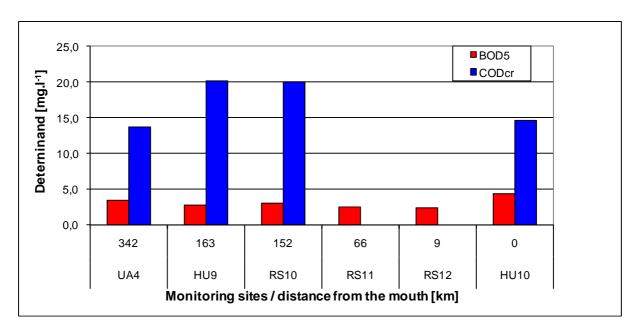



Figure 4.40: The percentile (90) of BOD₅ and COD_{cr} concentration along the Tisza river in 2011.

The maximal value of $N-NH_4$ and $N-NO_3$ in Tisza river was measured in monitoring point UA4 rkm 342 (see Figure 4.39). The highest value of N_{total} was measured in HU9. The highest value of BOD_5 in Tisza river was found in monitoring point HU10 (rkm 0) and the highest COD_{cr} in HU9 (rkm 163, Figure 4.40).

Load Assssment 5.

Introduction

The long-term development of loads of relevant determinands in the important rivers of the Danube Basin is one of the major objectives of the TNMN. This is why the load assessment programme in the Danube River Basin started in 2000. For the calculation of loads, a commonly agreed standard operational procedure is used.

Description of load assessment procedure

The following principles have been agreed for the load assessment procedure:

- Load is calculated for the following determinands: BOD₅, inorganic nitrogen, ortho-phosphatephosphorus, dissolved phosphorus, total phosphorus, suspended solids and - on a voluntary basis - chlorides; based on the agreement with the Black Sea Commission, silicates are measured at the Romanian load assessment sites since 2004;
- The minimum sampling frequency at sampling sites selected for load calculation is set at 24 per year;
- The load calculation is processed according to the procedure recommended by the Project "Transboundary assessment of pollution loads and trends" and described in Chapter 6.4. Additionally, countries can calculate annual load by using their national calculation methods, results of which would be presented together with data prepared on the basis of the agreed *method*:
- Countries should select for load assessment those TNMN monitoring sites for which valid flow data is available (see Table 5).

Table 5 shows TNMN monitoring locations selected for the load assessment program. It also provides information about hydrological stations collecting flow data for load assessment. Altogether 27 monitoring locations from nine countries are included in the list. One location – Danube-Jochenstein have been included by two neighboring countries, therefore the actual number of locations is 26, with ten locations on the Danube River itself and 16 locations on the tributaries. Rivers Prut and Siret were added in year 2010.

The second location that could potentially be processed by using combined data from two countries is Sava-Jesenice, but from 2009 Croatian side performed samplings at the location Drenje (left side of the river Sava) located under the influence of the estuary Sotla. Therefore the results at the location Sava Drenje do not show the load of the Sava River in the border profile.

Monitoring Data in 2011

The monitoring frequency is an important factor for the assessment of pollution loads in water courses. Table 6 shows the number of measurements of flow and water quality determinands in the TNMN load assessment sites.

Data are shown in tables 7 and 9. Flow data are missing from one Croatian monitoring location HR2. In most of the locations, the number of samples was higher than 20, lower frequency was for chlorides. A frequency of 12-15 times per year was applied only in Czech and for Croatians monitoring stations. In 2010 was added load calculation for Slovakian monitoring points on tributaries Morava, Hron, Ipoly, also for this points frequency of monitoring were 12.

The loads in the Danube at Jochenstein are being assessed on the basis of combined data from Germany and Austria, there is no problem with insufficient frequency there.

Regarding particular determinands, there is still a lack of data on dissolved phosphorus as it was measured in 10 locations only. At 15 monitoring points the silicate load was calculated. This calculation of the silicate load is to respond to the agreements with the Black Sea Commission.

