DANUBE RIVER BASIN MANAGEMENT PLAN UPDATE 2021

ANNEXES 1-21

COMPETENT AUTHORITIES AND WEBLINKS TO NATIONAL RBM PLANS IN THE DRBD

Austria

Federal Ministry for Agriculture, Regions and Tourism Stubenring 1 1012 Wien www.bmlrt.gv.at

National RBM Plan: info.bmlrt.gv.at/themen/wasser/wisa/ngp.html

Bosnia and Herzegovina Ministry of Foreign Trade and Economic Relations Musala 9 71000 Sarajevo www.mvteo.gov.ba

Federal Ministry of Agriculture, Water Management and Forestry Hamdije Ćemerlića 2 71000 Sarajevo www.fmpvs.gov.ba

National RBM Plan: www.voda.ba/plan-upravljanja-2022-2027

Ministry of Agriculture, Forestry and Water Management of Republika Srpska Trg Republike Srpske 1 78000 Banja Luka www.vladars.net

National RBM Plan: www.voders.org/dokumentacija

Bulgaria Ministry of Environment and Water 22 Maria-Luisa Blvd. 1000 Sofia

www.moew.government.bg

Danube River Basin Directorate 60. Chataldzha str.

60, Chataldzha str. 5800 Pleven www.bd-dunav.org

National RBM Plan: www.bd-dunav.org/content/upravlenie-navodite/plan-za-upravlenie-na-rechniiabaseyn/purb-2022-2027-v-dunavski-rayon/

www.moew.government.bg/bg/vodi/planoveza-upravlenie/planove-za-upravlenie-narechnite-basejni-purb/planove-za-upravleniena-rechnite-basejni-2022-2027-g

Croatia

Ministry of Economy and Sustainable Development Ulica grada Vukovara 78 10000 Zagreb mingor.gov.hr

Croatian Waters Ulica grada Vukovara 220 10000 Zagreb www.voda.hr

National RBM Plan: <u>https://narodne-</u> <u>novine.nn.hr/clanci/sluzbeni/dodatni/441070.p</u> <u>df</u> for period 2016-2021; <u>https://mingor.gov.hr/o-ministarstvu-</u> <u>1065/djelokrug/uprava-vodnoga-gospodarstva-</u> <u>i-zastite-mora-2033/planski-dokumenti-</u> <u>upravljanja-vodama/plan-upravljanja-vodnim-</u> <u>podrucjima-2022-2027/5556</u> and <u>https://www.voda.hr/hr/planska-</u> <u>razdoblja/plansko-razdoblje-2022-2027</u> for period 2022-2027

Czech Republic

Ministry of Environment Vrsovická 65 10010 Praha 10 www.mzp.cz

Ministry of Agriculture Tesnov 17 110 00, Praha 1 <u>eagri.cz</u>

National RBM Plan: eagri.cz/public/web/mze/voda/planovani-voblasti-vod/

Germany

Bavarian State Ministry for Environment and Consumer Protection Rosenkavalierplatz 2 81925 München www.stmuv.bayern.de

Ministry for the Environment, Climate Protection and the Energy Sector Baden-Württemberg Kernerplatz 10 70182 Stuttgart um.baden-wuerttemberg.de

National RBM Plan: <u>https://www.fgg-</u> <u>donau.bayern.de/wrrl/bewirtschaftungsplaene/i</u> <u>ndex.htm</u>

Hungary Ministry of Interior Jozsef Attila u. 2-4 1051 Budapest www.kormany.hu/hu/belugyminiszterium

National RBM Plan: www.vizeink.hu

Republic of Moldova

Ministry of Environment 9 Cosmonautilor St. 2005 Chisinau www.mediu.gov.md

Montenegro

Ministry of Agriculture, Forestry and Water Management Rimski Trg 46 81000 Podgorica www.gov.me/mpsv

Water Administration Bulevar Revolucije 24 81000 Podgorica upravazavode.gov.me/uprava

National RBM Plan: https://www.gov.me/mpsv

Romania

Ministry of Environment, Waters and Forests 12 Libertatii Blvd., Sector 5 04129 Bucharest www.mmediu.ro

National Administration "Apele Romane" 6 Edgar Quinet St., Sector 1 010018 Bucharest rowater.ro

National RBM Plan:

https://rowater.ro/consultareapublicului/directiva-cadru-apa/materiale-utile/

Serbia

Ministry of Agriculture, Forestry and Water Management Nemanjina 22-26 11000 Beograd www.minpolj.gov.rs/?script=lat

Republic Directorate for Water Bulevar umetnosti 2a 11070 Beograd www.rdvode.gov.rs/lat

Slovakia

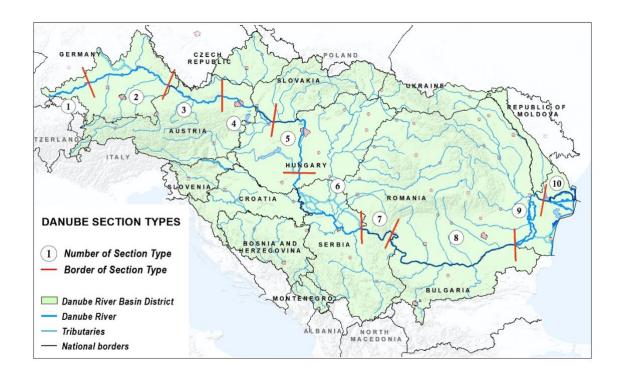
Ministry of the Environment "Námestie Ľ. Štúra 1" 81235 Bratislava www.minzp.sk www.vuvh.sk/rsv2

National RBM Plan: https://www.minzp.sk/voda/vodny-planslovenska/

Slovenia Ministry of the Environment and Spatial Planning Dunajska 48 1000 Ljubljana www.mop.gov.si

National RBM Plan: https://www.gov.si/teme/nacrt-upravljanjavoda-na-vodnih-obmocjih/

Ukraine Ministry for Environmental Protection and Natural Resources 35, Mitropolita Vasylia Lypkivskogo Str. 03035 Kyiv


State Agency for Water Management 8, Velyka Vasylkivska Str. 01601 Kyiv www.menr.gov.ua

National RBM Plan: https://buvrtysa.gov.ua/newsite/

DRBD SURFACE WATER TYPOLOGY

Typology of the Danube River

The typology of the Danube River has been developed in a joint activity by the countries sharing the Danube River for the first DBA in 2004. The Danube typology therefore constitutes a harmonised system used by all these countries. The Danube typology was based on a combination of abiotic factors of System A and System B. The most important factors are ecoregion, mean water slope, substratum composition, geomorphology and water temperature.

Figure 1: Danube section types; the dividing lines refer only to the Danube River itself.

Section Type	Name of the Section Type	from - to
1	Upper course of the Danube	rkm 2786: confluence of Brigach and Breg – rkm 2581: Neu Ulm
2	Western Alpine Foothills Danube	rkm 2581: Neu Ulm – rkm 2225: Passau
3	Eastern Alpine Foothills Danube	rkm 2225: Passau – rkm 2001: Krems
4	Lower Alpine Foothills Danube	rkm 2001: Krems – rkm 1790: Gönyű/Kližská Nemá
5	Hungarian Danube Bend	rkm 1790: Gönyű/ Kližská Nemá – rkm 1497: Baja
6	Pannonian Plain Danube	rkm 1497: Baja – rkm 1075 : Bazias
7	Iron Gate (Cazane) Danube	rkm 1075: Bazias – rkm 943: Turnu Severin
8	Western Pontic (Cazane-Calarasi) Danube	rkm 943: Turnu Severin – rkm 375.5: Chiciu/Silistra
9	Eastern Wallachian (Calarasi- Isaccea) Danube	rkm 375.5: Chiciu/Silistra – rkm 100: Isaccea
10	Danube Delta*	rkm 100: Isaccea – rkm 0 on Chilia arm, rkm 0 on Sulina arm and rkm 0 on Sf. Gheorghe arm

Table 1: Danube section types

Ten Danube section types were identified (see Figure 1 and Table 1). The morphological and habitat characteristics are outlined for each section type. In order to ensure that the Danube section types are biologically meaningful, these were validated with biological data collected during the first Joint Danube Survey in 2001.

