
Water Quality in the Danube River Basin - 2013

TNMN – Yearbook 2013

In memory of Peter Literathy

Imprint

Published by:

ICPDR - International Commission for the Protection of the Danube River

Overall coordination and preparation of the TNMN Yearbook and database in 2015:

Lea Mrafkova, Slovak Hydrometeorological Institute, Bratislava

in cooperation with the Monitoring and Assessment Expert Group of the ICPDR.

Editor: Igor Liska, ICPDR Secretariat

© ICPDR 2015

Contact

ICPDR Secretariat

Vienna International Centre / D0412

P.O. Box 500 / 1400 Vienna / Austria

T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895

icpdr@unvienna.org / www.icpdr.org

Table of content

1. Introduction	4
History of the TNMN	4
Revision of the TNMN to meet the objectives of EU WFD	4
2. Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures	6
Objectives	6
Selection of monitoring sites	6
Quality elements	13
Parameters indicative of selected biological quality elements	13
Priority pollutants and parameters indicative of general physico-chemical quality elements	13
Analytical Quality Control (AQC)	15
TNMN Data Management	16
Results of basic statistical processing	17
4. Profiles and trend assessment of selected determinands	21
5. Load Asessment	41
Introduction	41
Description of load assessment procedure	41
Monitoring Data in 2013	42
Calculation Procedure	43
Results	46
6. Groundwater monitoring	59
GW bodies of basin-wide importance	59
Reporting on groundwater quality	60
7. Abbreviations	60

1. Introduction

History of the TNMN

In June 1994, the Convention on Cooperation for the Protection and Sustainable Use of the Danube River (DRPC) was signed in Sofia, coming into force in October 1998 with the main objectives of achieving sustainable and equitable water management, including the conservation, improvement and the rational use of surface and ground waters in the Danube catchment area. The DRPC also emphasizes that the Contracting Parties shall cooperate in the field of monitoring and assessment. In this respect, the operation of the Trans National Monitoring Network (TNMN) in the Danube River Basin aims to contribute to the implementation of the DRPC. This Yearbook reports on results of the basin-wide monitoring programme and presents TNMN evaluated data for 2010.

The TNMN has been in operation since 1996, although the first steps towards its creation were taken about ten years earlier. In December 1985 the governments of the Danube riparian countries signed the Bucharest Declaration. The Declaration had as one of its objectives to observe the development of the water quality of the Danube, and in order to comply with this objective, a monitoring programme containing 11 cross-sections of the Danube River was established.

Revision of the TNMN to meet the objectives of EU WFD

The original objective of the TNMN was to strengthen the existing network set up by the Bucharest Declaration, to enable a reliable and consistent trend analysis for concentrations and loads of priority pollutants, to support the assessment of water quality for water use and to assist in the identification of major pollution sources.

In 2000, having the experience of the TNMN operation, the main objective of the TNMN was reformulated: to provide a structured and well-balanced overall view of the status and long-term development of quality and loads in terms of relevant constituents in the major rivers of the Danube Basin in an international context.

Implementation of the EU Water Framework Directive (2000/60/EC, short WFD) after 2000 necessitated the revision of the TNMN in the Danube River Basin District. In line with the WFD implementation timeline, the revision process has been completed in 2007.

The major objective of the revised TNMN is to provide an overview of the overall status and longterm changes of surface water and – where necessary – groundwater status in a basin-wide context with a particular attention paid to the transboundary pollution load. In view of the link between the nutrient loads of the Danube and the eutrophication of the Black Sea, it is necessary to monitor the sources and pathways of nutrients in the Danube River Basin District and the effects of measures taken to reduce the nutrient loads into the Black Sea.

To meet the requirements of both EU WFD and the Danube River Protection Convention the revised TNMN for surface waters consists of following elements:

- Surveillance monitoring I: Monitoring of surface water status
- Surveillance monitoring II: Monitoring of specific pressures
- Operational monitoring
- Investigative monitoring

Surveillance monitoring II is a joint monitoring activity of all ICPDR Contracting Parties that produces annual data on concentrations and loads of selected parameters in the Danube and major tributaries.

Surveillance monitoring I and the operational monitoring is based on collection of the data on the status of surface water and groundwater bodies in the DRB District to be published in the DRBM Plan once in six years.

Investigative monitoring is primarily a national task but at the basin-wide level the concept of Joint Danube Surveys was developed to carry out investigative monitoring as needed, e.g. for harmonization of the existing monitoring methodologies, filling the information gaps in the monitoring networks operating in the DRB, testing new methods or checking the impact of "new" chemical substances in different matrices. Joint Danube Surveys are carried out every 6 years.

A new element of the revised TNMN is monitoring of groundwater bodies of basin-wide importance. More information on this issue is provided in the respective chapter in this Yearbook.

Detailed description of the revised TNMN is given in the Summary Report to EU on monitoring programmes in the Danube River Basin District designed under WFD Article 8.

This Yearbook presents the results of the Surveillance monitoring II: Monitoring of specific pressures.

2. Description of the TNMN Surveillance Monitoring II: **Monitoring of specific pressures**

Objectives

Surveillance Monitoring II aims at long-term monitoring of specific pressures of basin-wide importance. Selected quality elements are monitored annually. Such denser monitoring programme is needed to identify the specific pressures in the Danube River Basin District in order to allow a sound and reliable long-term trend assessment of specific quality elements and to achieve a sound estimation of pollutant loads being transferred across states of Contracting Parties and into the Black Sea.

Surveillance Monitoring II is based on the set-up of the original TNMN and is fitted to respond to pressures of basin-wide importance. The monitoring network is based on the national monitoring networks and the operating conditions are harmonized between the national and basin-wide levels to minimise the efforts and maximise the benefits.

Selection of monitoring sites

The selection of monitoring sites is based on the following criteria:

- Monitoring sites that have been monitored in the past and are therefore suitable for long-term trend analysis; these include sites
 - located just upstream/downstream of an international border,
 - located upstream of confluences between Danube and main tributaries or main tributaries and larger sub-tributaries (to enable estimation of mass balances),
 - located downstream of the major point sources,
 - located to control important water uses.
- Sites required to estimate pollutant loads (e.g. of nutrients or priority pollutants) which are transferred across boundaries of Contracting Parties, and which are transferred into the marine environment.

The sites are located in particular on the Danube and its major primary or secondary tributaries near crossing boundaries of the Contracting Parties. List of monitoring sites is in the Table 1.

Table 1: List of monitoring sites

No.	Country code	DEFF Code	New TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
1	DE	L2130	DE2	Danube	Jochenstein	М	13.703	48.520	2 204	290	77 086
2	DE		DE5	Danube	Dillingen	L	10.499	48.568	2 538	420	11 315
3	DE	L2150	DE3	/Inn	Kirchdorf	М	12.126	47.782	195	452	9 905
4	DE	L2160	DE4	/Inn/Salzach	Laufen	L	12.933	47.940	47	390	6 113
5	AT	L2220	AT1	Danube	Jochenstein	M	13.703	48.521	2 204	290	77 086
6	AT		AT5	Danube	Enghagen	R	14.512	48.240	2 113	241	84 869
7	AT	L2180	AT3	Danube	Wien-Nussdorf	R	16.371	48.262	1 935	159	101 700
8	AT		AT6	Danube	Hainburg	R	16.993	48.164	1 879	136	130 759
9	CZ	L2100	CZ1	/Morava	Lanzhot	M	16.989	48.687	79	150	9 725
10	CZ	L2120	CZ2	/Morava/Dyje	Pohansko	M	16.885	48.723	17	155	12 540
11	SK	L1840	SK1	Danube	Bratislava	LMR	17.107	48.138	1 869	128	131 329
12	SK	L1860	SK2	Danube	Medveďov	M	17.652	47.794	1 806	108	132 168
13	SK	L1960	SK4	/Váh	Komárno	MR	18.142	47.761	1.5	106	19 661
14	SK	L1871	SK5	Danube	Szob	M	18.853	47.813	1 707	100	183 350
15	SK		SK6	/Morava	Devín	M	16.976	48.188	1.5	145	26 575
16	SK		SK7	/Hron	Kamenica	M	18.723	47.826	1.7	114	5 417
17	SK		SK8	/lpoly	Salka	M	18.763	47.886	12	110	5 060
18	HU	L1470	HU1	Danube	Medvedov	M	17.652	47.792	1 806	108	131 605
19	HU	L1475	HU2	Danube	Komarom	LMR	18.121	47.751	1 768	101	150 820
20	HU	L1490	HU3	Danube	Szob	LMR	18.964	47.787	1 708	100	183 350
21	HU	L1520	HU4	Danube	Dunafoldvar	LMR	18.934	46.811	1 560	89	188 700
22	HU	L1540	HU5	Danube	Hercegszanto	LMR	18.814	45.909	1 435	79	211 503
23	HU	L1604	HU6	/Sio	Szekszard-Palank	M	18.720	46.380	13	85	14 693
24	HU	L1610	HU7	/Drava	Dravaszabolcs	M	18.200	45.784	78	92	35 764
25	HU	L1770	HU8	/Tisza/Sajo	Sajopuspoki	M	20.340	48.283	124	148	3 224
26	HU	L1700	HU9	/Tisza	Tiszasziget	LMR	20.105	46.186	163	74	138 498

No.	Country code	DEFF Code	New TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
27	HU		HU10	/Tisza	Tiszabecs	М	22.830	48.102	757	114	9707
28	HU		HU11	/Tisza/Szamos	Csenger	М	22.404	47.513	45	113	15283
29	HU		HU12	/Tisza/Hármas- Körös/Sebes- Körös	Korosszakal	М	21.392	47.011	59	92	2489
30	HU		HU13	/Tisza/Hármas- Körös/Kettős- Körös/Fekete- Körös	Sarkad	М	21.255	46.414	16	85	4302
31	HU		HU14	/Tisza/Hármas- Körös/Kettős- Körös/Fehér- Körös	Gyulavari	М	21.201	46.374	9	85	4251
32	HU		HU15	/Tisza/Maros	Nagylak	R	20.421	46.094	51	80	30149
33	SI	L1390	SI1	/Drava	Ormož most	LM	16.155	46.403	300	192	15 356
34	SI	L1330	SI2	/Sava	Jesenice na Dolenjskem	R	15.692	45.861	729	135	10 878
35	HR	L1315	HR1	Danube	Batina	MR	16.938	46.241	1 429	86	210 250
36	HR	L1320	HR2	Danube	Borovo	R	18.201	45.783	1 337	89	243 147
37	HR	L1300	HR9	/Drava	Ormoz	LM	16.155	46.403	300	192	15356
38	HR	L1240	HR4	/Drava	Botovo	MR	18.829	45.875	227	123	31 038
39	HR	L1250	HR5	/Drava	Donji Miholjac	MR	16.691	46.419	78	92	37 142
40	HR	L1220	HR6	/Sava	Jesenice	LR	18.696	45.040	729	135	10 834
40	HR	L1150	HR7	/Sava	Upstream Una Jasenovac	L	16.369	45.484	525	87	30 953
41	HR	L1060	HR8	/Sava	Zupanja	LMR	16.953	45.251	254	85	62 890
42	RS	L2350	RS1	Danube	Bezdan	L	16.953	45.251	254	85	62 890
43	RS	L2360	RS2	Danube	Bogojevo	L	18.860	45.854	1 426	83	210 250
44	RS	L2370	RS3	Danube	Novi Sad	R	19.079	45.530	1 367	80	251 593
45	RS	L2380	RS4	Danube	Zemun	R	19.855	45.255	1 255	74	254 085
46	RS	L2390	RS5	Danube	Pancevo	L	20.412	44.849	1 173	71	412 762
47	RS	L2400	RS6	Danube	Banatska Palanka	М	20.637	44.854	1 155	71	525 009
48	RS	L2410	RS7	Danube	Tekija	R	21.339	44.826	1 077	70	568 648
49	RS	L2420	RS8	Danube	Radujevac	R	22.419	44.700	954	68	574 307
50	RS	L2430	RS9	Danube	Backa Palanka	L	22.680	44.263	851	32	577 085

No.	Country code	DEFF Code	New TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
51	RS	L2440	RS10	/Tisza (Tisa)	Martonos	R	20.081	46.114	152	76	140 130
52	RS	L2450	RS11	/Tisza (Tisa)	Novi Becej	L	20.135	45.586	65	75	145 415
53	RS	L2460	RS12	/Tisza (Tisa)	Titel	M	20.312	45.198	9	73	157 174
54	RS	L2470	RS13	/Sava	Jamena L 19.084 44.878 205		205	77	64 073		
55	RS	L2480	RS14	/Sava	Sremska Mitrovica	L	19.602	44.967	139	75	87 996
56	RS	L2490	RS15	/Sava	Sabac	R	19.699	44.770	106	74	89 490
57	RS	L2500	RS16	/Sava	Ostruznica	R	20.312	44.732	17	72	95 430
58	RS	L2510	RS17	/Velika Morava	Ljubicevski Most	R	21.132	44.586	22	71	37 320
59	BA		BA5	/Sava	Gradiska	M	17.255	45.141	457	86	39 150
60	ВА		BA6	/Sava/Una	Kozarska Dubica	М	16.849	45.200	16	94	9 130
61	BA		BA7	/Sava/Vrbas	Razboj	M	17.458	45.050	12	100	6 023
62	BA		BA8	/Sava/Bosna	Modrica	М	18.313	44.961	24	114	10 500
63	BA		BA9	/Sava/Drina	Foca	M	18.833	43.344	234	442	3 884
64	BA		BA10	/Sava/Drina	Badovinci	M	19.344	44.779	16	90	19 226
65	BA		BA11	/Sava	Raca	M	19.335	44.891	190	80	64 125
66	BA		BA12	/Sava/Una	Novi Grad	M	16.295	44.988	70	137	4 573
67	BA		BA13	/Sava/Bosna	Usora	M	18.074	44.664	78	148	7 313
68	BG	L0730	BG1	Danube	Novo Selo harbour	LMR	22.785	44.165	834	35	580 100
69	BG		BG9	Danube	Lom	R	23.270	43.835	741	24	588 860
70	BG		BG10	Danube	Orjahovo	R	23.997	43.729	679	22	607 260
71	BG	L0780	BG2	Danube	Bajkal	R	24.400	43.711	641	20	608 820
72	BG		BG11	Danube	Nikopol	R	25.927	43.701	598	21	648 620
73	BG	L0810	BG3	Danube	Svishtov	R	25.345	43.623	554	16	650 340
74	BG	L0820	BG4	Danube	Upstream Russe	R	25.907	43.793	503	12	669 900
75	BG	L0850	BG5	Danube	Silistra	LMR	27.268	44.125	375	7	698 600
76	BG		BG12	/Iskar	mouth	M	24.461	43.706	4	27	8 646
77	BG		BG13	/Vit	Guljantzi	M	24.728	43.644	7	29	3 225
78	BG		BG14	/Jantra	mouth	M	25.579	43.603	4	25	7 869
79	BG		BG15	/Russenski Lom	mouth	M	25.936	43.813	1	17	2 974
80	RO	L0020	RO1	Danube	Bazias	LMR	21.384	44.816	1 071	70	570 896