Table 5: List of TNMN locations selected for load assessment program

Country	River	Water quality mo	onitoring location		Hydrological station	Hydrological station				
				Distance from		Distance from				
		Country Code	Location	mouth (Km)	Location	mouth (Km)				
Germany	Danube	DE2	Jochenstein	2204	Achleiten	2223				
Germany	Inn	DE3	Kirchdorf	195	Oberaudorf	211				
Germany	Inn/Salzach	DE4	Laufen	47	Laufen	47				
Austria	Danube	AT1	Jochenstein	2204	Aschach	2163				
Austria	Danube	AT6	Hainburg	1879	Hainburg (Danube)	1884				
					Angern (March)	32				
Czech	Morava	CZ1	Lanzhot	79	Lanzhot	79				
Republic										
Czech	Morava/Dyje	CZ2	Pohansko	17	Breclav-Ladná	32,3				
Republic	.,									
Slovak	Danube	SK1	Bratislava	1869	Bratislava	1869				
Republic										
Slovak	Váh	SK4	Komárno		Sum of: Maly Dunaj -Trstice	22,5				
Republic					Vah- Sala	58,8				
					Nitra -Nove Zamky	12,3				
Slovak	Morava	SK6	Devín		Zahorska Ves	32,5				
Republic										
Slovak	Hron	SK7	Kamenica		Kanenin	10,9				
Republic										
Slovak	lpoly	SK8	Salka		Salka	12,2				
Republic										
Hungary	Danube	HU3	Szob	1708	Nagymaros	1695				
Hungary	Danube	HU5	Hercegszántó	1435	Mohács	1447				
Hungary	Tisza	HU9	Tiszasziget	163	Szeged	174				
Croatia	Danube	HR2	Borovo	1337	Vukovar	1337				
Croatia	Sava	HR10	Drenje	728.8	Jesenice II	728.5				
Croatia	Sava	HR7	Una Jesenovac	c 525 Una Jesenovac		525				
Croatia	Sava	HR8	Zupanja	254	Zupanja	254				
Slovenia	Drava	SI1	Ormoz	300	Borl	325				
					HE Formin	311				

					Pesnica-Zamusani	10.1(to the Drava)
Slovenia	Sava	SI2	Jesenice	729	Catez	737
					Sotla -Rakovec	8.1 (to the Sava)
Romania	Danube	RO2	Pristol-Novo Selo	834	Gruia	858
Romania	Danube	RO4	Chiciu-Silistra	375	Chiciu	379
Romania	Danube	RO5	Reni	132	Isaccea	101
Romania	Siret	RO10	Sendreni	0	Sendreni	0
Romania	Prut	RO11	Giurgiulesti	0	Giurgiulesti	0
Ukraine	Danube	UA2	Vylkove	18		

Calculation Procedure

Regarding several sampling sites in the profile, the average concentration at a site is calculated for each sampling day. In case of values "below the limit of detection", the value of the limit of detection is used in the further calculation. The average monthly concentrations are calculated according to the formula:

$$C_{m} \, [mg.l^{\text{-}1}] \, = \, \frac{\sum\limits_{i \in \, \textbf{m}} C_{i} \, [mg.l^{\text{-}1}] \, . \, Q_{i} \, [m^{3}.s^{\text{-}1}]}{\sum\limits_{i \in \, \textbf{m}} Q_{i} \, [m^{3}.s^{\text{-}1}]}$$

where

 $C_{\rm m}$ average monthly concentrations

concentrations in the sampling days of each month

 Q_i discharges in the sampling days of each month

The monthly load is calculated by using the formula:

$$L_{m} [tones] = C_{m} [mg.l^{-1}] . Q_{m} [m^{3}.s^{-1}] . days (m) . 0,0864$$

where

 L_{m} monthly load

 $Q_{\rm m}$ average monthly discharge

- If discharges are available only for the sampling days, then Q_m is calculated from those discharges.
- For months without measured values, the average of the products $C_m.Q_m$ in the months with sampling days is used.

The annual load is calculated as the sum of the monthly loads:

$$\begin{array}{l} L_{a} \, [tones] \, = \! \sum_{m=1}^{12} L_{m} \, [tones] \end{array}$$

Table 6: Number of measurements in TNMN locations selected for assessment of pollution load in 2011