Typology of the tributaries in the Danube River Basin District

The typologies of the Danube tributaries were developed by the countries individually. Stream types relevant on transboundary water courses were bilaterally harmonised with the neighbours.

Most countries in the DRB (Germany, Austria, Czech Republic, Hungary, Slovenia, Bosnia and Herzegovina, Serbia, Croatia, Romania, Bulgaria) have applied System B (Annex II, 1.2.1 WFD) for establishing their river typology. Only Slovakia and Ukraine have used System A. Countries using System B have used a number of optional factors to further describe the river types. River discharge, mean substratum composition and mean water slope are most frequently used.

Table 2 gives an overview of the class boundaries used by the DRB countries for the common descriptors: altitude, catchment area and geology.

	Table 2: Obligatory	factors used in ri	iver typologies (S	ystems A and B)
--	----------------------------	--------------------	--------------------	-----------------

Descriptor	Country		Class boundaries											
	Germany	0-200 m			200-800m				> 800	m				
	Austria	0-200 m	200)-500 m		0-800 m	8	300-16	500 m		1600 m			
	Czech Republic	0-200 m)-500 m		500-80	I			> 800 1				
	Slovakia	0-200 m)-500 m		500-80		> 800 m						
	Hungary ¹				gories were		-	ogy						
	Croatia	0-200 m		200 - 500	-		21	> 50	0 m					
	Slovenia					used in ri	river typology							
Altituda	Serbia	0-200 m)-500 m			• •	500 n	1					
Altitude	Romania	0-200 m)-500 m				500 n						
	Bulgaria	0-200 m			200-800 m	1			> 800 m					
	Bosnia and Herzegovina	< 200 m	200)-500 m	5	00-800 m			> 80	0 m				
	Republic of Moldova	0-200 m	0-200 m 200-800m						> 80	0 m				
	Montenegro													
	Ukraine	< 200 m			200-500 m	l I			500-8	00 m				
	Germany	10-100 km²	1	100-1000 km²			1000-1	0,000	km²	3	> 10,000 km²			
	Austria	10-100 km²	100-500 kr	n² 5	00-1000 km²	!	1000-250	00 km²			500- 00 km²			
	Czech Republic				Not applie	d anymore								
	Slovakia ²		10-100 km			100 -	- 1 000 kr	m²	1000	- 1000	00 km ²			
	Hungary	10-100 km²	100-100 km ²	00 1	000-10,000 km²	10,000	-100,000 k	km²	> 1	00,000	km²			
	Croatia	10-100 km ²		100	-1000 km²		1000	0-10,0	000 km²	>	10,000 km²			
Catchment	Slovenia	<10 km ² 10	-100 km ²	1	00-1000 km²	-	1000-10,000	0 km²		> 10,00	0 km²			
area	Serbia	10-100 km²		100-1000	km²	1000-4	000 km²	n² 4000-10,0),000 km ² 1				
	Romania	10-100 km²		100-1000		1000-1	0,000 km ²		> 10	0,000 km ²				
	Bulgaria	10-100 km²		100-1300	km²	1300-	10,000 km			> 10,000 km				
	Bosnia and Herzegovina	<100 km ²		100-1000	km²	1000-40	00 km²	4000-		> 1	0,000 km²			
	Republic of Moldova	10-100 km²		100-1000	km²		1000-10,0	00 km	2	> 1	0,000 km²			
	Montenegro													
	Ukraine	10-100 km ²		100-1000	km²	100)-10,000 km	n²	>	10,000	km²			
	Germany	siliceous	_	calcared	ous			org	anic					
	Austria	crystalline	tertiar	y and qua	ternary sedim	nents	flysch a	and hel	veticum		nestone dolomite			
	Czech Republic	crysta	lline and vu	lcanites		san	dstones, 1	mudst	ones and	quater	nary			
	Slovakia			-	mix	xed								
	Hungary	siliceou	s				calcareou	us						
Geology	Croatia	siliceous		calcar	eous		organic			mixed				
	Slovenia	siliceou				lcareous				flysch				
	Serbia	siliceou			cal	lcareous				organi	с			
	Romania	siliceou	s		cal	lcareous				organi	с			
	Bulgaria	siliceou	s	calcareous					mixed					
	Bosnia and Herzegovina	siliceou	8		cal	lcareous				organi	с			

¹ River type-classification of waterbodies based on the slope category more powerful then altitude based on biological validation results (slope categories: $<0,15 \ \%, 0,15 \ \%, -2,5\%$; real altitude categories are rather 0-150m, 150-350m, $>350 \ m$ and used as background-information).

 $^{^{2}}$ The river typology is not based on strict boundaries of catchment area. Rivers > 1,000 km² make up individual types; definition of types for smaller rivers is based on ecoregion, altitude and geology.

³ not for the tributaries in the Danube river basin district

Republic of Moldova	siliceous	calcareous	organic
Montenegro			
Ukraine	siliceous	calcareous	organic

Lakes

Types for four lakes were reported at the DRB overview level: Neusiedler/Fertö-to (Austria/Hungary), Balaton (Hungary), Ialpug (Ukraine) and Razim/Razelm (Romania). Information is provided in Table 3.

Table 3: Lakes selected for the basin-wide overview and their types

Lakes > 100 km ²	Country(s)	Type of lake	Ecoregion	Altitude class	Depth class	Size class	Geology
Neusiedler See / Fertő-tó	AT, HU	lowland, large shallow, saline lake	2	lowland: < 200 m	< 3 m	>100 km²	saline
Lake Balaton	HU	lowland, very large, mid deep, calcareous lake	1	lowland: < 200 m	3-15 m	> 100 km²	calcareous
Ozero Ialpug	UA	n.a.	12	n.a.	n.a.	> 100 km ²	n.a.
Lacul Razim / Razelm	RO	lowland, very shallow, calcareous, very large lake type	12	lowland: < 200 m	< 3 m	> 100 km²	calcareous

Transitional and coastal waters

The transitional and coastal waters of the DRB are located in Romania and Ukraine. For the development of the typology of transitional and coastal waters System B was applied. The transitional waters are differentiated into lacustrine and marine transitional waters (Table 4).

Table 4: Types of transitional waters in the DRBD

Transitional water	Туре
Lake Sinoe	Transitional lacustrine type
Black Sea coastal waters (northern sector) – Chilia mouth to Periboina	Transitional marine type

Two coastal water types have been defined for the coastal waters in the DRBD (Table 5).

Table 5: Types of coastal waters in the Danube River Basin District

Coastal water	Туре
Periboina – Singol Cape	Sandy shallow coastal water
Singol Cape – Vama veche	Mixed shallow coastal water

URBAN WASTEWATER EMISSION INVENTORY

Urban wastewater discharge data were collected from the countries in line with the reporting requirements of the UWWTD (non-EU countries used the same template). The data served the assessments of the point source organic substance and nutrient emissions via urban wastewater discharges for the reference year 2018. Summarizing tables of the data submitted are presented in the followings.