No.	Country code	DEFF Code	New TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
81	RO		RO18	Danube	Gruia/Radujevac	LMR	22.684	44.270	851	32	577 085
82	RO	L0090	RO2	Danube	Pristol/Novo Selo	LMR	22.676	44.214	834	31	580 100
83	RO	L0240	RO3	Danube	Dunare - upstream Arges (Oltenita)	LMR	26.619	44.056	432	16	676 150
84	RO	L0280	RO4	Danube	Chiciu/Silistra	LMR	27.268	44.128	375	13	698 600
85	RO	L0430	RO5	Danube	Reni	LMR	28.232	45.463	132	4	805 700
86	RO	L0450	RO6	Danube	Vilkova-Chilia arm/Kilia arm	LMR	29.553	45.406	18	1	817 000
87	RO	L0480	RO7	Danube	Sulina - Sulina arm	LMR	29.530	45.183	0	1	817 000
88	RO	L0490	RO8	Danube	Sf. Gheorghe-Ghorghe arm	LMR	29.609	44.885	0	1	817 000
89	RO	L0250	RO9	/Arges	Conf. Danube (Clatesti)	М	26.599	44.145	0	14	12 550
90	RO	L0380	RO10	/Siret	Conf. Danube (Sendreni)	М	27.933	45.406	0	4	42 890
91	RO	L0420	RO11	/Prut	Conf. Danube (Giurgiulesti)	М	28.203	45.469	0	5	27 480
92	RO		RO12	/Tisza/Somes	Dara (frontiera)	М	22.720	47.815	3	118	15 780
93	RO		RO13	/Tisza/Hármas- Körös/Sebes- Körös/Crisul Repede	Cheresig	М	21.692	47.030	3	116	2 413
94	RO		RO14	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Negru	Zerind	М	21.517	46.627	13	86.4	3 750
95	RO		RO15	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Alb	Varsand	М	21.339	46.626	0.2	88.9	4 240
96	RO		RO16	/Tisza/Mures	Nadlac	М	20.727	46.145	21	85.6	27 818
97	RO		RO17	/Tisza/Bega	Otelec	М	20.847	45.620	7	46	2 632
98	RO		RO19	/Jiu	Zaval	М	23.845	43.842	9	30.9	10 046
99	RO		RO20	/Olt	Islaz	М	24.797	43.744	3	32	24 050
100	RO		RO21	/lalomita	Downstream Tandarei	M	27.665	44.635	24	8.5	10 309
101	MD	L2230	MD1	/Prut	Lipcani	L	26.483	48.152	658	100	8 750
102	MD	L2270	MD3	/Prut	Conf. Danube- Giurgiulesti	LMR	28.124	45.285	0	5	27 480
103	MD		MD5	/Prut	Costesti Reservoir	L	27.145	47.513	557	91	11 800

Sampling location in profile:

L: Left bank

R: Right bank

M: Middle of river

No.	Country code	DEFF Code	New TNMN code	River	Name of site	Locations	x- coord.	y-coord.	River- km	Altitu de	Catch- ment
104	MD		MD6	/Prut	Braniste	L	27.145	47.475	546	63	12 000
105	MD		MD7	/Prut	Valea Mare	L	27.515	47.075	387	55	15 200
106	UA	L0630	UA1	Danube	Reni	М	28.241	45.463	132	4	805 700
107	UA	L0690	UA2	Danube	Vylkove	М	29.246	45.436	18	1	817 000
108	UA		UA4	/Tisza	Chop	M	22.184	48.416	342	92	33000
109	UA		UA5	/Tisza/Bodrog/Lat oritsa	Strazh	М	22.212	48.454	144	97	4418
110	UA		UA6	/Prut	Tarasivtsi	М	26.336	48.183	262	122	9836
111	UA		UA7	/Siret	Porubne	М	26.030	47.981	100	303	2070
112	UA		UA8	/Uzh	Storozhnica	R	22.200	48.617	106	112	1582
113	ME		ME1	/Lim	Dobrakovo	L	19º46'22"	43º07'17"	112	609	2875
114	ME		ME2	/Cehotina	Gradac	L	19º09'14"	43º23'45"	55.5	55	809.8

Distance: The distance in km from the mouth of the mentioned river

Altitude: The mean surface water level in meters above sea level Catchment: The area in square km, from which water drains through the station

Downstream of ds. Upstream of us.

Confluence tributary/main river Conf.

Indicates tributary to river in front of the slash. No name in front of the slash means Danube

Figure 2.1: The Danube Stationmap TNMN

Quality elements

Parameters indicative of selected biological quality elements

To cover pressures of basin-wide importance as organic pollution, nutrient pollution and general degradation of the river, following biological quality elements have been agreed for SM2:

- Phytoplankton (chlorophyll-a)
- Benthic invertebrates (mandatory parameters: Saprobic index and number of families once yearly, both Pantle&Buck and Zelinka&Marvan SI are acceptable; optional parameters: ASPT and EPT taxa)
- Phytobenthos (benthic diatoms an optional parameter)

Priority pollutants and parameters indicative of general physico-chemical quality elements

The list of parameters for assessment of trends and loads and their monitoring frequencies are given in Table 2

Table 2: Determinand list for water for TNMN

	Surveillance	Monitoring 2
	Water	Water
	concentrations	load assessment
Parameter		
Flow	anually / 12 x per year	daily
Temperature	anually / 12 x per year	
Transparency (1)	anually / 12 x per year	
Suspended Solids (5)	anually / 12 x per year	anually / 26 x per year
Dissolved Oxygen	anually / 12 x per year	
pH (5)	anually / 12 x per year	

	Surveillance	Monitoring 2
	Water	Water
	concentrations	load assessment
Parameter		
Conductivity @ 20 °C (5)	anually / 12 x per year	
Alkalinity (5)	anually / 12 x per year	
Ammonium (NH ₄ ⁺ -N) (5)	anually / 12 x per year	anually / 26 x per year
Nitrite (NO ₂ -N)	anually / 12 x per year	anually / 26 x per year
Nitrate (NO ₃ -N)	anually / 12 x per year	anually / 26 x per year
Organic Nitrogen	anually / 12 x per year	anually / 26 x per year
Total Nitrogen	anually / 12 x per year	anually / 26 x per year
Ortho-Phosphate (PO ₄ ³⁻ -P) (2)	anually / 12 x per year	anually / 26 x per year
Total Phosphorus	anually / 12 x per year	anually / 26 x per year
Calcium (Ca ²⁺) (3, 4, 5)	anually / 12 x per year	
Magnesium (Mg ²⁺) (4, 5)	anually / 12 x per year	
Chloride (Cl ⁻)	anually / 12 x per year	
Atrazine	anually / 12 x per year	
Cadmium (6)	anually / 12 x per year	
Lindane (7)	anually / 12 x per year	
Lead (6)	anually / 12 x per year	
Mercury (6)	anually / 12 x per year	
Nickel (6)	anually / 12 x per year	
Arsenic (6)	anually / 12 x per year	
Copper (6)	anually / 12 x per year	
Chromium (6)	anually / 12 x per year	
Zinc (6)	anually / 12 x per year	
p,p'-DDT and its derivatives (7)	see below	
COD _{Cr} (5)	anually / 12 x per year	
COD _{Mn} (5)	anually / 12 x per year	

	Surveillance	Monitoring 2
	Water	Water
	concentrations	load assessment
Parameter		
Dissolved Silica		anually / 26 x per year
BOD ₅	anually / 12 x per year	

- (1) Only in coastal waters
- (2) Soluble reactive phosphorus SRP
- (3) Mentioned in the tables of the CIS Guidance document but not in the related mind map
- (4) Supporting parameter for hardness-dependent eqs of PS metals
- (5) Not for coastal waters
- (6) Measured in a dissolved form. Measurement of total concentration is optional
- (7) In areas with no risk of failure to meet the environmental objectives for DDT and lindane the monitoring frequency is 12 x per a RBMP period; in case of risk the frequency is 12 x year

Analytical Quality Control (AQC)

Parameters covered and samples distributed in the 2013 QUALCODanube programme were as follows:

- A) Natural samples: preserved surface water, spiked if necessary and adequately homogenised. 500 ml plastic bottles were provided for NH₄⁺, NO₃⁻, organic N, total N, PO₄³⁻ and total P analysis, with a unit of measurement of mg N/dm³ and mg P/dm³, respectively.
- B) Concentrated synthetic solutions in vials: to be diluted in the laboratory with its own blank water (typically distilled or deionised water) according to the instructions provided; the resulting solutions contained the parameters at concentration levels generally observed in surface water. 20 ml plastic containers were provided for NO2 analysis, with a unit of measurement of mg N/dm³.

Preparation and analysis of the samples:

Following the Youden-pair experimental design and evaluation technique, samples were prepared in duplicates, i.e. two samples of identical matrix and similar concentration were sent for each parameter. Both of the samples had to be analysed by all participants. Participants were to prepare the samples according to the instructions enclosed. Samples had to be analysed as soon as possible and immediately after opening the containers and (in case of synthetic concentrates) diluting the samples. Participants were asked to use the analytical method routinely performed in their laboratories.

Reporting the results:

Laboratories were to report their measurement results via on-line reporting tool, using their personal login ID provided at the beginning of the proficiency test. In addition to the measured value of the parameters, the applied method and measurement standard as well as the date of analysis was to be provided.

Results:

No results were unsatisfactory for phosphate-P and total nitrogen, while only one or two results were assigned z-scores exceeding 3,0 for nitrite-N, ammonium-N and total phosphorous, with all the other results clustering closely around assigned values. In case of ammonium-N, overestimations may partly be attributable to wrong unit of measurement (mg/dm³ instead of mg N/dm³). As previously, nitrate-N determination posed the most challenge, with both positive and negative systematic errors present. However, the majority of questionable or unsatisfactory results exceeded only slightly the performance limits. Organic nitrogen was measured by only half of the participants, and agreement among results was rather poor. Unfortunately not all participants indicated their method of analysis. Despite the various analytical techniques used for total nitrogen quantification, agreement among results is excellent. In case of nitrite-N, the only unsatisfactory results in both samples (about 50% of respective assigned values) are also the only ones reported to be measured by ion chromatography. As this method produced numerous excellent results for this component in previous years on similar samples, this is judged to be coincidental.

TNMN Data Management

The procedure of TNMN data collection is organized at a national level. The National Data Managers (NDMs) are responsible for data acquisition from TNMN laboratories as well as for data checking, conversion into an agreed data exchange file format (DEFF) and sending it to the TNMN data management centre in the Slovak Hydrometeorological Institute in Bratislava. This centre performs a secondary check of the data and uploads them into the central TNMN database. In cooperation with the ICPDR Secretariat, the TNMN data are uploaded into the ICPDR website (www.icpdr.org).

3. Results of basic statistical processing

142 sites at 107 TNMN monitoring stations were monitored in the Danube River Basin in 2013 (some monitoring stations contain two or three sampling sites - left, middle and/or right side of the river). The data was collected from 70 sampling sites at 39 stations on the Danube river and from 72 sampling sites at 68 stations at the tributaries.

The basic processing of the TNMN data includes the calculation of selected statistical characteristics for each determinand/monitoring site. Results are presented in tables in the Annex I using the following format:

Term used	Explanation
Determinand name	name of the determinand measured according to the agreed method
Unit	unit of the determinand measured
N	number of measurements
Min	minimum value of the measurements done in the year 2013
Mean	arithmetical mean of the measurements done in the year 2013
Max	maximum value of the measurements done in the year 2013
C50	50 percentile of the measurements done in the year 2013
C90	90 percentile of the measurements done in the year 2013

When processing the TNMN data and presenting them in the tables of the Annex, the following rules have been applied:

- If "less than the quantification limit" values were present in the dataset for a given determinand, then the ½ value of the limit of quantification was used in statistical processing of the data.
- If the number of measurements for a particular determinand was lower than four, then only the minimum, maximum and mean are reported in the tables of the Annex.
- The statistic value "C90" is equal to 90 percentile (10 percentile for dissolved oxygen and lower limit of pH value) if the number of measurements in a year was at least eleven. If the number of measurements in a year was lower than eleven, then the "C90" value is represented by a maximum value from a data set (a minimum value for dissolved oxygen and lower limit of pH value).

Problem is the reduced monitoring frequency for certain determinands such as dissolved phosphorus, biological determinands, heavy metals and specific organic micropollutants, primarily in the lower part of the Danube River Basin.

Table 3, created on the basis of data in tables in the Annex I, shows in an aggregated way the concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2013. These include indicators of the oxygen regime, nutrients, heavy metals, biological determinands and organic micropollutants.

Table 3 also includes information about the number of monitoring locations and sampling sites providing measurements of the determinands.

In table are minimal, maximal values for all determinands calculated from all Danube or tributaries station and minimal and maximal values for all determinands calculated from mean (average) values from all Danube or tributaries.