Country	River	Location	Location	River		Number of 1	neaus remei	nts in 2011					
Code			in profile	Km	Q	SS	Ninorg	P-PO4	Ptotal	BOD5	Cl	Pdiss	SiO ₂
DE2	Danube	Jochenstein	M	2204	365	26	38	38	38	24	26	35	
DE3	Inn	Kirchdorf	M	195	365	26	22	26	26	26	26	20	
DE4	Inn/Salzach	Laufen	L	47	365	25	25	25	25	25	25	25	
AT1	Danube	Jochenstein	M	2204	365	9	37	37	37	12	12	34	
AT6	Danube	Hainburg	R	1879	365	24	24	24	24	24	24	24	
CZ1	Morava	Lanzhot	M	79	365	12	12	12	12	12	12		
CZ2	Morava/Dyje	Pohansko	M	17	365	12	12	12	12	12	12		
SK1	Danube	Bratislava	M	1869	365	25	25	25	25	25	12	25	25
SK4	Váh	Komárno	M	1	365	12	12	12	12	12	12	12	12
SK6	Morava	Devín	M	1	365	12	12	12	12	12	12	12	12
SK7	Hron	Kamenica	M	2	365	12	12	12	12	12	12	12	12
SK8	Ipoly	Salka	M	12	365	12	12	12	12	12	12	12	12
HU3	Danube	Szob	L	1708		24	24		24	24	24		
			M	1708	365	24	24		24	24	24		
			R	1708		24	24		24	23	24		
HU5	Danube	Hercegszántó	M	1435	365	24	24		24	24	24		23
HU9	Tis za	Tis zas ziget	L	163		25	25	25	25	12	12		24
			M	163	365	24	24	24	24	11	11		25
			R	163		24	24	24	24	11	11		24
HR2	Danube	Borovo	R	1337	0	12	12	12	12	12	12		12
HR10	Sava	Drenje	L	729	365	12	12	12	12	12	12		12
HR7	Sava	us Una Jesenovac	L	525	365	12	12	11	12	12	12		12
HR8	Sava	ds Zupanja	ML	254	365	12	12	12	12	12	11		11
SI1	Drava	Ormoz	L	300	365	26	26	26	26	26	12		
SI2	Sava	Jesenice	R	729	365	26	26	26	26	26	12		
RO2	Danube	Pristol-Novo Selo	L	834		24	24	24	24	24	16		14
			M	834		24	24	24	24	24	16		14
			R	834		24	24	24	24	24	16		14
RO4	Danube	Chiciu-Silistra	L	375		25	26	26	26	26	11		25
			M	375		25	25	26	26	26	11		25
			R	375		23	24	24	24	24	11		25
RO5	Danube	Reni	L	132		25	26	26	26	26	14		25
			M	132		25	26	26	26	26	14		25
			R	132		25	26	26	26	26	14		25
RO10	M	Siret	M	0		26	26	26	26	23	10		26
RO11	M	Prut	M	0		25	26	25	26	24	10		26
UA2	Danube	Vylkove	M	18	365	12	12	12		12	12	12	12

Results

The mean annual concentrations and annual loads of suspended solids, inorganic nitrogen, ortho-phosphate-phosphorus, total phosphorus, BOD₅, chlorides and - where available dissolved phosphorus and silicates - are presented in tables 7 to 10, separately for monitoring locations on the Danube River and for monitoring locations on tributaries. The explanation of terms used in the tables 7 to 10 is as follows.

Term used	Explanation
Station Code	TNMN monitoring location code
Profile	location of sampling site in profile (L-left, M-middle, R-right)
River Name	name of river
Location	name of monitoring location
River km	distance to mouth of the river
Qa	mean annual discharge in the year 2011
Cmean	arithmetical mean of the concentrations in the year 2011
Annual Load	annual load of given determinand in the year 2011

Table 10 shows loads of other determinands (nitrogen forms and heavy metals) at the profile Reni, which are monitored since 2005 based on the agreement with the Black Sea Commission.

The mean annual discharge in whole Danube river was lower than in 2010, especially in Reni the discharge was lower than in 2010.

The spatial pattern of the annual load along the Danube is similar to the previous year. In the case of suspended solids, inorganic nitrogen, BOD₅, ortho-phosphate, total phosphorus and chlorides, the highest load is observed in the lower part of the Danube River. A maximum for suspended solids, inorganic nitrogen, BOD₅, ortho-phosphate and chlorides was found at the monitoring location Danube-Reni (RO5). Maximal load for total phosphorus and silicates was measured in Pristol-Novo Selo (RO2).

In the case of tributaries, the highest load of inorganic nitrogen, ortho-phosphate, total phosphorus, BOD₅ and chlorides are coming from the Tisza river. The highest load for suspended solids was from Siret river.