Collection and treatment system	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	460	528	133	143	405	92	9	0	1	3	34	163	0	0	1,971
P-removal	76	0	19	60	12	0	0	0	0	0	1	1	0	0	169
N-removal	9	73	19	3	8	0	0	0	0	0	0	2	0	0	114
Secondary treatment	108	3	24	46	96	35	15	3	2	23	9	125	2	11	502
Primary treatment	0	0	0	2	28	0	7	0	0	2	0	9	3	2	53
Collected but not treated	0	0	0	3	0	4	27	25	1	94	18	39	2	15	228
Addressed through IAS	0	0	6	87	65	6	56	0	0	0	19	13	0	0	252
Addressed through local systems	0	0	0	0	0	0	0	108	0	213	0	0	0	0	321
Not collected	0	0	0	1	1	1	22	33	3	7	42	1,497	137	282	2,026
Total	653	604	201	345	615	138	136	169	7	342	123	1,849	144	310	5,636

Table 1: Number of agglomerations according to collection and treatment systems (dominant technological level) and countries

Total	12,379,029	13,841,359	2,619,546	4,001,630	13,657,862	1,313,346	2,808,237	2,570,226	143,900	6,096,930	3,248,035	19,973,439	582,279	1,929,646	85,165,464
Not collected	0	0	0	3,600	48,307	3,507	105,379	682,821	89,400	52,955	150,128	6,175,603	495,279	1,154,537	8,961,516
Addressed through local systems	0	0	0	0	0	0	0	778,121	0	1,013,710	0	0	0	0	1,791,831
Addressed through IAS	0	0	45,332	331,840	302,079	16,063	282,396	0	0	0	108,005	75,204	0	0	1,160,919
Collected but not treated	0	0	0	17,520	0	16,739	523,966	723,784	10,100	4,142,979	122,698	237,644	20,300	127,970	5,943,700
Primary treatment	0	0	0	7,210	373,231	0	153,140	0	0	45,641	0	419,482	45,900	31,291	1,075,895
Secondary treatment	370,946	5,499	126,575	200,590	2,403,988	427,329	1,338,200	385,500	12,400	647,809	329,410	1,393,149	20,800	615,848	8,278,043
N-removal	40,124	286,792	234,671	68,020	41,444	0	0	0	0	0	0	41,052	0	0	712,103
P-removal	274,643	0	69,792	207,130	371,334	0	0	0	0	0	19,924	13,496	0	0	956,319
NP-removal	11,693,316	13,549,068	2,143,176	3,165,720	10,117,479	849,708	405,156	0	32,000	193,836	2,517,870	11,617,809	0	0	56,285,138
Collection and treatment system	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin

Table 2: Summed Population Equivalents (PE) according to collection and treatment systems of the agglomerations (dominant technological level) and countries

Table 3: Summed Population Equivalents (PE) according to collection types and countries

Collection type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
Collected by sewer	12,365,946	13,754,871	2,464,455	3,451,348	11,648,962	1,203,004	1,987,107	981,528	83,382	4,283,162	2,864,871	12,438,567	81,976	648,924	68,258,102
Collected by IAS	13,083	86,488	155,091	529,408	1,457,217	97,977	557,685	0	0	0	217,253	372,860	0	0	3,487,062
Collected by local systems	0	0	0	0	0	0	0	1,063,387	0	1,674,254	0	0	12,893	0	2,750,534
Not collected	0	0	0	20,874	551,683	12,365	263,445	525,311	60,518	139,514	165,911	7,162,012	487,410	1,280,722	10,669,765
Total	12,379,029	13,841,359	2,619,546	4,001,630	13,657,862	1,313,346	2,808,237	2,570,226	143,900	6,096,930	3,248,035	19,973,439	582,279	1,929,646	85,165,464

Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	460	528	116	93	422	56	11	0	2	3	31	165	0	0	1,887
P-removal	9	73	19	4	32	0	0	0	0	0	0	5	0	0	142
N-removal	76	0	19	78	13	0	0	0	0	0	1	4	0	0	191
Secondary treatment	108	3	26	79	99	36	26	11	2	34	10	435	7	12	888
Primary treatment	0	0	0	2	33	0	9	1	0	9	3	35	6	2	100
Collected but not treated	0	0	0	12	0	11	98	73	3	283	87	143	20	21	751
Total	653	604	180	268	599	103	144	85	7	329	132	787	33	35	3,959

Table 4: Number of centralized treatment facilities according to treatment types and countries

Table 5: Summed Population Equivalents (PE) connected to centralized systems according to treatment types and countries

Total	12,365,946	13,754,871	2,464,455	3,451,348	11,648,962	1,203,004	1,987,107	981,528	83,382	4,283,162	2,864,871	12,438,567	81,976	648,924	68,258,102
Collected but not treated	0	0	0	30,933	0	16,823	512,575	637,691	27,502	3,547,975	172,050	442,538	16,379	88,454	5,492,920
Primary treatment	0	0	0	4,857	328,900	0	109,694	4,797	0	44,817	5,103	602,597	31,050	23,521	1,155,336
Secondary treatment	370,920	5,488	122,757	184,438	1,982,913	388,470	1,085,013	339,040	9,160	554,213	319,311	1,331,622	34,547	536,949	7,264,840
N-removal	274,343	0	63,691	173,525	349,930	0	0	0	0	0	18,529	16,063	0	0	896,082
P-removal	40,118	286,086	225,277	70,589	87,990	0	0	0	0	0	0	29,421	0	0	739,481
NP-removal	11,680,565	13,463,297	2,052,729	2,987,006	8,899,229	797,711	279,824	0	46,720	136,157	2,349,878	10,016,325	0	0	52,709,443
Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin

		-		•				•		•					
Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	3,351.0	4,118.5	494.2	1,169.5	4,939.4	464.3	288.0	0.0	762.1	256.2	2,834.9	26,489.3	0.0	0.0	45,167.4
P-removal	27.6	129.4	39.6	59.3	132.2	0.0	0.0	0.0	0.0	0.0	0.0	34.8	0.0	0.0	422.9
N-removal	108.5	0.0	24.0	142.4	90.4	0.0	0.0	0.0	0.0	0.0	21.4	23.3	0.0	0.0	409.9
Secondary treatment	248.9	6.4	33.7	393.9	1,535.3	447.4	6,965.9	5,994.8	45.1	3,693.4	748.7	4,398.8	446.9	1,065.1	26,024.3
Primary treatment	0.0	0.0	0.0	18.3	265.9	0.0	1,869.0	105.1	0.0	597.9	112.9	3,983.9	796.8	300.5	8,050.3
Collected but not treated	0.0	0.0	0.0	176.7	0.0	368.3	10,834.9	14,047.4	166.6	63,763.0	6,285.5	8,483.0	443.4	1,597.4	106,166.3
Total	3,736.0	4,254.3	591.5	1,960.2	6,963.1	1,280.0	19,957.8	20,147.3	973.8	68,310.5	10,003.3	43,413.0	1,687.1	2,963.0	186,241.1

Table 6: Biochemical Oxygen Demand (BOD) discharges of centralized systems according to treatment types and countries (t/year)

Table 7: Chemical Oxygen Demand (COD) discharges of centralized systems according to treatment types and countries (t/year)

Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	24,197.0	28,925.9	3,710.5	6,009.5	17,435.9	2,759.5	1,583.8	0.0	1,524.2	469.6	10,394.7	67,381.6	0.0	0.0	164,392.3
P-removal	144.6	576.3	333.3	259.6	449.6	0.0	0.0	0.0	0.0	0.0	0.0	133.0	0.0	0.0	1,896.4
N-removal	603.7	0.0	155.8	513.0	535.7	0.0	0.0	0.0	0.0	0.0	78.4	78.1	0.0	0.0	1,964.6
Secondary treatment	1,232.3	20.0	183.3	3,664.7	4,601.1	1,755.8	10,676.2	10,990.5	82.0	6,694.0	2,745.1	10,213.2	633.1	3,644.4	57,135.6
Primary treatment	0.0	0.0	0.0	59.9	914.4	0.0	3,212.3	192.7	0.0	1,096.2	207.0	11,376.7	1,289.1	510.8	18,859.2
Collected but not treated	0.0	0.0	0.0	365.2	0.0	767.4	19,864.1	25,753.6	333.1	116,898.8	11,590.0	20,299.3	732.1	2,715.6	199,319.1
Total	26,177.5	29,522.1	4,382.9	10,871.8	23,936.8	5,282.7	35,336.4	36,936.8	1,939.4	125,158.7	25,015.1	109,481.9	2,654.2	6,870.9	443,567.1

Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	9,892.0	8,473.3	1,366.6	2,475.9	5,519.7	588.9	253.4	0.0	111.8	83.1	1,701.0	10,532.1	0.0	0.0	40,997.8
P-removal	54.6	339.3	134.7	81.1	102.6	0.0	0.0	0.0	0.0	0.0	0.0	18.6	0.0	0.0	731.0
N-removal	191.9	0.0	62.2	64.5	234.9	0.0	0.0	0.0	0.0	0.0	12.8	22.5	0.0	0.0	588.8
Secondary treatment	473.5	7.1	80.2	328.1	1,283.4	685.3	2,194.7	921.5	10.8	1,070.3	898.4	1,596.5	141.4	1,185.1	10,876.1
Primary treatment	0.0	0.0	0.0	4.6	221.3	0.0	311.8	17.5	0.0	114.7	16.9	1,693.6	134.3	56.4	2,571.2
Collected but not treated	0.0	0.0	0.0	17.8	0.0	54.0	1,589.1	2,181.7	24.4	9,351.9	948.3	2,294.6	68.2	233.2	16,763.3
Total	10,612.0	8,819.7	1,643.8	2,972.0	7,361.9	1,328.2	4,349.0	3,120.7	147.0	10,620.0	3,577.4	16,157.8	343.9	1,474.7	72,528.1

 Table 8: Total Nitrogen (TN) discharges of centralized systems according to treatment types and countries (t/year)

Table 9: Total Phosphorus (TP) discharges of centralized systems according to treatment types and countries (t/year)

			-		-	-									
Centralized treatment type	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
NP-removal	582.8	550.6	97.8	184.4	601.0	82.6	39.4	0.0	22.9	7.9	141.7	1,103.1	0.0	0.0	3,414.1
P-removal	6.4	18.3	7.8	4.8	14.7	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.0	0.0	53.7
N-removal	50.5	0.0	13.8	15.5	36.5	0.0	0.0	0.0	0.0	0.0	7.5	2.2	0.0	0.0	126.0
Secondary treatment	72.9	1.1	9.3	36.6	554.9	124.1	628.4	202.6	2.6	254.8	131.0	243.3	48.9	205.7	2,516.1
Primary treatment	0.0	0.0	0.0	0.7	32.6	0.0	71.8	3.5	0.0	25.2	2.8	156.6	37.3	11.6	342.0
Collected but not treated	0.0	0.0	0.0	2.6	0.0	9.2	370.2	471.5	5.0	1,912.9	158.1	279.5	19.2	47.9	3,276.1
Total	712.7	570.1	128.7	244.5	1,239.6	215.9	1,109.8	677.7	30.4	2,200.7	441.1	1,786.3	105.4	265.2	9,728.1

Scenario	Sewer	IAS	Local system & Not collected
Reference	68,258,102	3,487,062	13,420,300
Baseline	75,417,050	4,624,307	5,124,107
Vision I	80,103,651	5,061,813	0
Vision II	76,599,420	8,566,044	0

Table 10: Summed basin-wide Population Equivalents (PE) according to collection types and future scenarios

Table 11: Summed basin-wide Population Equivalents (PE) connected to centralized systems according to treatment types and future scenarios

Scenario	Tertiary	Secondary	Primary	Collected but not treated
Reference	54,345,005	7,264,840	1,155,336	5,492,920
Baseline	62,618,034	9,110,206	81,666	3,607,143
Vision I	70,435,042	9,668,609	0	0
Vision II	68,874,889	7,724,531	0	0

Table 12: Summed basin-wide surface water and soil emissions according to future scenarios (t/year)

				-				
S	BOD		COD		TN		ТР	
Scenario	Water	Soil	Water	Soil	Water	Soil	Water	Soil
Reference	186,241	295,225	443,567	543,667	72,528	46,959	9,728	7,726
Baseline	162,850	114,030	436,199	212,377	82,664	21,911	10,121	3,351
Vision I	97,762	2,003	339,904	7,343	79,578	6,076	8,581	611
Vision II	96,531	3,515	335,389	12,887	75,336	10,990	8,125	1,124

Country		Baselin	ne			Visio	n I			Vision	п	
Country	BOD	COD	TN	ТР	BOD	COD	TN	ТР	BOD	COD	TN	ТР
DE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AT	0.0	0.0	-0.6	-0.2	0.0	0.0	-0.6	-0.2	0.0	0.0	-0.6	-0.2
CZ	0.0	0.0	-1.7	-0.9	0.0	0.0	-1.7	-0.9	0.0	0.0	-1.7	-0.9
SK	-8.7	-24.4	-2.5	-3.0	2.7	-19.8	-6.8	5.8	1.6	-20.5	-9.5	2.2
HU	10.8	12.9	2.6	-18.0	10.8	12.9	2.6	-18.0	10.4	12.5	1.8	-18.3
SI	-18.2	-7.3	-25.1	-38.5	-7.4	4.6	7.7	-31.5	-7.5	4.6	7.6	-31.5
HR	-80.2	-64.3	-55.5	-77.6	-80.2	-64.3	-55.5	-77.6	-80.4	-64.7	-57.2	-78.1
BA	-2.0	-1.6	-0.2	-0.9	-83.9	-67.8	-24.0	-60.1	-84.3	-68.7	-31.9	-63.5
ME	0.0	0.0	0.0	0.0	-92.2	-85.7	-54.4	-70.3	-92.6	-86.4	-62.4	-74.3
RS	-15.9	-13.8	-0.6	-5.0	-90.3	-81.8	-55.2	-73.0	-90.4	-82.0	-57.6	-74.3
BG	-48.9	-34.5	-22.6	-34.4	-48.9	-34.5	-22.6	-34.4	-49.1	-34.8	-25.0	-36.6
RO	21.4	38.8	84.1	103.6	25.2	44.2	89.9	108.0	23.4	41.7	73.3	91.5
MD	-68.0	-56.6	-17.6	-42.3	24.4	144.4	352.0	125.6	19.7	133.6	270.6	96.6
UA	9.7	11.8	14.2	12.0	-6.0	48.5	82.7	44.9	-10.4	41.5	51.2	25.9
Basin	-12.6	-1.7	14.0	4.0	-47.5	-23.4	9.7	-11.8	-48.2	-24.4	3.9	-16.5

Table 13: Relative changes of surface water emissions via urban wastewater discharges according to countries and future scenarios as compared to the reference status (%)