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2013

Determinand name	Unit		Da	anube				Tributaries				
		No.of monitoring	ring No.of monitoring									
		locations / No. of					locations / No. of					
		monitoring sites					monitoring sites					
		with measurements	Range o	of values	Me	ean	with	Range o	of values	Me	an	
			Min	Max	Min _{av g}	Max _{avg}	measurements	Min	Max	Min _{av g}	Max _{avg}	
Temperature	°C	69/39	0.2	29.9	10.9	16.1	70/68	0.0	30.0	8.2	18.9	
Suspended Solids	mg/l	69/39	< 0.5	627	11	115		< 1	2224	5		
Dissolved Oxygen	mg/l	69/39	3.2	15.3	6.3	11.8	70/68	1.4	15.7	6.7		
BOD₅	mg/l	69/39	< 0.5	13.90	0.94	4.31	65/63	< 0.5		< 0.5		
COD _{Mn}	mg/l	59/32	1.20	16.90	1.89	16.90	49/47	1.00	27.50	2.18	12.20	
COD_{Cr}	mg/l	64/34	< 2.50	51.40	5.91	36.35	67/65	< 2.00	181.48	3.00	60.03	
TOC	mg/l	52/32	< 0.5	12.7	1.4	6.3	37/35	< 0.5	24.1	1.2	12.6	
DOC	mg/l	6/6	1.1	4.3	1.9	2.5	4/4	0.5	7.6	1.1	6.0	
рН		69/39	6.5	9.2	7.6	8.4	68/66	6.3	9.0	7.4	8.5	
Alkalinity	mmol/l	69/39	1.4	11.0	1.6	4.6	57/55	1.0	251.0	1.3	208.5	
Ammonium-N	mg/l	69/39	< 0.003	1.070	0.025	0.453	70/68	< 0.005	5.075	0.022	2.411	
Nitrite-N	mg/l	69/39	< 0.0005	0.120	0.011	0.036	70/68	< 0.0015	0.283	0.005	0.102	
Nitrate-N	mg/l	69/39	< 0.015	4.100	0.773	3.142	70/68	< 0.015	58.000	0.390	6.194	
Total Nitrogen	mg/l	63/33	0.671	6.100	1.602	3.513	58/56	< 0.050	15.000	0.709	8.370	
Organic Nitrogen	mg/l	27/19	0.019	4.400	0.027	1.341	27/25	0.010	4.105	0.091	1.217	
Ortho-Phosphate-P	mg/l	69/39	< 0.0015	0.220	0.022	0.074	70/68	< 0.0025	0.735	0.007	0.390	
Total Phosphorus	mg/l	67/37	< 0.0015	0.930	0.041	0.191	61/59	0.007	0.724	0.016	0.527	
Total Phosphorus - Dissolved	mg/l	42/20	0.009	0.202	0.036	0.092	23/23	0.007	1.000	0.010	0.264	
Chlorophyll-a	μg/l	60/32	0.003	97.00	0.02	23.40	50/48	0.15	163.00	0.95	63.30	
Conductivity 20°C	μS/cm	66/36	240	835	342	461	65/63	7	5580	249	1191	
Calcium	mg/l	68/38	14.4	109.0	41.4	87.3	65/63	15.8	154.0	28.3	95.9	
Sulphates	mg/l	65/39	< 3.0	81.6	17.4	52.2	55/53	5.0	219.0	11.4	133.8	
Magnesium	mg/l	65/37	3.8	25.2	11.0	17.1	65/63	2.7	69.0	5.0	59.0	
Potassium	mg/l	58/34	0.7	12.6	1.9	3.7	48/46	0.5	14.0	0.9	9.3	
Sodium	mg/l	58/34	< 2.0	26.8	10.5	19.6	48/46	0.4	95.2	4.2	55.3	
Manganese	mg/l	45/25	< 0.0003	337	0.0005	71.5	26/26	< 0.0005	440	< 0.015	214	
Iron	mg/l	48/28	< 0.005	8880	0.021	8880	28/28	< 0.005	4000	0.05	1770	
Chlorides	mg/l	69/39	< 0.50	167.01	14.52	35.9	70/68	1.3	294.83	3.1	185.44	
Silicates (SiO2)	mg/l	8/6	1.29	8.80	2.15	6.75	7/5	<0.125	13.00	0.70	8.61	
Silicates(SiO2), dissolved	mg/l	18/12	0.25	10.30	2.58	7.23	24/24	< 0.125	22.30	1.68	9.28	
Macrozoobenthos- saprobic index		21/13	1.88	2.47	1.88	2.47	29/29	1.52	2.87	1.84	2.62	
Macrozoobenthos - no.of taxa		0/0					7/7	2		5	50	
Macrozoobenthos-number of families		1/1	9	9	9	9	4/4	12	29	12		

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2013 (cont.)

Determinand name	Unit		Da	ınube				Trik	outaries		1
		No.of monitoring locations / No. of monitoring sites with measurements	Range c		Me	an	No.of monitoring locations / No. of monitoring sites with measurements	Range o		Mea	an
			Min	Max	Min _{av g}	Max _{avg}		Min	Max	Min _{avg}	Max _{avg}
Zinc - Dissolved	μg/l	34/24	< 0.5	229	2.23	39.65	58/56	< 0.250	243.95	0.66	69.53
Copper - Dissolved	μg/l	61/33	< 0.5	53.6	< 1.0	8.96	61/59	0.201	68	< 0.5	12.6
Chromium - Dissolved	μg/l	64/34	0.09	15	0.22	8.29	53/51	0.05	50	0.23	17.0
Lead - Dissolved	μg/l	62/32	0.025	4.14	0.134	1.296	53/51	< 0.004	100	< 0.15	29.6
Cadmium - Dissolved	μg/l	62/32	< 0.005	0.756	0.008	0.138	53/51	< 0.005	8.06	0.005	1.39
Mercury - Dissolved	μg/l	62/32	< 0.001	0.35	0.0017	< 0.15		< 0.001	0.2	0.0019	< 0.15
Nickel - Dissolved	μg/l	62/32	< 0.25	36.8	< 0.5	8.12	53/51	0.137	40	< 0.500	14.33
Arsenic - Dissolved	μg/l	62/32	< 0.45	3.9	0.518	2.24		0.163	113.3	0.381	11.07
Aluminium - Dissolved	μg/l	19/13	1.14	585	6.5	99	20/18	< 1.0	281	4.73	75.43
Zinc	μg/l	16/14	< 0.5	308.8	3.33	95.64	32/32	< 0.5	341	1.78	136.17
Copper	μg/l	29/19	< 0.5	91.5	1.883	39.55		< 0.5	138.2	1.74	43.03
Chromium - total	μg/l	29/19	< 0.25	48	0.4467	8.88		< 0.25	99.3	< 0.5	12.19
Lead	μg/l	31/21	< 0.15	14.7	0.5917	5.5		< 0.25	47	0.5	14.59
Cadmium	μg/l	31/21	< 0.01	15.65	0.0175	1.613		< 0.01	10.12	0.01667	3.23
Mercury	μg/l	31/20	< 0.0075	0.4	< 0.0075	0.13		< 0.0075	7.3	< 0.0075	0.8167
Nickel	μg/l	31/21	< 0.25	142.1	0.85	46.109		< 0.25	126.4	< 0.5	41.12
Arsenic	μg/l	29/19	< 0.25	130.7	0.692	13.086		< 0.25	91.5	< 0.5	12.661
Aluminium	μg/l	15/13	< 5.0	2117	80.7	544.28		2.1	5690	23.388	1527.3
Phenol index	mg/l	56/28	< 0.0005	0.061	< 0.0005	< 0.0250	43/41	< 0.0004	0.024	< 0.0004	< 0.015
Anionic active surfactants	mg/l	58/30	< 0.005	0.592	< 0.005	0.18		< 0.005	0.48	< 0.0050	0.28
AOX	μg/l	15/9	0.8	23.9	1.5	17.4	10/10	< 5.0	55.2	< 5.0	40.0
Petroleum hydrocarbons	mg/l	57/29	< 0.005	0.5995	0.0099	0.242	46/44	< 0.01	0.9	0.0097	0.358
PAH (sum of 6)	μg/l	9/5	< 0.005	0.08	< 0.005	0.011	6/6	0.0034	0.0754	< 0.00500	0.028
PCB (sum of 7)	μg/l	9/5	< 0.01	< 0.01	< 0.01	< 0.01	0/0				
Lindane	μg/l	59/31	< 0.0005	< 0.025	< 0.0005	< 0.025	48/46	< 0.0003	0.08	< 0.0003	< 0.025
pp´DDT	μg/l	60/32	< 0.0005	0.09	< 0.0005	0.075	51/49	< 0.0004	< 0.025	< 0.0004	< 0.025
Atrazine	μg/l	58/30	< 0.0005	< 0.09	< 0.0005	< 0.09		< 0.0005	< 0.09	< 0.0005	< 0.09
Chloroform	μg/l	21/11	< 0.005	13.3	< 0.005	1.517	19/19	< 0.005	0.88	< 0.005	< 0.4
Carbon tetrachloride	μg/l	21/11	< 0.005	< 5.0	0.006	< 4.17	10/10	< 0.005	< 0.2	< 0.005	< 0.2
Trichloroethylene	μg/l	9/5	< 0.005	< 0.25	0.006	< 0.25		< 0.005	< 0.25	< 0.005	< 0.25
Tetrachloroethylene	μg/l	12/6	< 0.005	< 0.25	0.024	< 0.25	15/15	< 0.005	< 0.5	< 0.005	< 0.5

4. Profiles and trend assessment of selected determinands

The 90 percentiles (C90) of selected determinands (dissolved oxygen, BOD₅, COD_{Cr}, N-NH₄, N-NO₃, P-PO₄, Ptotal and Cd) measured in last ten years are displayed in the Figures 4.1-4.16. Due to revision of the TNMN in 2006 following monitoring points on the Danube were replaced: AT2 rkm 2120 to AT5 rkm 2113, AT4 rkm 1874 to AT6 rkm 1879, DE1 rkm 2581 to DE5 rkm 2538. Among tributaries the site HR3 rkm 288 was replaced by HR9 rkm 300 BG8 rkm 54 to BG14 rkm 4 and BG8 rkm 13 to BG15 rkm 1. In 2009 SK3 was replaced with SK5, this monitoring point is also shown in graphs as Hungarian site HU3. For trend graphs SK3 and HU3 were used.

To indicate the long-term trends in the upper, middle and lower Danube a more detailed analysis for selected parameters (BOD₅, N-NO₃, P_{total}) is provided for the sites SK1 Bratislava, HU5 Hercegszanto and RO5 Reni (Figures 4.17-4.33).

As regards a general spatial distribution of key water quality parameters along the Danube River in 2013 the highest concentrations of biodegradable organic matter were observed in the middle Danube. The concentration of nutrients and cadmium reached their highest concentration values in the lower part of the Danube. As for the tributaries, the highest level of pollution by the biodegradable organic matter in 2013 was measured in Sajo, Sio, Arges and Siret.

The highest values of dissolved oxygen were observed in the upper part of the Danube, while in the lower Danube dissolved oxygen levels decreased (Figure 4.1). The lowest value was found at the monitoring point BG2. Low values of dissolved oxygen were in 2013 measured in the tributaries Sio, Tisza and Prut.

Taking into account the entire period of TNMN operations positive changes in water quality can be seen at several TNMN stations. Decreasing tendencies of biodegradable organic matter were observed in the upper Danube and also at some stations of the lower Danube (see Figure 4.3). The BOD levels were decreased at SK1 and HU5 (Figure 4.17-4.19). A decreasing tendency of levels the BOD in the tributaries Inn, Dyje, Russenski Lom and Prut was also observed (Figure 4.4).

In 2013 decrease or stable level of concentration of ammonium-N was recorded along the whole Danube River but the concentration of ammonium-N increased in BG2.

The level of nitrate-N concentrations is rather constant during recent years. In 2013 decrease was observed at several stations (RO2, RO6, BG1-BG5, see Figure 4.9) and at monitoring sites SK1, HU5 and RO5 a slight increase of nitrate-N concentrations occured (Figure 4.20-4.22). The nitrate-N has increased in 2013 in the tributaries Dyje, Vah, Velika Morava, Jantra and Russenski Lom (Figure 4.10).

In the last decade a decreasing tendency of ortho-phosphate-P concentrations is mostly seen in the upper part of the Danube, and partly also in the lower section (BG1, BG4, RO2, RO3: Figure 4.11). In 2013 decreasing tendency of ortho-phosphate-P was observed in the tributaries Jantra, Velika Morava and Arges (Figure 4.12).

P-total concentration had decreasing tendency in the last decade in the upper and middle Danube (Figure 4.13). An increase however was observed in 2013 at HU1, HU2, HR1 and RS1. As for the tributaries the P-total concentration has increased in Inn, Sajo and Morava (see Figure 4.14) and in lower Danube the P-total concentration decreased.

The trend of COD in the Danube River was rather stable during last ten years, the highest concentrations were observed in the lower Danube and in the tributaries Arges, Sajo and Russenski Lom.

Cadmium concentration is constant or slightly decreasing along the Danube as well as in its tributaries (Figures 4.15 and 4.16).

The 90 and 10 percentiles of selected determinands (N-NH₄, P-PO₄, COD_{cr}, BOD₅) measured in 2013 are shown in Figures 4.26-4.33. They indicate the margins of a usual annual concentration range for a given parameter and the site.

Figure 4.1.: Temporal changes of dissolved oxygen (c10) in the Danube river.

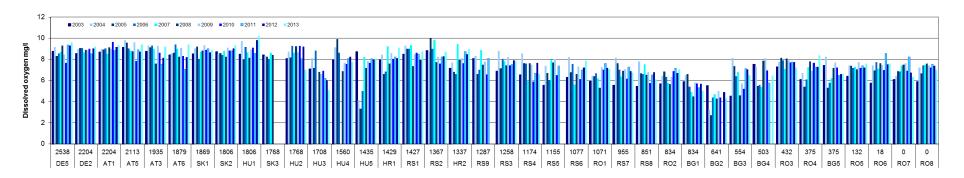


Figure 4.2.: Temporal changes of dissolved oxygen (c10) in tributaries.