Table 7: Mean annual concentrations in monitoring locations selected for load assessment on Danube River in 2011

Station	Profile	River Name	Location	River km	Q_a			C _{mean}					
Code						Suspended	Inorganic	Ortho-	Total	BOD₅	Chlorides	Phosphorus -	Silicates
						Solids	Nitrogen	Phosphate	Phosphorus	- 3		dissolved	
								Phosphorus					
					(m ³ .s ⁻¹)	(mg.l ⁻¹)							
DE2													
+AT1	M	Danube	Jochenstein	2204	1218	12.40	2.19	0.03	0.07	1.73	20.04	0.05	
AT6	R	Danube	Hainburg	1879	1674	12.19	2.34	0.04	0.06	2.04	19.37	0.05	
SK1	М	Danube	Bratislava	1869	1700	19.72	2.02	0.04	0.08	1.98	20.04	0.05	5.33
HU3	LMR	Danube	Szob	1708	1882	18.47	2.02		0.11	2.60	27.85		
HU5	М	Danube	Hercegszántó	1435	1971	23.46	2.00		0.11	3.03	27.60		4.48
HR2	R	Danube	Borovo	1337		15.37	1.82	0.04	0.18	2.13	19.54		4.52
RO2	LMR	Danube	Pristol-Novo Selo	834	4182	30.51	1.32	0.05	0.15	1.18	22.40		5.09
RO4	LMR	Danube	Chiciu-Silistra	375	4827	16.80	1.79	0.05	0.06	1.77	29.02		2.79
RO5	LMR	Danube	Reni	132	5303	26.69	1.68	0.05	0.07	2.18	31.95		2.23
UA2	М	Danube	Vylkove	18	2598	44.78	1.45	0.03		2.56	35.53	0.03	2.56

Table 8: Mean annual concentrations in monitoring locations selected for load assessment on tributaries in 2011

Station	Profile	River Name	Location	River km	Q_a	C _{mean}							
Code						Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE3	М	Inn	Kirchdorf	195	235	38.06	0.53	0.01	0.07	0.95	8.13	0.02	
DE4	L	Inn/Salzach	Laufen	47	194	8.64	0.68	0.01	0.03	1.76	9.07	0.01	
CZ1	M	Morava	Lanzhot	79	50	29.33	2.89	0.05	0.13	2.71	29.33		
CZ2	L	Morava/Dyje	Pohansko	17.00	37	17.08	3.08	0.19	0.28	2.42	45.25		
SK4	M	Váh	Komárno	1	162	15.67	2.13		0.13	2.52	20.78	0.09	
SK6		Morava	Devín	1	97	37.33	2.82		0.19	3.52		0.12	
SK7		Hron	Kamenica	2	36	12.92			0.12	2.09			
SK8		lpoly	Salka	12	16	24.58			0.17	2.13			
HU9	LMR	Tisza	Tiszasziget	163	759	33.00			0.12	1.63			7.89
SI1		Drava	Ormoz	300	259	8.50			0.04	0.89			
SI2	R	Sava	Jesenice	729	175	5.02	1.39		0.06	1.23	8.52		
HR10	L	Sava	Drenje	729	171	6.88	1.17	0.04	0.10	1.68	12.85		3.77
HR7	L	Sava	us. Una Jasenovac	525	407	8.04	1.34	0.07	0.08	1.50	10.01		2.34
HR8	ML	Sava	ds. Zupanja	254	614	7.55	1.09	0.03	0.02	1.98	25.54		3.45
RO10	М	Siret	Conf. Danube (Sendreni)	0	191	128.88	1.99	0.04	0.07	2.77	58.75		4.05
RO11	М	Prut	Conf. Danube (Giurgiulesti)	0	80	88.12	1.64	0.04	0.06	2.68	60.16		3.66

Table 9: Annual load in selected monitoring locations on Danube River

Station Code	Profile	River Name	Location	River km				Annual Lo	ad in 2011			
					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10³tonns)	(x10 ⁶ tonns)
DE2												
+AT1	M	Danube	Jochenstein	2204	0.55	83.35	1.38	3.00	61.64	0.73	1.91	
AT6	R	Danube	Hainburg	1879	1.10	123.56	2.05	3.56	110.38	1.00	2.93	
SK1	М	Danube	Bratislava	1869	1.23	112.06	2.50	4.60	99.36	1.08	2.78	0.30
HU3	LMR	Danube	Szob	1708	1.23	123.24		6.60	168.09	1.61		
HU5	LMR	Danube	Hercegszántó	1435	1.89	129.66		7.85	189.19	1.64		0.28
HR2	R	Danube	Borovo	1337								
RO2	LMR	Danube	Pristol-Novo Selo	834	4.03	180.88	5.95	17.04	112.55	2.91		0.48*
RO4	LMR	Danube	Chiciu-Silistra	375	3.15	286.52	6.99	10.01	284.02	4.12		0.40*
RO5	LMR	Danube	Reni	132	4.76	304.09	9.08	12.13	368.63	5.44		0.35*
UA2	М	Danube	Vylkove	18	3.91	110.43	2.35		144.90	2.85	10.32	0.22