	-				-	-						
Ct		Baselin	ne			Visio	n I			Vision	II	
Country	BOD	COD	TN	ТР	BOD	COD	TN	ТР	BOD	COD	TN	ТР
DE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SK	-64.9	-47.9	-6.6	-10.6	-65.2	-48.4	-6.9	-10.6	-61.5	-42.9	3.5	-0.3
HU	-95.6	-91.6	-52.6	-66.4	-95.6	-91.6	-52.6	-66.4	-95.0	-90.4	-47.4	-63.4
SI	-85.5	-74.4	-16.1	-26.2	-83.1	-70.3	-3.4	-15.5	-82.5	-69.1	0.7	-11.7
HR	-96.2	-92.7	-55.6	-69.4	-96.2	-92.7	-55.6	-69.4	-95.6	-91.5	-49.8	-65.9
BA	-1.7	-1.7	-1.7	-1.7	-99.9	-99.8	-98.1	-98.9	-99.6	-99.3	-93.3	-96.3
ME	0.0	0.0	0.0	0.0	-99.9	-99.8	-97.4	-98.4	-99.6	-99.2	-91.3	-94.7
RS	0.0	0.0	0.0	0.0	-99.9	-99.7	-97.1	-98.3	-99.7	-99.4	-92.7	-95.4
BG	-97.5	-95.2	-65.1	-77.3	-97.5	-95.2	-65.1	-77.3	-96.9	-93.9	-53.1	-68.5
RO	-99.6	-99.3	-92.4	-95.4	-99.6	-99.3	-92.5	-95.5	-99.0	-98.1	-78.8	-86.9
MD	-2.4	-2.4	-2.4	-2.4	-99.7	-99.4	-92.3	-95.1	-98.9	-97.8	-74.2	-83.6
UA	-6.3	-6.3	-6.3	-6.3	-99.8	-99.6	-94.8	-96.7	-99.3	-98.6	-83.4	-89.4
Basin	-61.4	-60.9	-53.3	-56.6	-99.3	-98.6	-87.1	-92.1	-98.8	-97.6	-76.6	-85.5

Table 14: Relative changes of soil emissions via urban wastewater discharges according to countries and future scenarios as compared to the reference status (%)

INDUSTRIAL EMISSION INVENTORY

Danube River Basin Management Plan Update 2021

Industrial pollutant release data were collected from the E-PRTR database (note that some data might have been updated since November 2021) and directly from the countries which do not report under the E-PRTR system. The data served the assessments of the point source organic matter and nutrient emissions via direct industrial dischargers for the reference year 2018. Summarizing tables of the data submitted are presented in the followings.

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		'	•								
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	0	0	0	1	4	0	0	0	0	0	3	0	0	0	8
Production and processing of metals	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2
Mineral industry	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Chemical industry	2	2	0	2	2	0	0	0	0	0	2	0	0	0	10
Waste and industrial wastewater management	0	4	0	1	3	0	0	0	0	0	0	0	0	0	8
Paper and wood production processing	5	4	0	2	1	2	0	0	0	0	0	1	0	1	16
Intensive livestock production and aquaculture	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
Products from the food and beverage sector	0	1	0	0	2	0	0	0	0	1	0	0	0	0	4
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	11	0	7	14	2	0	0	0	1	5	3	0	1	51

Table 1: Number of industrial facilities with reported Chemical Oxygen Demand (COD) discharge according to industrial sectors and countries

Table 2: Chemical Oxygen Demand (COD) discharges according to industrial sectors and countries (t/year)

	-	-	-												
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	0	0	0	806	3,417	0	0	0	0	0	919	0	0	0	5,141
Production and processing of metals	0	0	0	371	1,176	0	0	0	0	0	0	0	0	0	1,547
Mineral industry	0	0	0	0	210	0	0	0	0	0	0	0	0	0	210
Chemical industry	1,236	898	0	445	669	0	0	0	0	0	11,759	0	0	0	15,007
Waste and industrial wastewater management	0	14,342	0	185	727	0	0	0	0	0	0	0	0	0	15,253
Paper and wood production processing	7,791	9,855	0	3,598	2,208	621	0	0	0	0	0	815	0	131	25,019
Intensive livestock production and aquaculture	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
Products from the food and beverage sector	0	702	0	0	1,158	0	0	0	0	185	0	0	0	0	2,045
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	9,027	25,797	0	5,405	9,565	621	0	0	0	185	12,677	817	0	131	64,224

Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	1	1	0	1	3	0	0	3	0	0	0	0	0	0	9
Production and processing of metals	0	0	0	1	0	0	0	0	0	1	1	0	0	0	3
Mineral industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical industry	2	1	0	1	2	0	1	1	0	0	1	0	0	0	9
Waste and industrial wastewater management	0	1	0	1	1	0	0	0	0	0	0	0	0	0	3
Paper and wood production processing	0	1	0	1	0	0	0	0	0	0	0	0	0	1	3
Intensive livestock production and aquaculture	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
Products from the food and beverage sector	0	1	0	0	0	0	0	2	0	1	0	0	0	0	4
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	3	5	0	5	6	0	1	6	0	2	2	3	0	1	34

Table 3: Number of industrial facilities with reported Total Nitrogen (TN) discharge according to industrial sectors and countries

Table 4: Total Nitrogen (TN) discharges according to industrial sectors and countries (t/year)

0 ()		•					'								
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	52	72	0	142	608	0	0	7	0	0	0	0	0	0	881
Production and processing of metals	0	0	0	145	0	0	0	0	0	70	522	0	0	0	737
Mineral industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical industry	183	91	0	107	241	0	62	0	0	0	58	0	0	0	742
Waste and industrial wastewater management	0	91	0	60	83	0	0	0	0	0	0	0	0	0	234
Paper and wood production processing	0	55	0	106	0	0	0	0	0	0	0	0	0	98	259
Intensive livestock production and aquaculture	0	0	0	0	0	0	0	0	0	0	0	218	0	0	218
Products from the food and beverage sector	0	224	0	0	0	0	0	14	0	52	0	0	0	0	290
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	235	532	0	560	932	0	62	21	0	122	580	218	0	98	3,360

				· · ·	'	•	•								
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	0	0	0	1	2	0	0	2	0	0	1	0	0	0	6
Production and processing of metals	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Mineral industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical industry	1	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Waste and industrial wastewater management	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2
Paper and wood production processing	1	1	0	1	1	0	0	0	0	0	0	1	0	1	6
Intensive livestock production and aquaculture	0	0	0	0	1	0	0	0	0	0	0	3	0	0	4
Products from the food and beverage sector	0	1	0	0	0	0	0	2	0	1	0	0	0	0	4
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	2	3	0	3	5	0	0	4	0	2	1	4	0	1	25

Table 5: Number of industrial facilities with reported Total Phosphorus (TP) discharge according to industrial sectors and countries

Table 6: Total Phosphorus (TP) discharges according to industrial sectors and countries (t/year)

	•	•				,									
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	RO	BG	MD	UA	Basin
Energy sector	0	0	0	13	16	0	0	0	0	0	10	0	0	0	38
Production and processing of metals	0	0	0	6	0	0	0	0	0	0	0	0	0	0	6
Mineral industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical industry	6	0	0	0	0	0	0	0	0	40	0	0	0	0	46
Waste and industrial wastewater management	0	26	0	0	10	0	0	0	0	0	0	0	0	0	36
Paper and wood production processing	7	15	0	17	15	0	0	0	0	0	0	5	0	9	68
Intensive livestock production and aquaculture	0	0	0	0	4	0	0	0	0	0	0	109	0	0	113
Products from the food and beverage sector	0	8	0	0	0	0	0	1	0	11	0	0	0	0	20
Other activities	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	13	49	0	36	44	0	0	1	0	51	10	114	0	9	328

NUTRIENT EMISSION MODELLING WITH MONERIS

Danube River Basin Management Plan Update 2021

Nutrient emissions from point and diffuse sources were calculated with the MONERIS model for the reference period 2015-2018. Summarizing tables of the modelling results are presented in the followings.