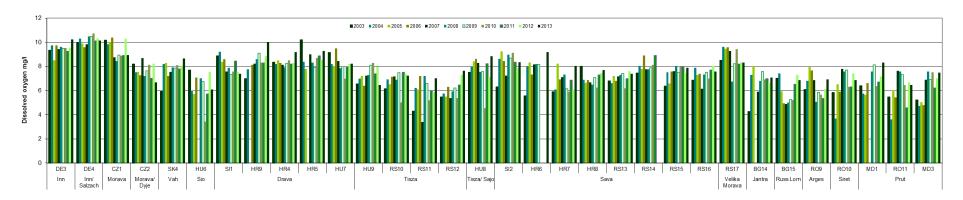


Figure 4.3.: Temporal changes of BOD₅ (c90) in the Danube river.

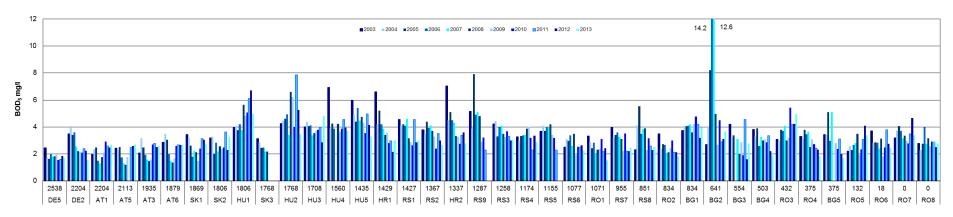


Figure 4.4.: Temporal changes of BOD₅ (c90) in tributaries.

Monitoring sites / distance from the mouth [km]

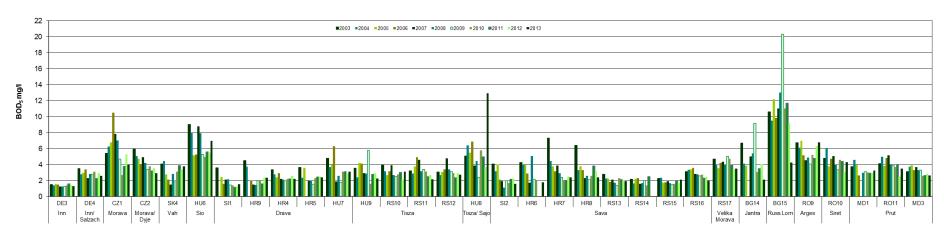


Figure 4.5.: Temporal changes of COD_{Cr} (c90) in the Danube river.

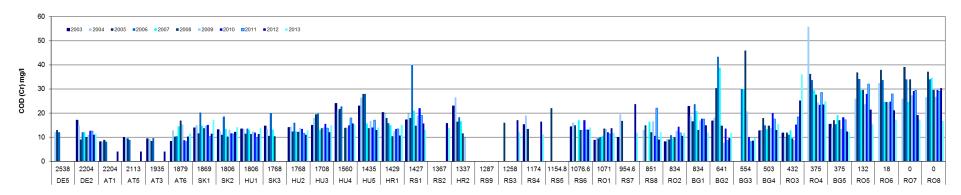


Figure 4.6.: Temporal changes of COD_{Cr} (c90) in tributaries.

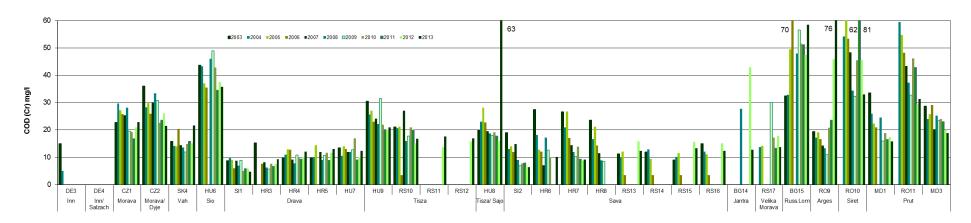


Figure 4.7.: Temporal changes of ammonium-nitrogen (c90) in the Danube river.

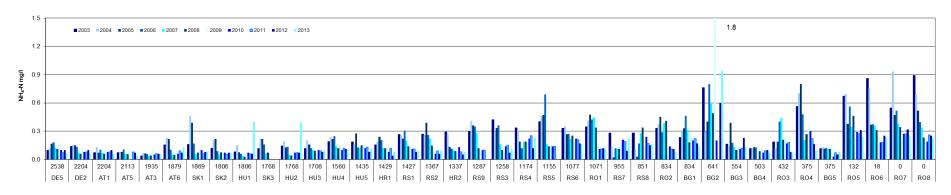


Figure 4.8.: Temporal changes of ammonium-nitrogen (c90) in tributaries.

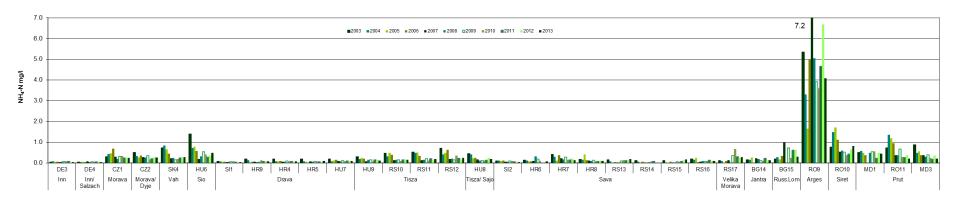


Figure 4.9.: Temporal changes of nitrate-nitrogen (c90) in the Danube river.

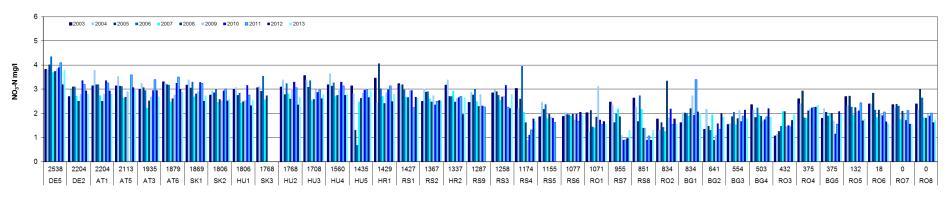


Figure 4.10.: Temporal changes of nitrate-nitrogen (c90) in tributaries.

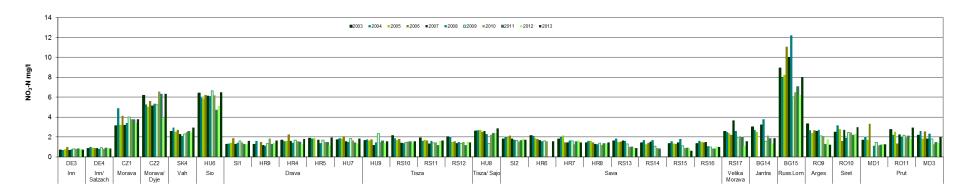


Figure 4.11: Temporal changes of ortho-phosphate-phosphorus (c90) in the Danube river.

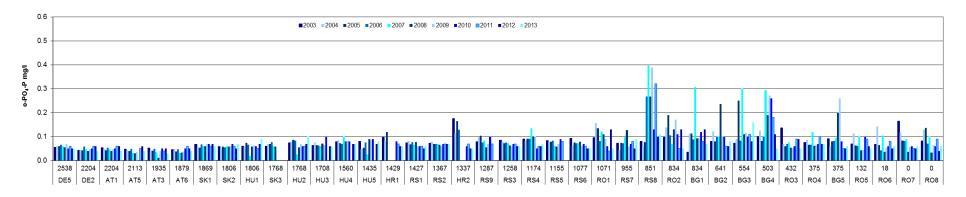


Figure 4.12: Temporal changes of ortho-phosphate-phosphorus (c90) in tributaries

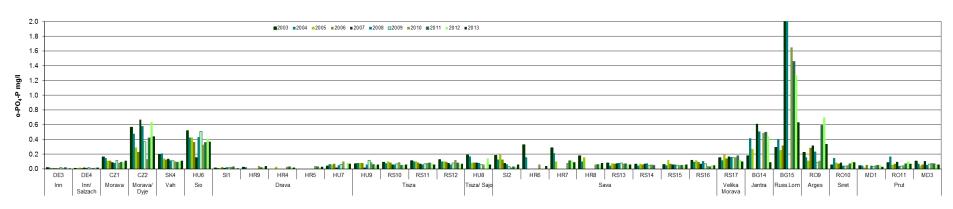


Figure 4.13: Temporal changes of total phosphorus (c90) in the Danube river.

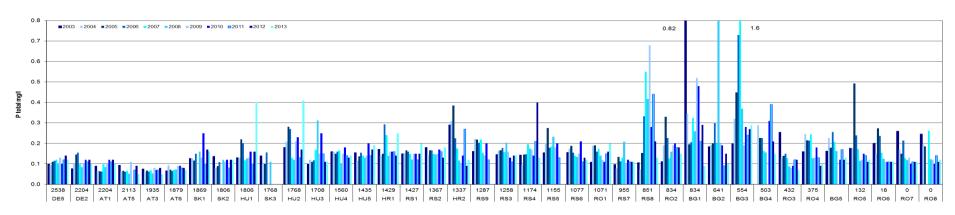


Figure 4.14: Temporal changes of total phosphorus (c90) in tributaries.

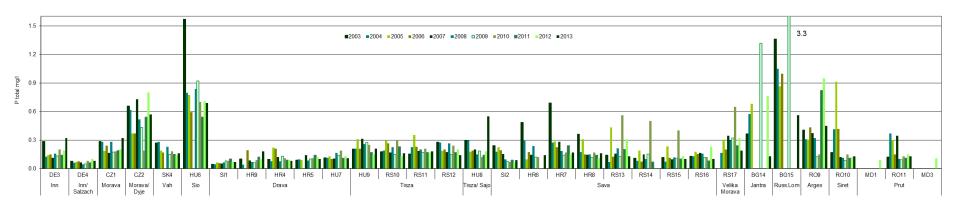


Figure 4.15: Temporal changes of cadmium (c90) in the Danube river.

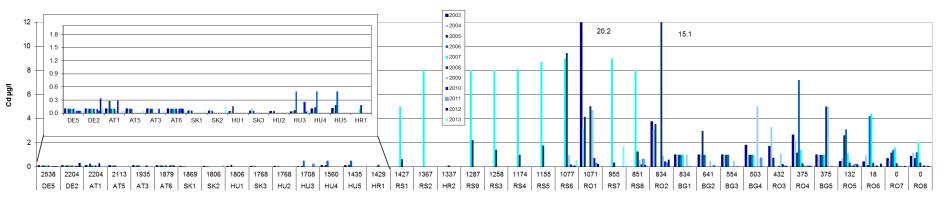


Figure 4.16: Temporal changes of cadmium (c90) in tributaries.