^{*}Silicates (SiO₂) in dissolved form

Table 10: Annual load in selected monitoring locations on tributaries

Station Code	Profile	River Name	Location	River km				Annual Lo	ad in 2011			
					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10³tonns)	(x10 ⁶ tonns)
DE3	М	Inn	Kirchdorf	195	0.40	3.62	0.06	0.68	6.09	0.06	0.12	
DE4	L	Inn/Salzach	Laufen	47	0.07	3.93	0.05	0.21	10.27	0.05	0.10	
CZ1	М	Morava	Lanzhot	79	0.06	4.92	0.08	0.20	4.56	0.04		
CZ2	L	Morava/Dyje	Pohansko	17	0.02	5.17	0.17	0.26	2.82	0.05		
SK4	М	Váh	Komárno	1	0.08	11.04	0.37	0.63	12.93	0.10	0.40	0.0
SK6	М	Morava	Devín	1	0.12	10.20	0.29	0.57	10.63	0.10	0.35	0.0
SK7	М	Hron	Kamenica	2	0.02	2.82	0.09	0.12	2.07	0.01	0.08	0.0
SK8	М	Ipoly	Salka	12	0.01	1.45	0.05	0.07	1.30	0.01	0.05	0.0
HU9	LMR	Tisza	Tiszasziget	163	0.95	27.25	0.98	2.90	37.39	0.83		0.2
SI1	L	Drava	Ormoz	300	0.08	8.57	0.22	0.44	7.09	0.05		
SI2	R	Sava	Jesenice	729	0.03	7.72	0.08	0.32	6.23	0.05		
HR10	L	Sava	Drenje	728.8	0.04	6.84	0.20	0.57	9.04	0.06		0.02
HR7	L	Sava	us. Una Jasenovac	525	0.09	17.21	0.68	1.66	19.86	0.12	•	0.03
HR8	ML	Sava	ds. Zupanja	254	0.14	20.52	0.57	1.59	33.26	0.34		0.05
RO10	М	Siret	Conf. Danube (Sendreni)	0	1.46	10.20	0.21	0.38	20.19	0.27		0.03
RO11	М	Prut	Conf. Danube (Giurgiulesti)	0	0.24	4.31	0.10	0.15	6.70	0.12		0.01

^{*}Silicates (SiO₂) in dissolved form

Table 11: Additional annual load data at Reni for reporting to the Black Sea Commission

River	Location	Location	River		Number of measurements in 2011								
		in profile	km	Q	N-NH₄	N-NO ₂	N-NO ₃	N_{total}	Cu _{diss.}	Pb _{diss.}	Cd _{diss.}	Hg _{diss.}	
Danube	Reni	LMR	132	365	26	26	26	26	25	25	25	25	
River	Location	Location	River		C _{mean}								
		in profile	km	Q_a	N-NH₄	N-NO ₂	N-NO ₃	N_{total}	Cu _{diss.}	Pb _{diss.}	Cd _{diss.}	Hg _{diss.}	
				(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ⁻¹)	(μg.l ⁻¹)	(µg.l ⁻¹)	
Danube	Reni	LMR	132	5303	0.16	0.03	1.50	2.03	2.68	2.16	0.15	0.017	
River	Location	Location	River					Annual	Load in 20)10			
		in profile	km		N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu _{diss.}	Pb _{diss.}	Cd _{diss.}	Hg _{diss.}	
					(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(tonns)	(tonns)	(tonns)	(tonns)	
Danube	Reni	LMR	132		26.83	5.76	271.55	375.05	464.00	329.97	14.84	1.530	

Figure 5.1: Annual load of suspended solids at monitoring locations along the Danube River.

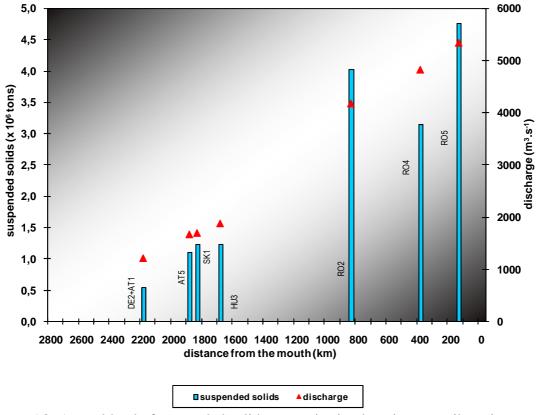


Figure 5.2: Annual load of suspended solids at monitoring locations on tributaries.