Detailed technical information is available: Nutrient Emissions and Loads in the Danube River Basin - Current situation and scenarios for the 3rd Danube River Basin Management Plan. Final Report, Deliverable of the EU LIFE Project "Support for the Development of the 3rd Danube River Basin Management and 2nd Flood risk Management Plan Update 2021" (LIFE19 PRE AT 006 – LIFE DRBMP DFRMP 2021), IGB, 2021.

Country	Atmospheric deposition	Surface runoff	Urban runoff	Sediment transport	Tile drainages	Subsurface flow	Point source discharges	Total
DE	1,655.8	5,169.8	1,147.0	298.5	13,412.3	39,512.9	10,874.3	72,070.6
AT	1,948.3	5,913.1	1,184.2	3,958.6	2,266.2	39,387.4	9,560.6	64,218.4
CZ	174.0	1,011.0	1,686.8	237.9	4,142.0	12,469.0	1,643.9	21,364.6
SK	415.4	2,010.9	3,547.1	486.9	1,211.4	14,910.9	3,573.2	26,155.8
HU	1,401.1	1,660.8	1,364.6	593.5	336.8	7,797.6	8,224.6	21,379.0
SI	439.4	1,676.9	1,969.3	482.3	250.1	10,438.6	1,296.6	16,553.2
HR	563.1	2,289.2	3,514.0	237.6	2,695.3	18,104.6	2,831.7	30,235.4
BA	368.0	2,843.7	9,013.9	417.8	198.8	25,997.9	904.8	39,744.9
ME	140.6	784.1	335.6	26.5	16.2	4,211.1	122.6	5,636.8
RS	726.4	3,428.3	17,475.1	551.8	626.2	35,286.1	6,908.3	65,002.3
RO	2,737.9	6,196.8	11,624.2	3,276.6	893.4	49,797.1	14,513.9	89,039.9
BG	164.0	649.6	3,751.7	1,002.4	1,489.5	13,404.2	2,755.4	23,216.8
MD	27.5	77.0	1,504.5	124.6	94.2	1,083.3	373.4	3,284.4
UA	480.2	1,842.9	4,149.1	84.8	425.5	10,910.1	1,184.2	19,077.0
Other countries	42.0	169.7	30.8	980.7	103.3	1,357.7	215.8	2,900.1
Basin	11,283.8	35,723.9	62,297.8	12,760.5	28,161.1	284,668.8	64,983.2	499,879.2

Table 1: Total nitrogen emissions according to countries and pathways in tons N per year

Country	Atmospheric deposition	Surface runoff	Urban runoff	Sediment transport	Tile drainages	Subsurface flow	Point source discharges	Total
DE	21.0	236.9	172.8	274.5	132.8	564.7	718.6	2,121.2
AT	44.0	447.0	214.7	2,388.3	16.7	996.6	639.3	4,746.7
CZ	3.4	39.0	135.5	158.8	16.3	136.8	128.7	618.4
SK	10.0	97.9	231.0	364.3	54.8	359.0	276.9	1,394.0
HU	35.9	69.9	260.0	463.4	5.2	531.2	1,275.9	2,641.4
SI	8.9	131.5	214.0	324.8	7.6	267.6	206.7	1,161.1
HR	13.3	152.7	494.6	193.8	29.2	356.2	739.6	1,979.3
BA	11.9	253.8	839.3	297.2	4.3	552.5	199.2	2,158.3
ME	7.6	121.1	25.9	15.0	0.5	174.3	25.4	369.8
RS	21.1	229.1	1,500.0	397.3	8.8	892.4	547.5	3,596.1
RO	89.8	317.2	1,103.6	2,073.6	25.3	1,433.0	1,521.3	6,563.8
BG	5.5	28.5	298.5	848.1	10.3	167.3	356.2	1,714.4
MD	0.9	3.6	124.9	114.0	4.5	57.7	113.5	419.1
UA	16.2	75.7	271.4	53.4	9.9	281.4	139.2	847.2
Other countries	2.4	25.2	3.7	588.6	0.4	66.6	42.6	729.5
Basin	292.0	2,228.9	5,889.9	8,555.0	326.8	6,837.2	6,930.6	31,060.4

Table 2: Total phosphorus emissions according to countries and pathways in tons P per year

	•	•									
Country	Agricultural land	Urban area	Natural area	Open area	Wetland & Open water	Total					
DE	44,789.9	13,149.5	11,867.1	86.2	2,177.8	72,070.6					
AT	21,372.7	12,180.0	24,069.8	4,357.1	2,238.8	64,218.4					
CZ	15,253.8	3,612.4	2,312.0	6.2	180.2	21,364.6					
SK	8,127.0	9,072.9	8,484.7	25.6	445.6	26,155.8					
HU	6,742.8	10,016.2	2,724.0	18.3	1,877.8	21,379.0					
SI	5,444.8	3,555.3	6,959.5	44.7	548.9	16,553.2					
HR	16,379.8	7,350.6	5,803.6	9.0	692.4	30,235.4					
BA	19,426.3	10,489.8	9,386.3	42.4	400.1	39,744.9					
ME	2,431.8	550.5	2,439.0	67.1	148.4	5,636.8					
RS	27,422.9	27,736.5	8,865.1	56.3	921.4	65,002.3					
RO	31,192.1	32,133.8	21,356.6	116.6	4,240.7	89,039.9					
BG	13,391.1	7,082.9	2,474.3	61.5	207.0	23,216.8					
MD	1,211.7	1,990.8	39.9	0.4	41.6	3,284.4					
UA	4,713.5	7,893.0	5,790.0	6.1	674.4	19,077.0					
Other countries	772.3	267.1	581.0	1,196.7	83.0	2,900.1					
Basin	218,807.2	146,863.2	113,223.3	6,098.0	14,887.4	499,879.2					

Table 3: Total nitrogen emissions according to countries and source areas in tons N per year

1 1		•						
Country	Agricultural land	Urban area	Natural area	Open area	Wetland & Open water	Total		
DE	974.5	908.4	207.6	4.5	26.1	2,121.2		
AT	1,097.4	882.9	794.4	1,924.5	47.5	4,746.7		
CZ	311.4	269.6	33.9	0.1	3.5	618.4		
SK	665.7	577.5	139.3	0.7	10.7	1,394.0		
HU	937.3	1,554.5	102.1	0.6	47.0	2,641.4		
SI	530.2	427.5	187.3	5.3	10.8	1,161.1		
HR	522.2	1,272.5	168.5	0.3	15.8	1,979.3		
BA	723.7	1,060.9	359.4	1.9	12.4	2,158.3		
ME	131.5	55.6	159.5	15.4	7.8	369.8		
RS	1,089.3	2,178.8	297.0	2.9	28.2	3,596.1		
RO	3,037.1	2,863.4	543.5	3.5	116.3	6,563.8		
BG	941.5	675.7	68.1	23.0	6.3	1,714.4		
MD	167.9	243.8	5.8	0.0	1.5	419.1		
UA	198.5	509.2	114.8	0.5	24.2	847.2		
Other countries	21.2	47.3	52.3	605.8	2.9	729.5		
Basin	11,391.5	13,463.0	3,245.5	2,598.4	362.1	31,060.4		