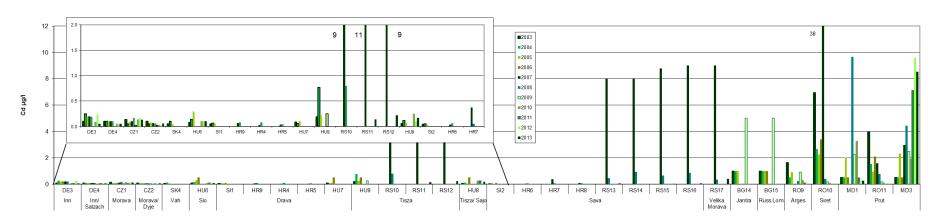


Figure 4.17: Temporal changes of BOD₅ (c90) in Bratislava

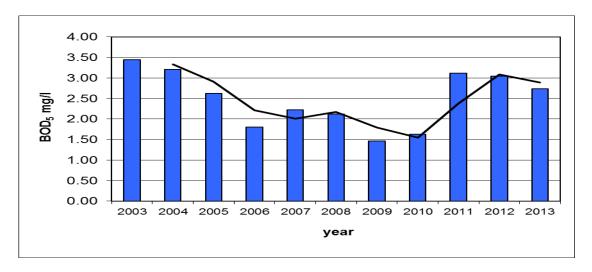


Figure 4.18: Temporal changes of BOD₅ (c90) in Hercegszanto

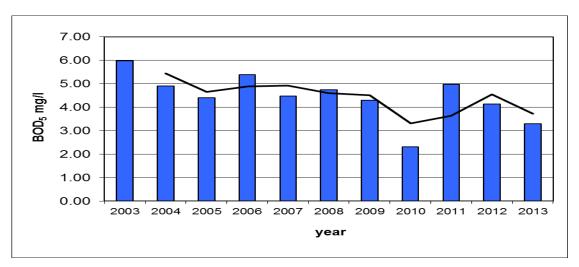


Figure 4.19: Temporal changes of BOD₅ (c90) in Reni

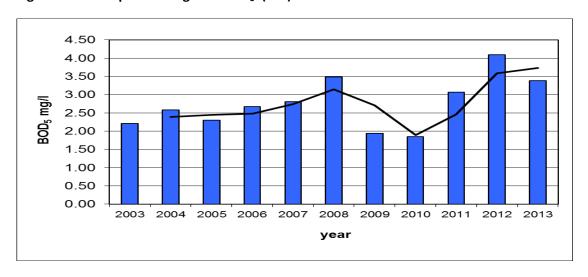


Figure 4.20: Temporal changes of nitrate-nitrogen (c90) in Bratislava

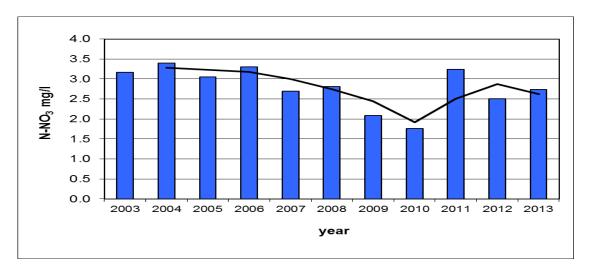


Figure 4.21: Temporal changes of nitrate-nitrogen (c90) in Hercegszanto

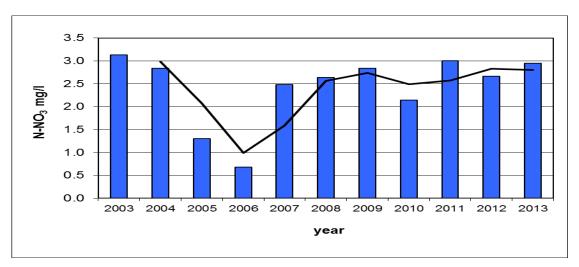


Figure 4.22: Temporal changes of nitrate-nitrogen (c90) in Reni

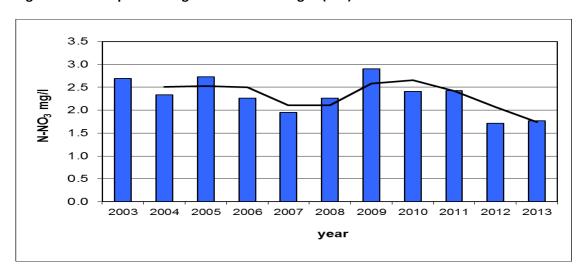


Figure 4.23: Temporal changes of total phosphorus (c90) in Bratislava

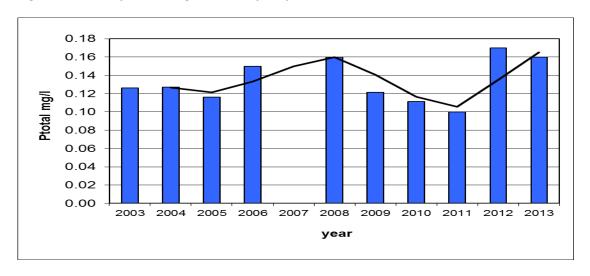


Figure 4.24: Temporal changes of total phosphorus (c90) in Hercegszanto

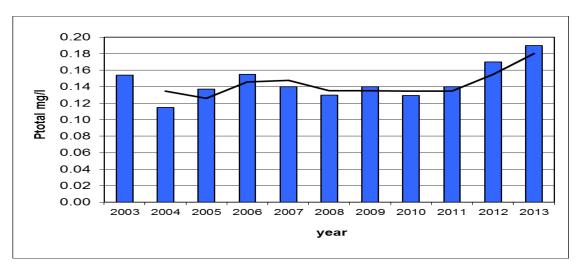


Figure 4.25: Temporal changes of total phosphorus (c90) in Reni

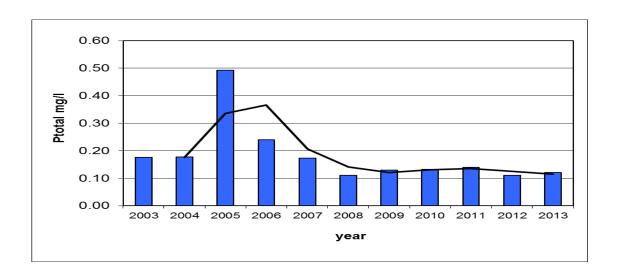


Figure 4.26: The percentile (90, 10) of N-NH₄ concentration along the Danube river in 2013.

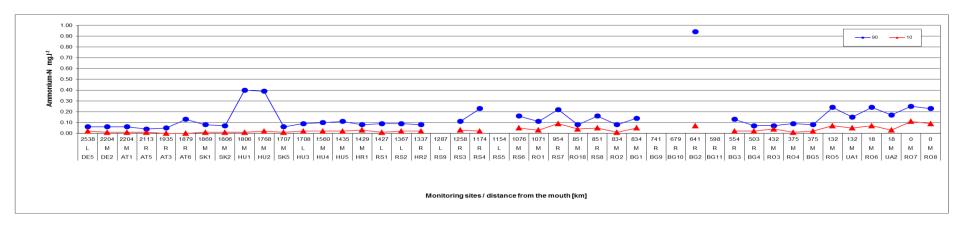


Figure 4.27: The percentile (90, 10) of N-NH₄ concentration in the tributaries in 2013.

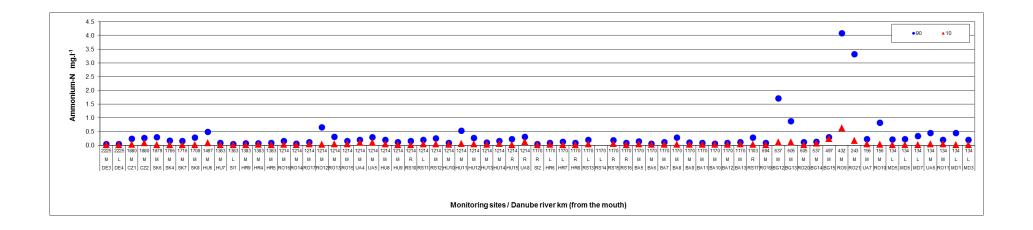


Figure 4.28: The percentile (90, 10) of P-PO₄ concentration along the Danube river in 2013.

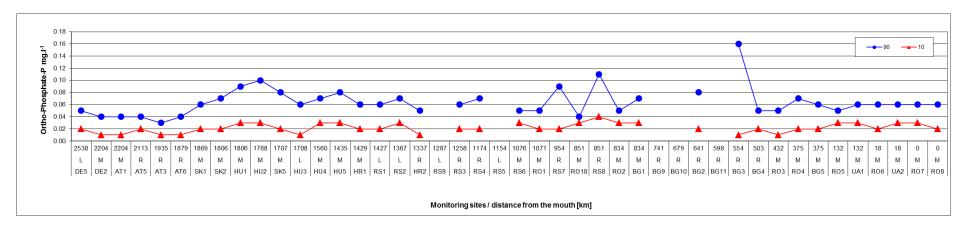


Figure 4.29: The percentile (90, 10) of P-PO₄ concentration in the tributaries in 2013.

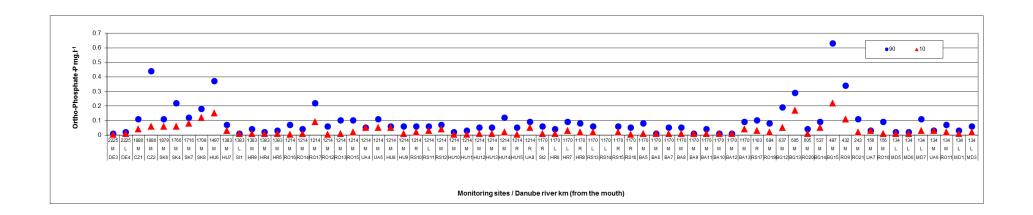


Figure 4.30: The percentile (90, 10) of COD_{cr} concentration along the Danube river in 2013.

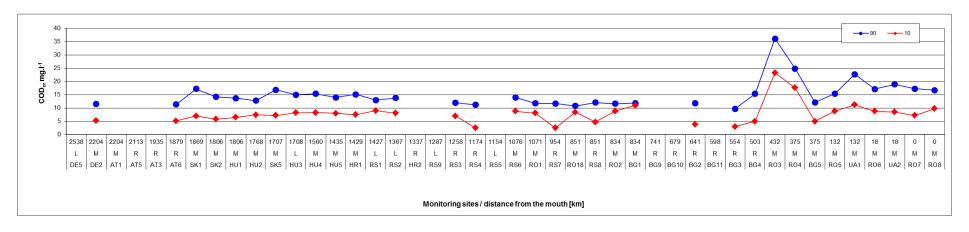


Figure 4.31: The percentile (90, 10) of COD_{cr} concentration in the tributaries in 2013.

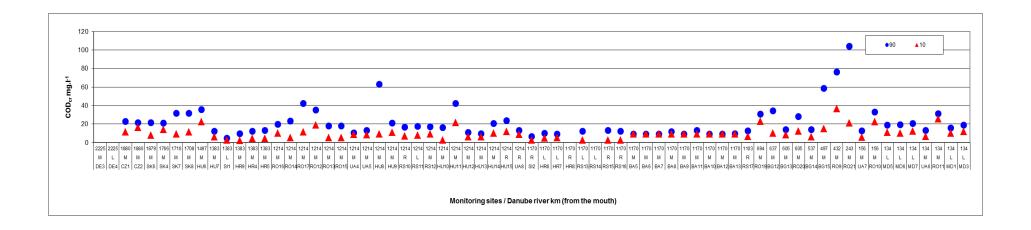


Figure 4.32: The percentile (90, 10) of BOD₅ concentration along the Danube river in 2013.

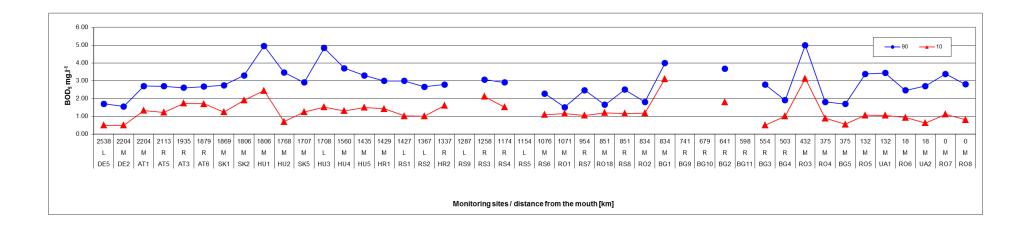


Figure 4.33: The percentile (90, 10) of BOD₅ concentration in the tributaries in 2013.

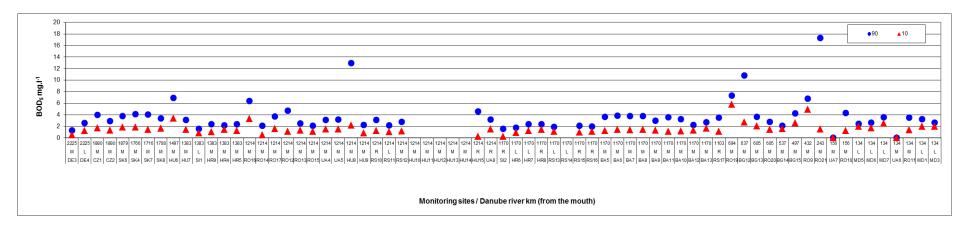


Figure 4.34: The maximum of Macrozoobenthos- Saprobic index along the Danube river in 2013.

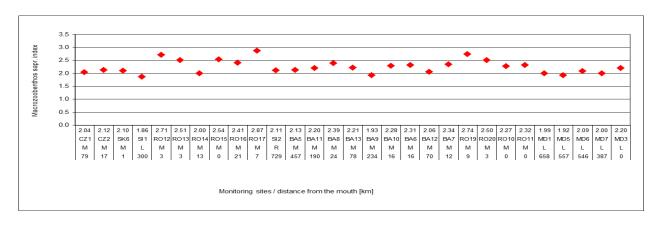
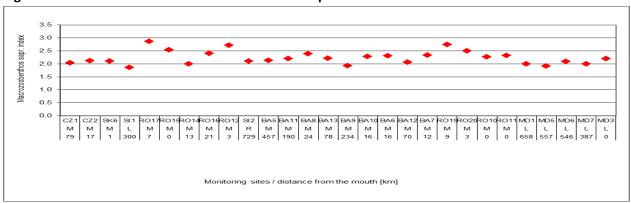
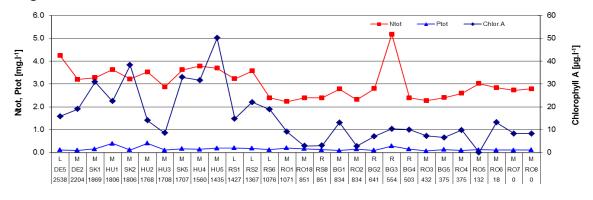




Figure 4.35: The maximum of Macrozoobenthos- Saprobic index in the tributaries in 2013.

The maxima of macrozoobenthos- Saprobic index in the Danube and tributaries are presented in Figures 4.34 and 4.35. The data on macrozoobenthos was delivered in 2013 for 13 monitoring points located in the Danube and for 26 monitoring points in tributaries. The maximum value of Saprobic index was determined at AT1 Jochenstein. The highest macrozoobenthos- Saprobic index was found in tributary Bega (RO17).

Figure 4.36: The percentile (90) of total nitrogen, phosphorus and chlorophyll-A concentration along the Danube river in 2013.

Monitoring sites / distance from the mouth [km]

The concentration of nutrients and chlorophyll A are presented in Figure 4.36 (Figure shows only those monitoring points where all three determinands were measured). The maximum concentration of chlorophyll A was observed at BG3. The highest concentration of N_{total} was observed at HU5 and maximal concentration of Ptotal was at HU2.

Figure 4.37: The percentile (90) of N_{tot.}, N-NH₄ and N-NO₃ concentration along the Sava river in 2013.

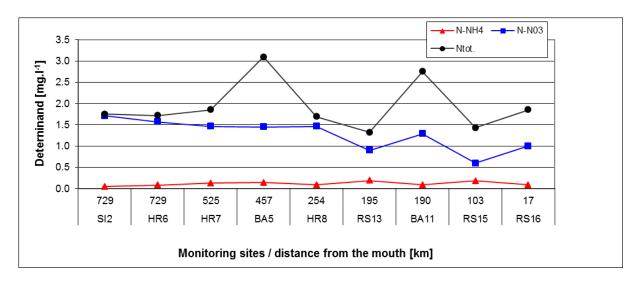
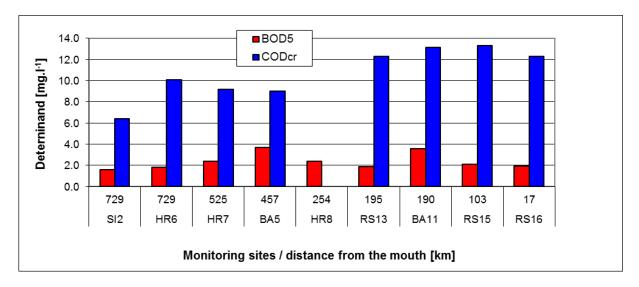



Figure 4.38: The percentile (90) of BOD₅ and CODcr concentration along the Sava river in 2013.