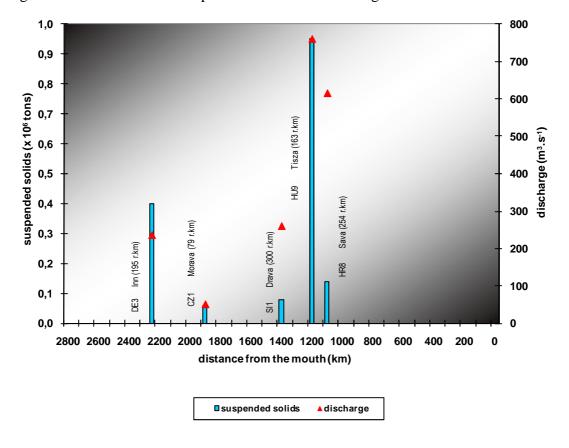


Figure 5.3: Annual loads of inorganic nitrogen at monitoring locations along the Danube River.

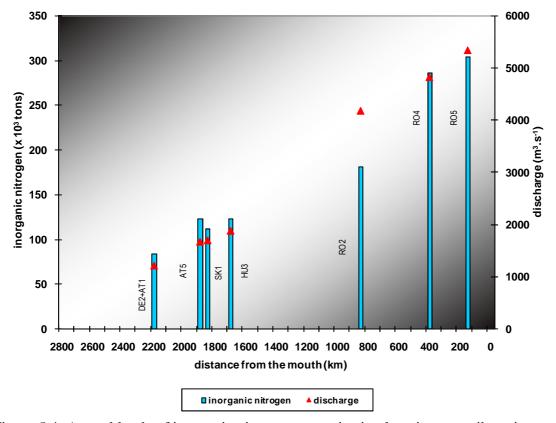


Figure 5.4: Annual loads of inorganic nitrogen at monitoring locations on tributaries.

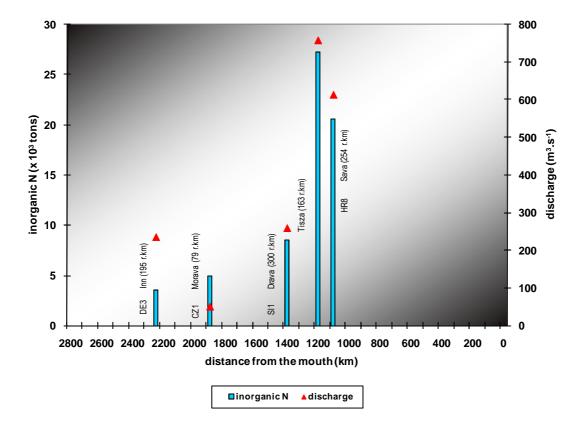


Figure 5.5: Annual loads of ortho-phosphate-P at monitoring locations along the Danube River.

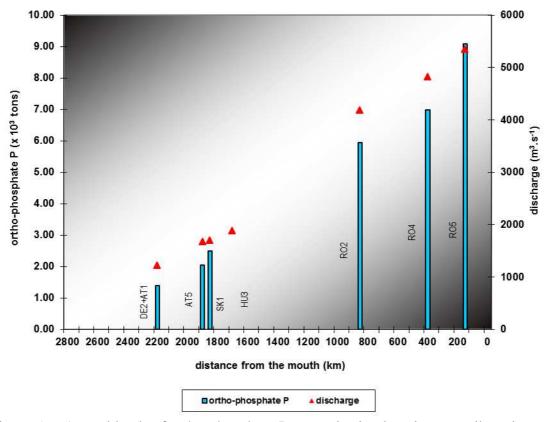


Figure 5.6: Annual loads of ortho-phosphate-P at monitoring locations on tributaries.

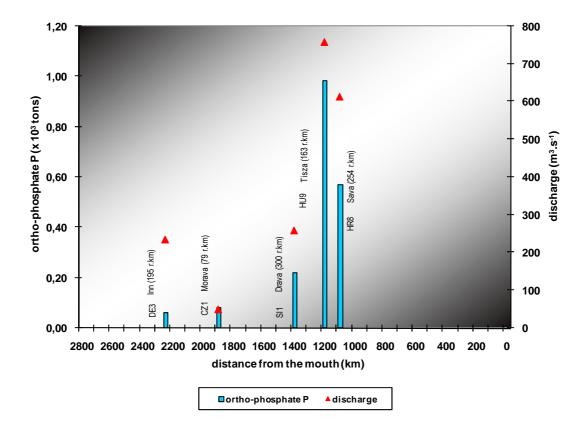


Figure 5.7: Annual loads of total phosphorus at monitoring locations along the Danube River.