Table 4: Total phosphorus emissions according to countries and source areas in tons P per year

Scenario	Atmospheric deposition	Surface runoff	Urban runoff	Sediment transport	Tile drainages	Subsurface flow	Point source discharges	Total
Reference	11,283.8	35,723.9	62,297.8	28,161.1	12,760.5	284,668.8	64,983.2	499,879.2
Baseline	11,283.8	33,480.6	47,747.0	27,512.1	11,762.2	265,998.8	72,815.2	470,599.8
Vision I	11,283.8	31,984.9	20,387.0	18,337.8	8,735.1	226,244.1	72,607.7	389,580.4
Vision II	11,283.8	25,209.3	20,387.1	18,337.8	6,772.8	226,244.1	72,607.7	380,842.5
Vision I - dry	9,947.7	29,617.1	20,228.4	19,327.2	7,851.9	193,108.3	72,607.7	352,688.1
Vision I - wet	13,678.7	41,976.3	20,822.0	18,318.6	10,756.3	306,170.8	72,607.7	484,330.4

Table 5: Basin-wide total nitrogen emissions according to pathways and future scenarios in tons N per year

Table 6: Basin-wide total phosphorus emissions according to pathways and future scenarios in tons P per year

Scenario	Atmospheric deposition	Surface runoff	Urban runoff	Sediment transport	Tile drainages	Subsurface flow	Point source discharges	Total
Reference	292.0	2,228.9	5,889.9	326.8	8,555.0	6,837.2	6,930.6	31,060.4
Baseline	292.0	2,095.4	4,041.1	328.6	7,927.5	6,596.9	7,273.3	28,554.8
Vision I	292.0	1,977.8	1,956.8	328.6	5,841.4	6,387.7	6,724.1	23,508.3
Vision II	292.0	1,552.1	1,956.8	328.6	4,549.7	6,387.7	6,724.1	21,790.9
Vision I - dry	257.6	1,441.6	1,935.7	250.8	5,210.7	5,328.2	6,724.1	21,148.7
Vision I - wet	360.9	3,196.1	2,021.2	385.2	7,270.8	8,814.5	6,724.1	28,772.8

	•		•			
Scenario	Agricultural land	Urban area	Natural area	Open area	Wetland & Open water	Total
Reference	218,807.2	146,863.2	113,223.3	6,098.0	14,887.4	499,879.2
Baseline	198,317.1	137,670.3	113,931.8	5,788.2	14,892.5	470,599.8
Vision I	144,396.5	106,496.3	118,156.3	5,662.9	14,868.4	389,580.4
Vision II	140,068.4	106,496.3	114,658.8	4,750.6	14,868.4	380,842.5
Vision I - dry	126,431.0	103,552.3	103,078.8	5,569.2	14,057.0	352,688.1
Vision I - wet	199,613.1	113,961.2	147,401.9	5,882.6	17,471.6	484,330.4

Table 7: Basin-wide total nitrogen emissions according to source areas and future scenarios in tons N per year

Table 8: Basin-wide total phosphorus emissions according to source areas and future scenarios in tons P per year

			-			
Scenario	Agricultural land	Urban area	Natural area	Open area	Wetland & Open water	Total
Reference	11,391.5	13,463.0	3,245.5	2,598.4	362.1	31,060.4
Baseline	10,752.6	11,900.2	3,129.3	2,413.2	359.5	28,554.8
Vision I	8,679.0	9,104.7	3,037.7	2,326.4	360.4	23,508.3
Vision II	7,755.5	9,104.8	2,754.8	1,815.4	360.5	21,790.9
Vision I - dry	7,119.3	8,991.7	2,387.2	2,300.0	350.5	21,148.7
Vision I - wet	12,370.9	9,400.2	4,236.1	2,366.8	398.7	28,772.8

Danube River Basin Management Plan Update 2021

TN	ТР
335,000.0	17,900.0
318,923.2	16,820.5
264,244.0	13,851.8
258,575.9	13,065.4
239,333.4	11,109.0
343,950.1	20,159.8
	335,000.0 318,923.2 264,244.0 258,575.9 239,333.4

Table 9: Nutrient river loads to the Black Sea (at Reni) according to future scenarios in tons per year

Country	Baseline	Vision I	Vision II	Vision I - dry	Vision I - wet		
DE	8.2	-34.7	-36.4	-36.1	-27.9		
AT	16.5	-12.8	-15.5	-23.5	-8.1		
CZ	-0.9	-58.2	-58.7	-60.0	-50.2		
SK	-24.2	-30.3	-32.0	-35.7	0.5		
HU	-5.5	14.7	11.2	-12.5	219.4		
SI	-25.5	1.7	-1.9	-12.8	17.8		
HR	-14.2	-45.9	-46.0	-61.9	-11.0		
BA	-21.0	-47.5	-49.0	-56.8	-31.3		
ME	-8.7	-46.2	-48.0	-49.1	-38.1		
RS	-18.2	-45.2	-46.9	-55.3	-16.6		
RO	-30.8	-40.8	-44.5	-47.7	-14.4		
BG	-15.5	-53.4	-54.1	-57.7	-30.8		
MD	-13.9	-5.5	-8.1	-2.4	40.5		
UA	-6.1	102.6	98.7	75.9	166.4		
Other countries	6.2	-52.3	-53.2	-55.0	-41.2		
Basin	-9.3	-34.0	-35.9	-42.0	-9.2		

Table 10: Relative changes of the nitrogen emissions from agriculture according to countries and future scenarios as compared to the reference status (%)

Country	Baseline	Vision I	Vision II	Vision I - dry	Vision I - wet		
DE	-4.0	-13.4	-21.7	-20.8	1.9		
AT	-5.7	-20.7	-30.6	-31.4	-9.3		
CZ	-4.0	-23.0	-27.3	-27.0	27.4		
SK	0.3	-23.3	-28.5	-35.5	46.8		
HU	-3.9	-19.7	-25.4	-36.3	34.1		
SI	-9.5	-29.6	-39.7	-46.4	-8.2		
HR	-1.1	-14.5	-15.3	-32.4	43.9		
BA	-1.7	-17.4	-25.1	-42.7	34.2		
ME	-0.9	-7.5	-14.5	-26.5	33.0		
RS	-3.2	-18.3	-25.2	-34.0	8.1		
RO	-9.3	-29.1	-40.4	-43.0	-2.2		
BG	-6.0	-39.9	-46.0	-48.7	-26.7		
MD	-2.4	-34.2	-44.4	-42.2	4.1		
UA	-0.7	-7.9	-15.6	-22.5	48.8		
Other countries	-2.0	-10.8	-16.2	-15.0	24.3		
Basin	-5.3	-23.5	-31.7	-37.2	8.7		

Table 11: Relative changes of the phosphorus emissions from agriculture according to countries and future scenarios as compared to the reference status (%)

Country	Baseline	Vision I	Vision II	Vision I - dry	Vision I - wet		
DE	4.1	-19.9	-21.6	-22.3	-13.2		
AT	3.0	-5.3	-8.7	-13.2	-2.6		
CZ	-5.2	-42.4	-42.9	-44.9	-33.5		
SK	-9.0	-10.3	-11.0	-17.4	17.8		
HU	-1.3	3.7	2.2	-8.7	92.2		
SI	-20.0	-13.4	-16.0	-23.6	-1.2		
HR	-19.6	-34.0	-34.1	-51.6	2.2		
BA	-8.7	-40.9	-42.5	-50.0	-25.0		
ME	-3.4	-24.7	-27.6	-27.5	-13.2		
RS	-0.4	-36.7	-37.9	-43.5	-18.9		
RO	-13.9	-17.2	-19.4	-23.4	1.6		
BG	-16.0	-35.4	-35.9	-39.5	-17.5		
MD	-18.3	-32.3	-33.4	-31.2	-12.9		
UA	-1.3	-11.2	-13.2	-21.9	12.4		
Other countries	0.2	-20.0	-26.3	-21.0	-13.7		
Basin	-5.8	-22.0	-23.8	-29.1	-3.5		