The 90 percentiles of nutrients and COD_{cr}, BOD₅ measured in 2013 in the Sava and Tisza rivers are presented in Figures 4.37-4.38. The highest value of N-NH₄ in the Sava river was found in monitoring point RS13 (rkm 195). The maximumconcentration of N-NO₃ was observed at SI2 (rkm 729, Figure 4.37). The highest value of N_{total} was found at BA5 (rkm 457).

The highest values of BOD₅ in Sava river was measured in monitoring point BA5 rkm 457 and the highest COD_{cr} value was measured in monitoring point RS15 (rkm 103, Figure 4.38).

Figure 4.39: The percentile (90) of total nitrogen, N-NH₄ and N-NO₃ concentration along the Tisza river in 2013.

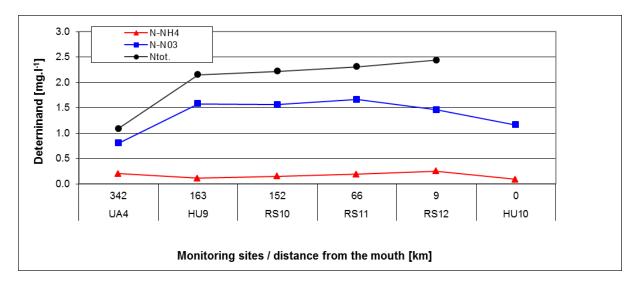
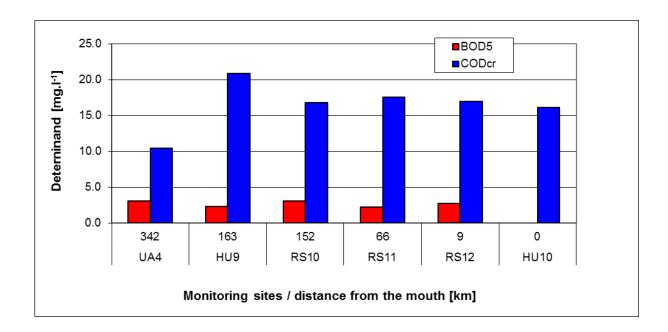



Figure 4.40: The percentile (90) of BOD₅ and CODcr concentration along the Tisza river in 2013.

The maximum value of N-NH₄ in the Tisza river was measured in monitoring point RS11 rkm 9 (see Figure 4.39). The highest value of N-NO₃ was measured at RS11 rkm 66. The highest value of N_{total} was found at RS12 rkm 9.

The highest value of BOD₅ in the Tisza river was found in monitoring point UA4 and RS 10 (rkm 342, 152) and the highest COD_{cr} concentration at HU9 (rkm 163, Figure 4.40).

5. Load Asessment

Introduction

The long-term development of loads of relevant determinands in the important rivers of the Danube Basin is one of the major objectives of the TNMN. This is why the load assessment programme in the Danube River Basin started in 2000. For the calculation of loads, a commonly agreed standard operational procedure is used.

Description of load assessment procedure

The following principles have been agreed for the load assessment procedure:

- Load is calculated for the following determinands: BOD₅, inorganic nitrogen, ortho-phosphatephosphorus, dissolved phosphorus, total phosphorus, suspended solids and - on a voluntary basis - chlorides; based on the agreement with the Black Sea Commission, silicates are measured at the Romanian load assessment sites since 2004;
- The minimum sampling frequency at sampling sites selected for load calculation is set at 24 per year;
- The load calculation is processed according to the procedure recommended by the Project "Transboundary assessment of pollution loads and trends" and described in Chapter 6.4. Additionally, countries can calculate annual load by using their national calculation methods, results of which would be presented together with data prepared on the basis of the agreed method;
- Countries should select for load assessment those TNMN monitoring sites for which valid flow data is available (see Table 5).

Table 5 shows TNMN monitoring locations selected for the load assessment program. It also provides information about hydrological stations collecting flow data for load assessment. Altogether 27 monitoring locations from nine countries are included in the list. One location -Danube-Jochenstein have been included by two neighboring countries, therefore the actual number of locations is 26, with ten locations on the Danube River itself and 16 locations on the tributaries. Rivers Prut and Siret were added in year 2010.

The second location that could potentially be processed by using combined data from two countries is Sava-Jesenice.

Monitoring Data in 2013

The monitoring frequency is an important factor for the assessment of pollution loads in water courses. Table 6 shows the number of measurements of flow and water quality determinands in the TNMN load assessment sites.

Data are shown in tables 7 and 9. In most of the locations, the number of samples was higher than 20, lower frequency was for chlorides. A frequency of 10-12 times per year was applied only for Czech and Croatian monitoring stations. In 2010 load calculation for Slovakian monitoring points on tributaries Morava, Hron and Ipoly was added and the frequency of monitoring for these sites was 12 per year.

The loads in the Danube at Jochenstein are being assessed on the basis of combined data from Germany and Austria, there is no problem with insufficient frequency there.

Regarding particular determinands, there is still a lack of data on dissolved phosphorus as it was measured in 13 locations only. For 10 monitoring points silicate or dissolved silicate load was calculated. The calculation of the silicate load is based on the agreements made with the Black Sea Commission.

Table 5: List of TNMN locations selected for load assessment program

Country	River	Water quality mo	onitoring location		Hydrological station	
		Country Code	Location	Distance from mouth (Km)	Location	Distance from mouth (Km)
Germany	Danube	DE2	Jochenstein	2204	Achleiten	2223
Germany	Inn	DE3	Kirchdorf	195	Oberaudorf	211
Germany	Inn/Salzach	DE4	Laufen	47	Laufen	47
Austria	Danube	AT1	Jochenstein	2204	Aschach	2163
Austria	Danube	AT6	Hainburg	1879	Hainburg (Danube) Angern (March)	1884 32
Czech Republic	Morava	CZ1	Lanzhot	79	Lanzhot	79
Czech Republic	Morava/Dyje	CZ2	Pohansko	17	Breclav-Ladná	32,3
Slovak Republic	Danube	SK1	Bratislava	1869	Bratislava	1869
Slovak Republic	Váh	SK4	Komárno		Sum of: Maly Dunaj -Trstice Vah- Sala Nitra -Nove Zamky	22,5 58,8 12,3
Slovak Republic	Morava	SK6	Devín		Zahorska Ves	32,5
Slovak Republic	Hron	SK7	Kamenica		Kanenin	10,9
Slovak Republic	Ipoly	SK8	Salka		Salka	12,2
Hungary	Danube	HU3	Szob	1708	Nagymaros	1695
Hungary	Danube	HU5	Hercegszántó	1435	Mohács	1447
Hungary	Tisza	HU9	Tiszasziget	163	Szeged	174
Croatia	Danube	HR2	Borovo	1337	Vukovar	1337

Croatia	Sava	HR06	Jesenice	729	Jesenice	729
Croatia	Sava	HR7	Una Jesenovac	525	Una Jesenovac	525
Croatia	Sava	HR8	Zupanja	254	Zupanja	254
Slovenia	Drava	SI1	Ormoz	300	Borl HE Formin	325 311
					Pesnica-Zamusani	10.1(to the Drava)
Slovenia	Sava	SI2	Jesenice	729	Catez Sotla -Rakovec	737 8.1 (to the Sava)
Romania	Danube	RO2	Pristol-Novo Selo	834	Gruia	858
Romania	Danube	RO4	Chiciu-Silistra	375	Chiciu	379
Romania	Danube	RO5	Reni	132	Isaccea	101
Romania	Siret	RO10	Sendreni	0	Sendreni	0
Romania	Prut	RO11	Giurgiulesti	0	Giurgiulesti	0
Ukraine	Danube	UA2	Vylkove	18		

Calculation Procedure

Regarding several sampling sites in the profile, the average concentration at a site is calculated for each sampling day. In case of values "below the limit of detection", the value of the limit of detection is used in the further calculation. The average monthly concentrations are calculated according to the formula:

where C_{m} average monthly concentrations

> C_{i} concentrations in the sampling days of each month

 Q_i discharges in the sampling days of each month

The monthly load is calculated by using the formula:

$$L_{m}$$
 [tones] = C_{m} [mg.l⁻¹] . Q_{m} [m³.s⁻¹] . days (m) . 0,0864

monthly load where L_{m}

\boldsymbol{Q}_{m} average monthly discharge

- If discharges are available only for the sampling days, then Q_m is calculated from those discharges.
- For months without measured values, the average of the products $C_m Q_m$ in the months with sampling days is used.

The annual load is calculated as the sum of the monthly loads:

12

 L_a [tones] = $\sum L_m$ [tones] m=1

Table 6: Number of measurements in TNMN locations selected for assessment of pollution load in 2013

Country	River	Location	Location	River		Number of r	neausremen	ts in 2013					
Code			in profile	Km	Q	SS	Ninorg	P-PO ₄	P _{total}	BOD ₅	Cl	P_{diss}	SiO ₂
DE2	Danube	Jochenstein	M	2204	365	26	38	38	38	26	26	37	
DE3	Inn	Kirchdorf	M	195	365	26	26	26	26	26	26	24	
DE4	Inn/Salzach	Laufen	L	47	365	26	25	26	26	26	26	26	
AT1	Danube	Jochenstein	M	2204	365	12	38	38	38	12	12	38	
AT6	Danube	Hainburg	R	1879	365	24	24	24	24	24	24	24	
CZ1	Morava	Lanzhot	M	79	365	12	12	12	12	12	12		12
CZ2	Morava/Dyje	Pohansko	M	17	365	12	12	12	12	12	12		12
SK1	Danube	Bratislava	M	1869	365	25	25	25	25	25	12	25	25
SK4	Váh	Komárno	M	1	365	12	12	12	12	12	12	12	
SK6	Morava	Devín	M	1	365	12	12	12	12	12	12	12	
SK7	Hron	Kamenica	M	2	365	12	12	12	12	12	12	12	
SK8	Ipoly	Salka	M	12	365	12	12	12	12	12	12	12	
HU3	Danube	Szob	L	1708		23	23	23	23	23	23		
			M	1708	365	23	23	23	23	23	23		
			R	1708		23	23	23	23	23	23		
HU5	Danube	Hercegszántó	M	1435	365	23	24	24	24	22	24		24
HU9	Tisza	Tiszasziget	L	163		26	26	26	26	11	12		26
			M	163	365	24	24	24	24	12	12		24
			R	163		26	26	26	26	12	12		26
HR2	Danube	Borovo	R	1337	365	12	12	12	12	12	12		12
HR6	Sava	Jesenice	R	729	365	11	11	11	11	11	11		11
HR7	Sava	us Una Jesenovac	L	525	365	12	12	12	12	12	12		12
HR8	Sava	ds Zupanja	ML	254	365	11	11	11	11	11	11		11
SI1	Drava	Ormoz	L	300	362	26	26	26	26	26	12		
SI2	Sava	Jesenice	R	729	365	26	26	26	26	26	12		
RO2	Danube	Pristol-Novo Selo	L	834		25	25	25	25	25	12	23	24
			M	834	365	25	25	25	25	25	12	23	24
			R	834		25	25	25	25	25	12	23	24
RO4	Danube	Chiciu-Silistra	L	375		23	26	26	26	26	13	26	2
			M	375		23	26	26	26	26	13	26	2
			R	375		23	26	26	26	26	13	26	2
RO5	Danube	Reni	L	132		25	26	26	25	25	12		26
			M	132	365	25	26	26	25	26	12		26
			R	132		25	26	26	25	26	12		26
RO10	M	Siret	M	0	365	26	26	26	26	26	13		
RO11	M	Prut	M	0	365	26	26	26	26	25	11		
UA2	Danube	Vylkove	M	18	365	12	12	12		12	12	12	12

Results

The mean annual concentrations and annual loads of suspended solids, inorganic nitrogen, orthophosphate-phosphorus, total phosphorus, BOD₅, chlorides and - where available - dissolved phosphorus and silicates - are presented in tables 7 to 10, separately for monitoring locations on the Danube River and for monitoring locations on tributaries. The explanation of terms used in the tables 7 to 10 is as follows.

Term used	Explanation
Station Code	TNMN monitoring location code
Profile	location of sampling site in profile (L-left, M-middle, R-right)
River Name	name of river
Location	name of monitoring location
River km	distance to mouth of the river
Qa	mean annual discharge in the year 2013
Cmean	arithmetical mean of the concentrations in the year 2013
Annual Load	annual load of given determinand in the year 2013

Table 10 shows loads of other determinands (nitrogen forms and heavy metals) at the profile Reni, which are monitored since 2005 based on the agreement with the Black Sea Commission. Annual loads for Danube and tributaries are in figures 5.5.1 -5.5.12.

Trends for load during last 10 years in Reni are shown in figures 5.5.13.-5.5. 17. In general loads had a decreasing tendency in 2011 and 2012. Due to the high discharges in 2005, 2010 and 2013 the increased loads were observed.

The spatial pattern of the annual load along the Danube is similar to the previous year. For inorganic nitrogen, suspended solids, BOD₅, ortho-phosphate, total phosphorus and chlorides, the highest load is observed in the lower part of the Danube River. The maximum load of suspended solids, BOD₅ total phosphorus, dissolved phosphorus and chlorides was observed at Reni (RO5). Maximum load of inorganic nitrogen, ortho-phosphate was observed at RO4 Chiciu-Silistra. Highest silicate load was measured at Pristol-Novo Selo (RO2).

In case of tributaries, the highest load of inorganic nitrogen, ortho-phosphate, BOD₅ and chlorides are coming from the Sava. For suspended solids, total phosphorus and silicates the major load was measured in the Tisza. The highest load of dissolved phosphorus was observed in the Vah.