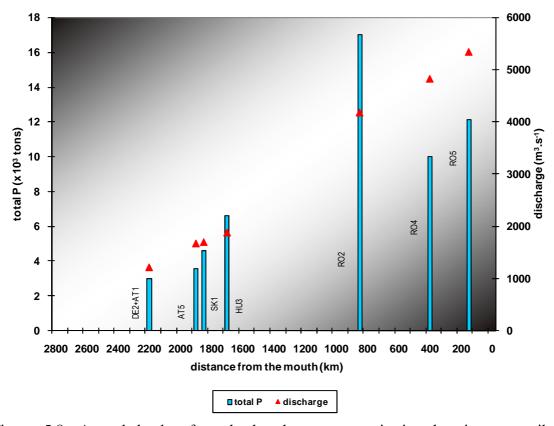


Figure 5.8: Annual loads of total phosphorus at monitoring locations on tributaries.

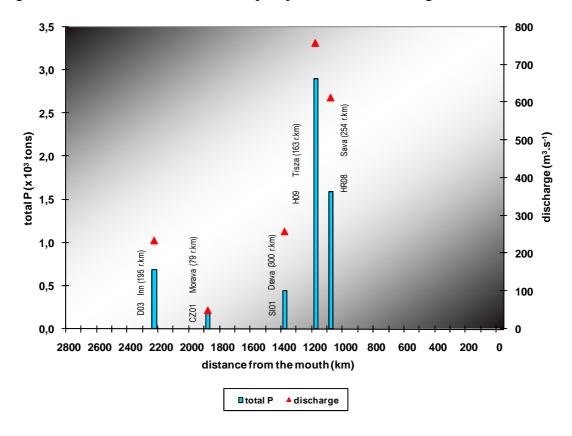


Figure 5.9: Annual loads of BOD₅ at monitoring locations along the Danube River.

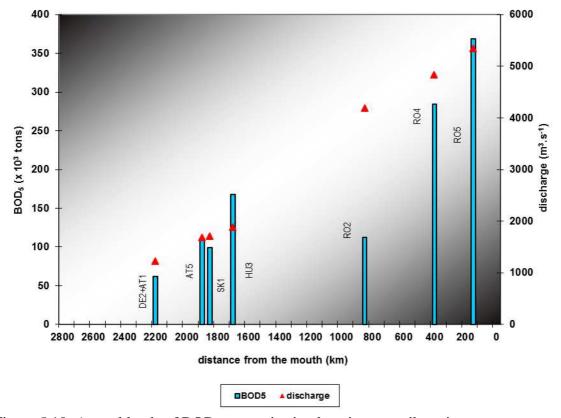


Figure 5.10: Annual loads of BOD₅ at monitoring locations on tributaries.

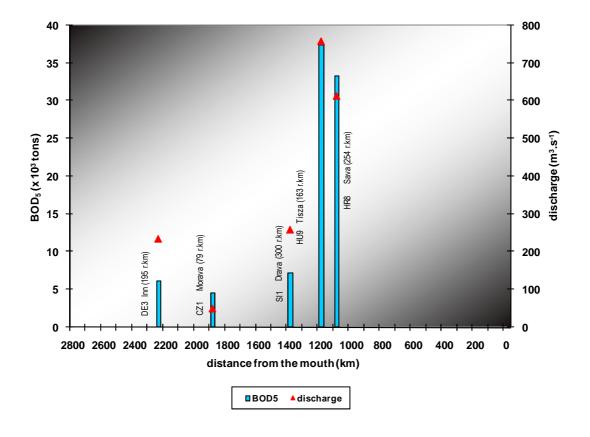


Figure 5.11: Annual loads of chlorides at monitoring locations along the Danube River.

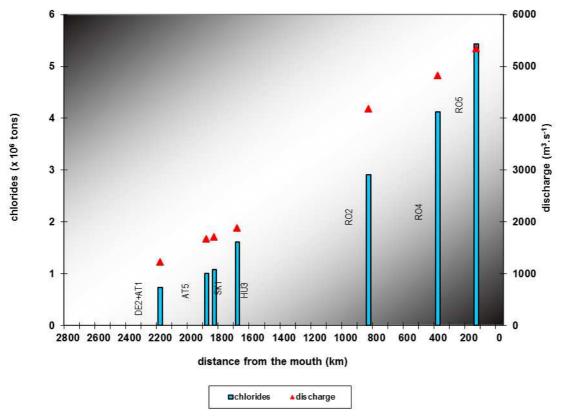
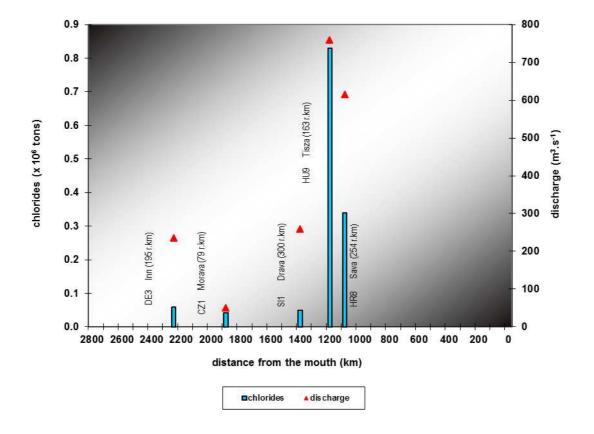



Figure 5.12: Annual loads of chlorides at monitoring locations on tributaries.

6. Groundwater monitoring

GW bodies of basin-wide importance

According to the Article 2 of the EU Water Framework Directive (2000/60/EC) 'Groundwater' means all water which is below the surface of the ground in the saturation zone and in direct contact with the ground or subsoil. The analysis and review of the groundwater bodies in the Danube River Basin as required under Article 5 and Annex II of the WFD was performed in 2004 and it identified 11 GW-bodies or groups of GW-bodies of basin-wide importance, which are shown in Map (Figure 6.1.1).

GW-bodies of basin-wide importance were defined as follows:

- important due to the size of the groundwater body which means an area larger than 4000 km² or
- important due to various criteria e.g. socio-economic importance, uses, impacts, pressures interaction with aquatic eco-system. The criteria need to be agreed

This means that the other groundwater bodies even those with an area larger than 4000 km², which are fully situated within one country of the DRB are dealt with at the national level. A link between the content of the DRBMP and the national plans is given by the national codes of the groundwater bodies.

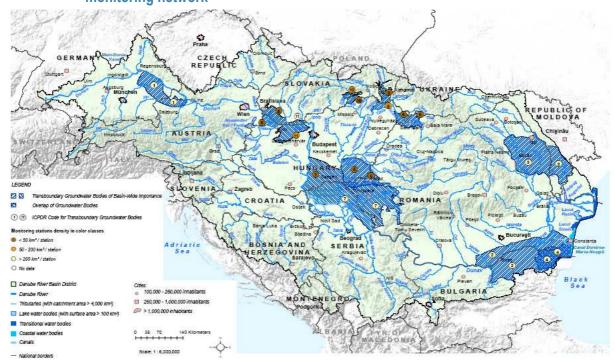


Figure 6.1: Transboundary GW-bodies of basin-wide importance and their transnational monitoring network

Reporting on groundwater quality

According to the WFD groundwater is an integral part of the river basin management district and therefore monitoring of groundwater of basin-wide importance was introduced into the TNMN in the Danube River Basin. The detailed description of the current status in development of the groundwater monitoring network in the Danube River Basin District is given in the TNMN Groundwater monitoring report (Part II of the Summary Report to EU on monitoring programs in the Danube River Basin District designed under Article 8).

For groundwater monitoring under TNMN a six-year reporting cycle is foreseen, which is in line with the WFD reporting requirements. Information on status of the groundwater bodies of basin-wide importance is provided in the DRBM Plans published every six years. This sufficiently allows for making any relevant statement on significant changes of groundwater status for the GW-bodies of basin-wide importance.

7. Abbreviations

Abbreviation	Explanation
AQC	Analytical Quality Control
BSC	Black Sea Commission
DEFF	Data Exchange File Format
	Convention on Cooperation for the Protection and Sustainable Use of the Danube River
DRPC	(short: Danube River Protection Convention)
ICPDR	International Commission for the Protection of the Danube River
LOD	Limit of Detection
MA EG	Monitoring and Assessment Expert Group (former MLIM EG)
MLIM EG	Monitoring, Laboratory and Information Management Expert Group
NRL	National Reference Laboratory
SOP	Standard Operational Procedure
TNMN	Trans National Monitoring Network
WFD	EU Water Framework Directive
DRB	Danube River Basin
DRBMP	Danube River Basin Management Plan
GW	Groundwater
BOD₅	Biochemical oxygen demand (5 days)
COD _{Mn}	Chemical oxygen demand (Potassium permanganate)
CODcr	Chemical oxygen demand (Potassium dichromate)
TOC	Total organic carbon
DOC	Dissolved organic carbon
AOX	Adsorbable organic halogens
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls

Control of the Contro

icpdr@unvienna.org / www.icpdr.org