Table 7: Mean annual concentrations in monitoring locations selected for load assessment on Danube River in 2013

Station	Profile	River Name	Location	River km	\mathbf{Q}_{a}			C _{mean}					
Code						Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE2													
+AT1	М	Danube	Jochenstein	2204	1671	16.09	2.09	0.03	0.06	1.29	18.34	0.04	
AT6	R	Danube	Hainburg	1879	2376	16.42	2.20	0.03	0.05	2.20	18.61	0.05	
SK1	М	Danube	Bratislava	1869	2417	50.52	2.01	0.04	0.09	1.98	17.42	0.06	5.49
HU3	LMR	Danube	Szob	1708	2684	48.39	1.93	0.05	0.08	3.18	25.65		
HU5	М	Danube	Hercegszántó	1435	2863	34.17	2.05	0.05	0.12	2.35	20.65		3.90
HR2	R	Danube	Borovo	1337	3474	20.63	1.89	0.03	0.09	2.13	18.53		5.19
RO2	LMR	Danube	Pristol-Novo Selo	834	5946	33.43	1.28	0.04	0.09	1.55	15.16	0.07	3.30*
RO4	LMR	Danube	Chiciu-Silistra	375	6558	18.30	1.79	0.05	0.06	1.43	21.85	0.05	
RO5	LMR	Danube	Reni	132	7164	40.79	1.48	0.04	0.10	1.98	22.81	0.07	2.64
UA2	М	Danube	Vylkove	18	3497	63.28	1.37	0.04		1.36	31.67	0.09	2.15

Table 8: Mean annual concentrations in monitoring locations selected for load assessment on tributaries in 2013

Station	Profile	River Name	Location	River km	Qa	C _{mean}							
Code						Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE3	М	Inn	Kirchdorf	195	303	71.17	0.53	0.01	0.10	0.76	6.52	0.01	
DE4	L	Inn/Salzach	Laufen	47	283	34.75	0.62	0.01	0.05	1.86	8.19	0.02	
CZ1	М	Morava	Lanzhot	79	65	58.83	2.83	0.07	0.17	3.03	30.92		6.74/3.16*
CZ2	L	Morava/Dyje	Pohansko	17.00	46	15.83	3.33	0.20	0.28	1.99	43.60		8.61/4.03*
SK4	М	Váh	Komárno	1	203	67.88			0.16	2.88	21.27	0.11	
SK6	М	Morava	Devín	1	120	33.00		0.12	0.21	3.28	35.99	0.14	
SK7	М	Hron	Kamenica	2	71	41.67	2.08	0.10	0.16	2.76	12.93	0.12	
SK8	М	lpoly	Salka	12	32	89.25	2.49	0.15	0.21	2.27	24.21	0.18	
HU9	LMR	Tisza	Tiszasziget	163	737	40	_			1.40	31.17		6.90
SI1	L	Drava	Ormoz	300	319	17.40			0.04	1.14			
SI2	R	Sava	Jesenice	729	335	4.77		0.03	0.06	0.94	8.49		
HR6	R	Sava	Jesenice	729	335	11.82	1.37	0.03	0.09	1.45	8.16		3.29*
HR7	L	Sava	us. Una Jasenovac	525	971	10.57	1.28	0.05	0.10	1.88	8.00		3.68*
HR8	ML	Sava	ds. Zupanja	254	1326	16.07	1.21	0.04	0.09	1.76	22.92		4.33*
RO10	М	Siret	Conf. Danube (Sendreni)	0	187	113.44	2.44	0.05	0.07	2.48	94.66	0.05	
RO11	М	Prut	Conf. Danube (Giurgiulesti)	0	67	70.87	2.04	0.05	0.08	2.27	48.31	0.06	

Table 9: Annual load in selected monitoring locations on Danube River

Station	Profile	River Name	Location	River km				Annual Lo	ad in 2013			
Code					Suspended Solids	. •		Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10³tonns)	(x10 ³ tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)
DE2												
+AT1	М	Danube	Jochenstein	2204	1.16	107.61	1.46	3.67	65.91	0.91	2.2	
AT6	R	Danube	Hainburg	1879	1.77	163.49	2.18	4.3	162.8	1.34	3.72	
SK1	М	Danube	Bratislava	1869	5.88	156.13	3.53	7.72	156.52	1.24	4.54	0.42
HU3	LMR	Danube	Szob	1708	5.70	166.28	4.46	7.29	313.85	2.15		
HU5	М	Danube	Hercegszántó	1435	3.60	191.07	4.09	11.06	213.24	1.82		0.36
HR2	R	Danube	Borovo	1337	2.28	207.54	3.62	10.09	239.05	1.97		0.56*
RO2	LMR	Danube	Pristol-Novo Selo	834	6.33	249.93	7.71	17.98	295.71	2.77	12.45	0.62*
RO4	LMR	Danube	Chiciu-Silistra	375	5.31	415.18	10.27	14.31	307.82	4.33	11.41	
RO5	LMR	Danube	Reni	132	10.39	348.62	9.63	22.63	493.04	4.96	14.86	0.61*
UA2	М	Danube	Vylkove	18	7.40	158.57	4.31		140.59	3.39	10.27	0.25

Table 10: Annual load in selected monitoring locations on tributaries

Station Code	Profile	River Name	Location	River km		Annual Load in 2012									
					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates			
					(x10 ⁶ tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10³tonns)	(x10 ⁶ tonns)			
DE3	М	Inn	Kirchdorf	195	0.89	5.50	0.07	1.18	8.86	0.06	0.11				
DE4	L	Inn/Salzach	Laufen	47	0.35	5.47	0.10	0.54	16.35	0.06	0.20				
CZ1	М	Morava	Lanzhot	79	0.05	3.47	0.07	0.22	3.64	0.03		0.0148/0.007*			
CZ2	L	Morava/Dyje	Pohansko	17	0.01	1.74	0.16	0.25	1.82	0.04		0.0119/0.006*			
SK4	M	Váh	Komárno	1	0.10	9.01	0.35	0.57	14.03	0.09	0.43				
SK6	M	Morava	Devín	1	0.13	4.98	0.27	0.52	8.73	0.08	0.34				
SK7	M	Hron	Kamenica	2	0.02	1.84	0.09		2.61	0.01	0.11				
SK8	M	Ipoly	Salka	12	0.00	0.40	0.02	0.03	0.45		0.02				
HU9	LMR	Tisza	Tiszasziget	163	1.00	16.45	0.53		21.33	0.34		0.10			
SI1	L	Drava	Ormoz	300	0.12	7.16	0.09	0.39	6.87	0.05					
SI2	R	Sava	Jesenice	729	0.07	11.89	0.13	0.43	7.11	0.06					
HR10	L	Sava	Drenje	728.8	0.08	8.64	0.28	0.52	8.87	0.09		0.05*			
HR7	L	Sava	us. Una Jasenovac	525	0.14	19.17	1.06	1.63	24.49	0.12		0.06*			
HR8		Sava	ds. Zupanja	254	0.36	22.27	0.87	1.86		0.39		0.08*			
RO10	M	Siret	Conf. Danube (Sendreni)	0	1.26	9.30	0.25	0.34	13.78	0.27		0.00108*			
RO11	M	Prut	Conf. Danube (Giurgiulesti)	0	0.08	2.28	0.09	0.13	2.98	0.06		0.00223*			

Table 11: Additional annual load data at Reni for reporting to the Black Sea Commission

Country	River	Location	Location	River		Number of measurements in 2013											
Code			in profile	km	Q	N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
RO5	Danube	Reni	LMR	132	366	26	26	26	26	12	12	12	12	12	12	12	9
Country	River	Location	Location	River						C _{mean}							
Code			in profile	km	\mathbf{Q}_{a}	N-NH₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(µg.l ⁻¹)							
RO5	Danube	Reni	LMR	132	7164	0.17	0.02	1.30	1.95	13.29	3.63	1.72	0.57	0.08	0.08	0.014	0.013
Country	River	Location	Location	River							Annual	Load in	2013				
Code			in profile	km		N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
						(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(tonns)							
RO5	Danube	Reni	LMR	132		37.27	4.89	306.46	445.79	3075.77	833.26	363.46	123.72	18.26	16.94	3.02	1.93

Figure 5.5.1: Annual load of suspended solids at monitoring locations along the Danube River.

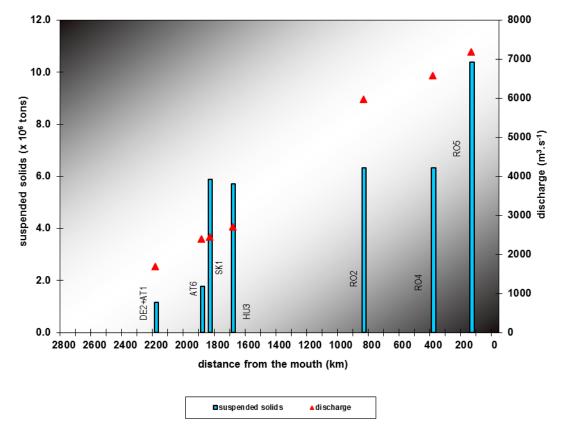


Figure 5.5.2: Annual load of suspended solids at monitoring locations on tributaries.

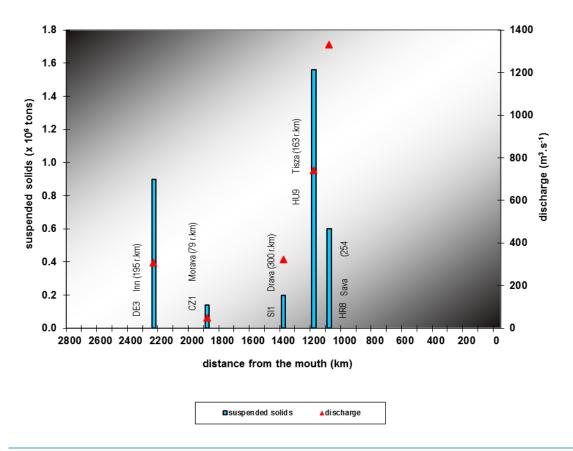


Figure 5.5.3: Annual loads of inorganic nitrogen at monitoring locations along the Danube River.

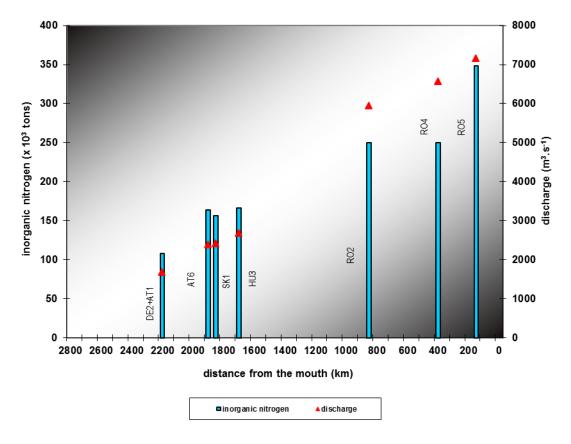


Figure 5.5.4: Annual loads of inorganic nitrogen at monitoring locations on tributaries.

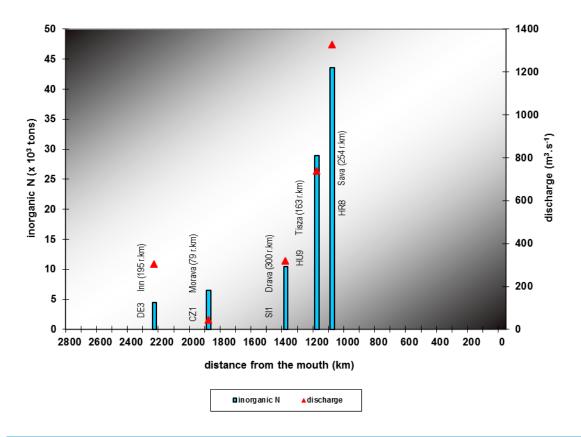


Figure 5.5.5: Annual loads of ortho-phosphate-P at monitoring locations along the Danube River.

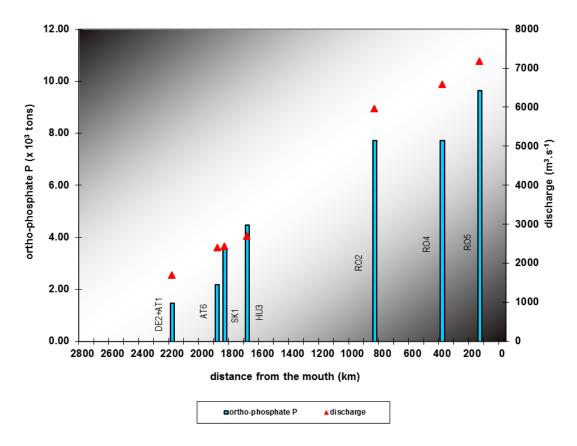


Figure 5.5.6: Annual loads of ortho-phosphate-P at monitoring locations on tributaries.

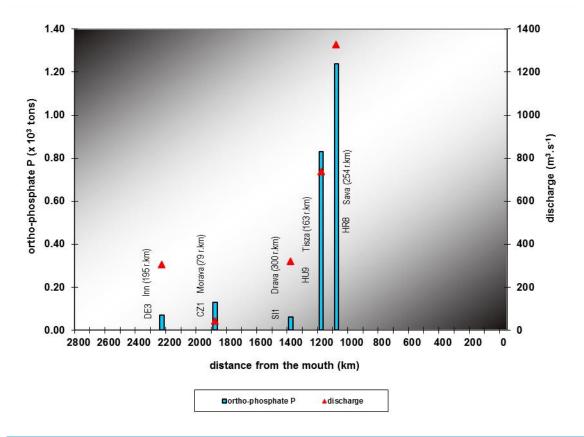


Figure 5.5.7: Annual loads of total phosphorus at monitoring locations along the Danube River.

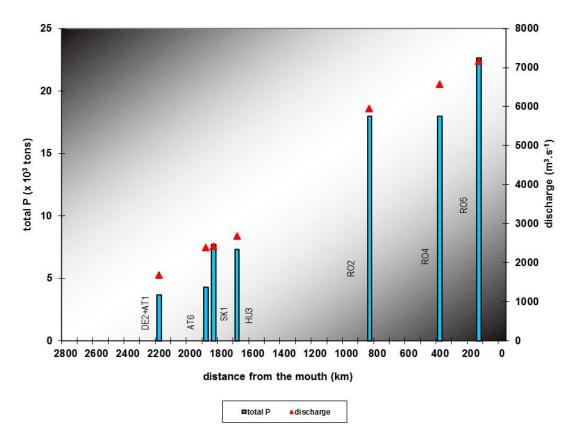


Figure 5.5.8: Annual loads of total phosphorus at monitoring locations on tributaries.

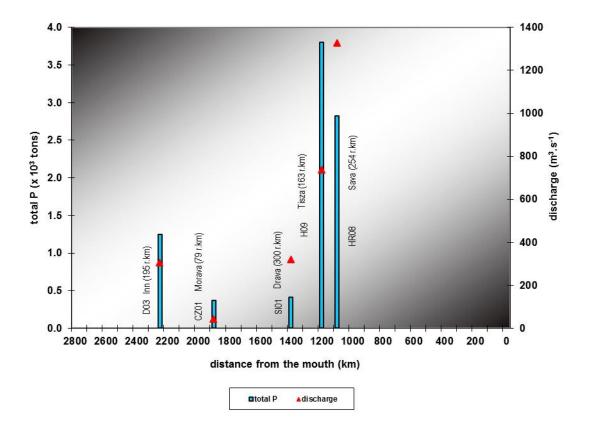


Figure 5.5.9: Annual loads of BOD5 at monitoring locations along the Danube River.

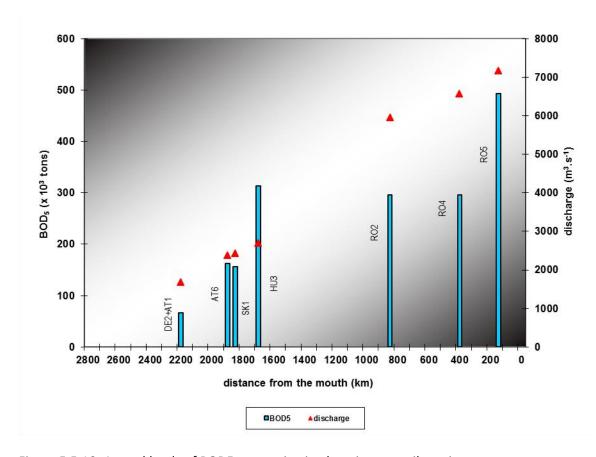


Figure 5.5.10: Annual loads of BOD5 at monitoring locations on tributaries.

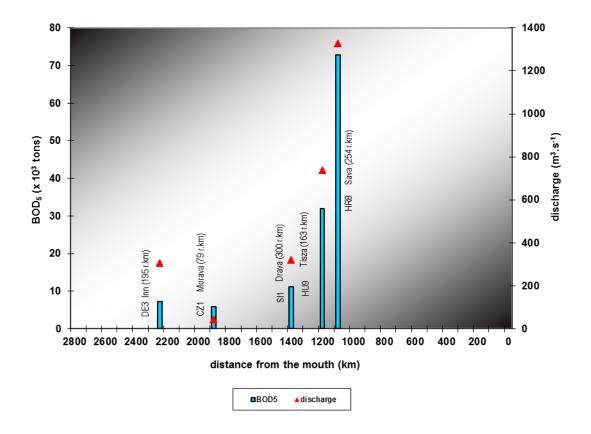


Figure 5.5.11: Annual loads of chlorides at monitoring locations along the Danube River.

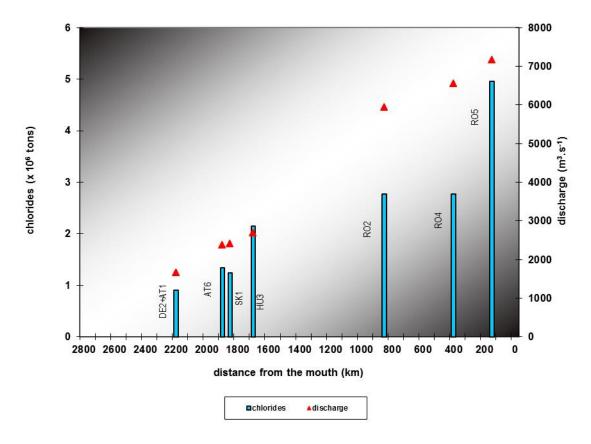


Figure 5.5.12: Annual loads of chlorides at monitoring locations on tributaries.

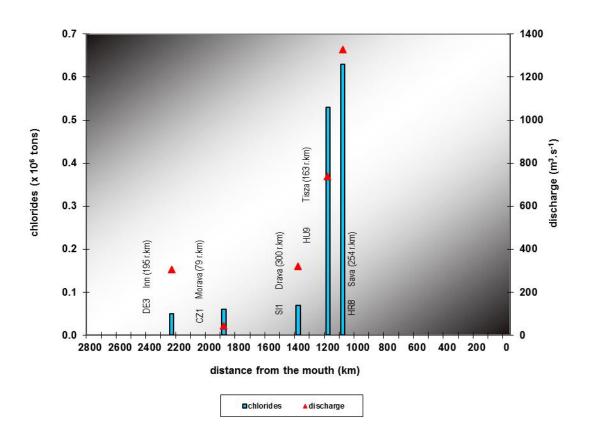


Figure 5.5.13: Trends of annual loads of suspended solids at Reni.

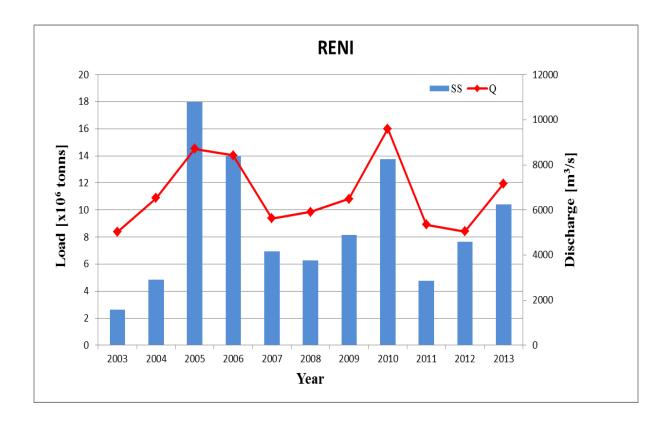


Figure 5.5.14: Trends of annual loads of inorganic nitrogen at Reni.

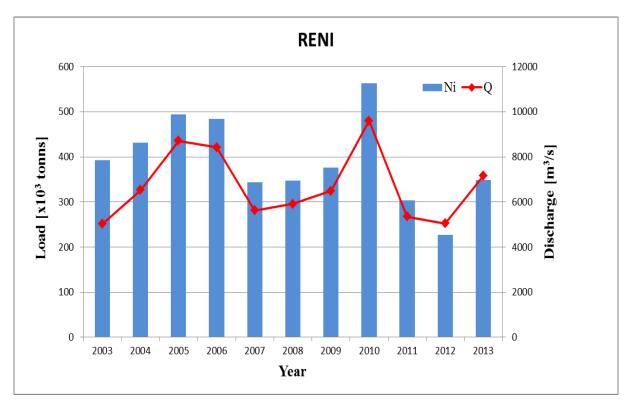


Figure 5.5.15: Trends of annual loads of ortho-phosphate-P and total phosphorus at Reni.

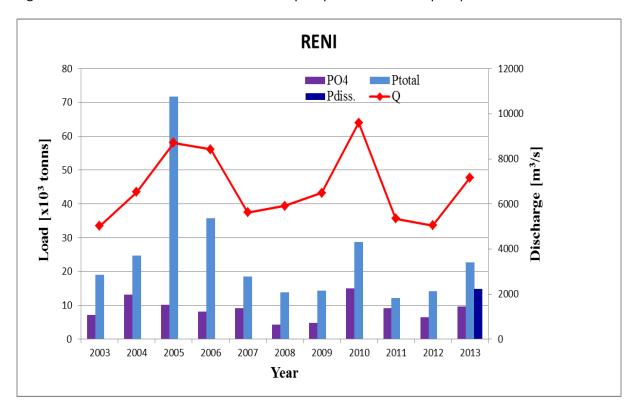


Figure 5.5.16: Trends of annual loads of BOD5 at Reni.

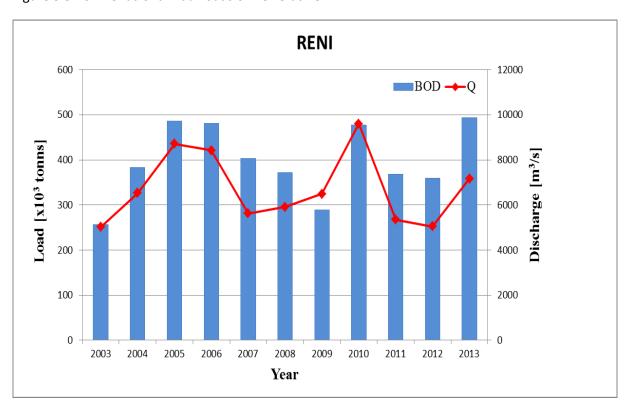


Figure 5.5.17: Trends of annual loads of chlorides at Reni.

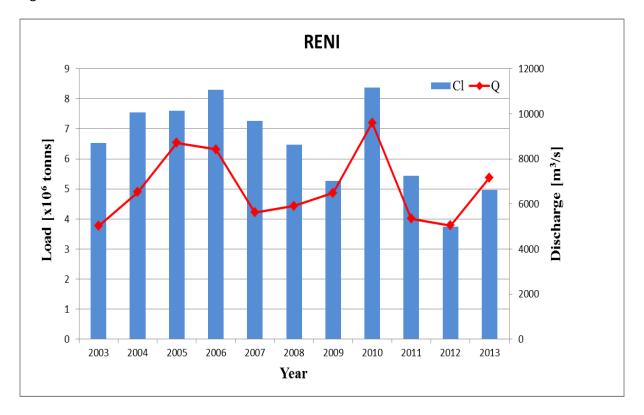
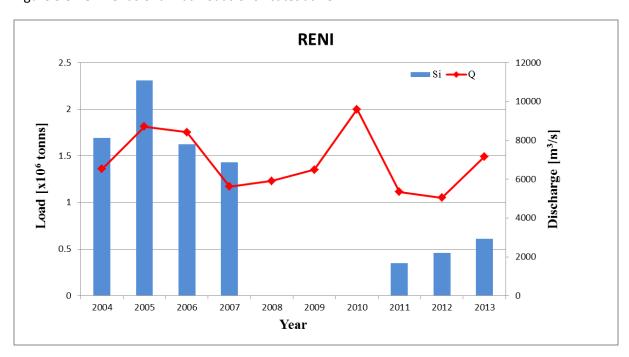



Figure 5.5.18: Trends of annual loads of silicates at Reni.

6. Groundwater monitoring

GW bodies of basin-wide importance

According to the Article 2 of the EU Water Framework Directive (2000/60/EC) 'Groundwater' means all water which is below the surface of the ground in the saturation zone and in direct contact with the ground or subsoil. The analysis and review of the groundwater bodies in the Danube River Basin as required under Article 5 and Annex II of the WFD was performed in 2004 and it identified 11 GWbodies or groups of GW-bodies of basin-wide importance, which are shown in Map (Figure 6.1.1).

GW-bodies of basin-wide importance were defined as follows:

- important due to the size of the groundwater body which means an area larger than 4000 km² or
- important due to various criteria e.g. socio-economic importance, uses, impacts, pressures interaction with aquatic eco-system. The criteria need to be agreed bilaterally.

This means that the other groundwater bodies even those with an area larger than 4000 km², which are fully situated within one country of the DRB are dealt with at the national level. A link between the content of the DRBMP and the national plans is given by the national codes of the groundwater bodies.

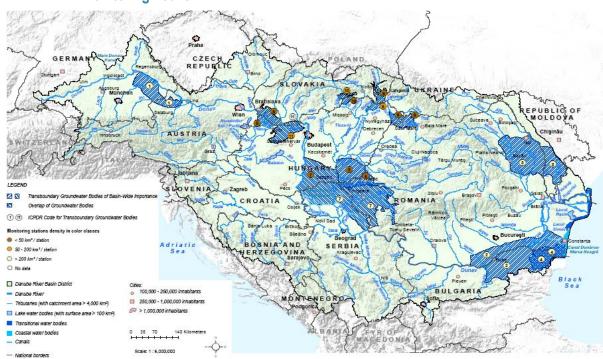


Figure 6.1: Transboundary GW-bodies of basin-wide importance and their transnational monitoring network

Reporting on groundwater quality

According to the WFD groundwater is an integral part of the river basin management district and therefore monitoring of groundwater of basin-wide importance was introduced into the TNMN in the Danube River Basin. The detailed description of the current status in development of the groundwater monitoring network in the Danube River Basin District is given in the TNMN Groundwater monitoring report (Part II of the Summary Report to EU on monitoring programs in the Danube River Basin District designed under Article 8).

Groundwater monitoring under TNMN is based on a six-year reporting cycle in line with the WFD reporting requirements. Information on status of the groundwater bodies of basin-wide importance is provided in the DRBM Plans published every six years. This sufficiently allows for making any relevant statement on significant changes of groundwater status for the GW-bodies of basin-wide importance.

7. Abbreviations

Abbreviation	Explanation
AQC	Analytical Quality Control
BSC	Black Sea Commission
DEFF	Data Exchange File Format
	Convention on Cooperation for the Protection and Sustainable Use of the Danube River
DRPC	(short: Danube River Protection Convention)
ICPDR	International Commission for the Protection of the Danube River
LOD	Limit of Detection
MA EG	Monitoring and Assessment Expert Group (former MLIM EG)
MLIM EG	Monitoring, Laboratory and Information Management Expert Group
NRL	National Reference Laboratory
SOP	Standard Operational Procedure
TNMN	Trans National Monitoring Network
WFD	EU Water Framework Directive
DRB	Danube River Basin
DRBMP	Danube River Basin Management Plan
GW	Groundwater
BOD₅	Biochemical oxygen demand (5 days)
COD _{Mn}	Chemical oxygen demand (Potassium permanganate)
COD _{Cr}	Chemical oxygen demand (Potassium dichromate)
TOC	Total organic carbon
DOC	Dissolved organic carbon
AOX	Adsorbable organic halogens
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls

Reserved to the state of the st

icpdr@unvienna.org / www.icpdr.org