Table 12: Relative changes of the total point source and diffuse nitrogen emissions according to countries and future scenarios as compared to the reference status (%)

Country	Baseline	Vision I	Vision II	Vision I - dry	Vision I - wet		
DE	-2.3	-6.7	-11.4	-11.6	2.3		
AT	-5.8	-9.3	-22.0	-15.1	-5.0		
CZ	-17.2	-26.7	-29.0	-29.6	2.1		
SK	-3.4	-14.5	-17.2	-23.3	32.5		
HU	-10.4	-16.0	-18.1	-22.7	6.6		
SI	-29.3	-38.6	-45.0	-51.1	-20.8		
HR	-47.1	-50.3	-50.6	-58.5	-26.3		
BA	-7.9	-47.5	-51.9	-60.9	-19.6		
ME	-0.8	-13.9	-21.2	-29.8	20.8		
RS	14.9	-39.7	-42.6	-46.4	-28.4		
RO	-5.4	-14.6	-20.6	-23.1	2.5		
BG	-14.7	-33.3	-36.7	-38.9	-24.0		
MD	-23.9	-43.7	-48.0	-47.0	-27.0		
UA	-1.8	-42.1	-45.5	-49.5	-18.6		
Other countries	-1.7	-14.0	-27.6	-14.4	-10.1		
Basin	-7.7	-24.0	-29.6	-31.5	-7.3		

Table 13: Relative changes of the total point source and diffuse phosphorus emissions according to countries and future scenarios as compared to the reference status (%)

HAZARDOUS SUBSTANCES Pollution inventory

Danube River Basin Management Plan Update 2021

Hazardous substances release data were collected from the E-PRTR database (note that some data might have been updated since November 2021) and directly from the countries which do not report under the E-PRTR system. The data served the assessments of the point source hazardous substances emissions via direct industrial dischargers for the reference year 2018. Summarizing tables of the data submitted are presented in the followings.

A	DE	4.75	07	CITZ		GT	IID	DA		DC	DC	DO		***	D :
Activity	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
Energy sector	1	4	2	2	3	0	2	4	0	0	0	3	0	0	21
Production and processing of metals	3	7	0	2	2	1	0	0	0	1	0	4	0	0	20
Mineral industry	1	0	1	0	0	0	0	1	0	10	2	1	0	0	16
Chemical industry	3	1	2	3	2	3	1	1	0	1	1	3	0	0	21
Urban wastewater management	24	15	5	1	6	3	1	0	0	2	4	19	0	0	80
Waste and industrial wastewater management	0	5	0	0	4	0	0	0	0	0	0	0	0	0	9
Paper and wood production processing	0	1	0	2	1	1	0	0	0	1	1	0	0	0	7
Products from the food and beverage sector	0	1	0	0	0	0	0	0	0	1	0	0	0	0	2
Other activities	0	0	1	1	1	0	0	0	0	0	0	0	0	0	3
Total	32	34	11	11	19	8	4	6	0	16	8	30	0	0	179

Table 1: Number of industrial facilities and urban wastewater treatment plants with reported direct hazardous substance releases according to industrial sectors and countries

Substance	Pollutant group	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
Chloro-Alkanes (C10-13)	CHLORG	0	1	0	0	0	1	0	0	0	0	0	0	0	0	2
Dichloroethane-1,2 (DCE)	CHLORG	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2
Dichloromethane (DCM)	CHLORG	1	1	0	0	0	1	0	0	0	0	0	0	0	0	3
Halogenated Organic Compounds	CHLORG	3	2	3	4	3	1	0	0	0	0	0	0	0	0	16
Pentachlorophenol (PCP)	CHLORG	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Polychlorinated Biphenyls (PCBs)	CHLORG	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Tetrachloroethylene (PER)	CHLORG	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2
Trichlorobenzenes (TCH)	CHLORG	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Trichloroethylene (TRI)	CHLORG	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
Trichloromethane	CHLORG	1	2	0	1	0	0	0	0	0	0	0	0	0	0	4
Vinyl Chloride	CHLORG	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
As and Compounds	HEVMET	4	0	4	1	5	1	0	0	0	4	2	1	0	0	22
Cd and Compounds	HEVMET	2	2	1	3	4	0	0	0	0	1	2	1	0	0	16
Cr And Compounds	HEVMET	4	3	1	3	5	1	1	1	0	0	5	9	0	0	33
Cu and Compounds	HEVMET	16	11	2	1	4	2	1	0	0	8	3	9	0	0	57
Hg and Compounds	HEVMET	3	0	2	5	5	0	1	1	0	0	1	1	0	0	19
Ni and Compounds	HEVMET	23	14	6	2	9	4	1	2	0	5	3	19	0	0	88
Pb and Compounds	HEVMET	3	6	1	1	4	0	0	2	0	7	3	11	0	0	38
Zn and Compounds	HEVMET	27	18	4	3	4	7	1	1	0	10	5	22	0	0	102
Chlorides	INORG	12	0	1	2	1	1	0	2	0	0	2	6	0	0	27
Cyanides	INORG	0	2	2	2	1	1	0	0	0	1	1	3	0	0	13
Fluorides	INORG	4	4	3	2	3	0	0	0	0	0	2	1	0	0	19
DEHP	OTHORG	20	2	2	3	0	3	1	0	0	0	0	1	0	0	32
Fluoranthene	OTHORG	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
NP/NPEs	OTHORG	0	13	1	0	0	3	1	0	0	0	0	0	0	0	18
Octylphenols and Ethoxylates	OTHORG	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2
Organotin Compounds	OTHORG	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1

Table 2: Number of industrial facilities and urban wastewater treatment plants with reported direct hazardous substance releases according to compounds and countries

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

Substance	Pollutant group	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
Phenols	OTHORG	0	1	2	5	5	0	2	0	0	3	3	11	0	0	32
PAHs	OTHORG	1	1	0	2	0	0	0	0	0	0	0	0	0	0	4
Diuron	PEST	4	3	0	0	0	0	0	0	0	0	0	0	0	0	7
Isoproturon	PEST	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
Lindane	PEST	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

Table 3: Reported direct hazardous substance releases according to compounds and countries (kg/year)

					-										
Substance	DE	AT	CZ	SK	HU	SI	HR	BA	ME	RS	BG	RO	MD	UA	Basin
Chloro- Alkanes (C10-13)	0.0	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.8
Dichloroethan e-1,2	0.0	0.0	0.0	308.0	259.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	567.0
Dichlorometh ane	44.0	28.0	0.0	0.0	0.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	102.0
Halogenated Organic Compounds	5,540.0	4,780.0	2,811.4	22,693.2	8,240.0	1,075.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45,139.6
Pentachlorop henol	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9
Polychlorinat ed Biphenyls	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Tetrachloroet hylene	0.0	0.0	11.5	28.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.3
Trichlorobenz enes	0.0	0.0	0.0	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7
Trichloroethy lene	0.0	0.0	0.0	149.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	149.8
Trichloromet hane	125.0	82.0	0.0	327.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	534.0
Vinyl Chloride	0.0	0.0	0.0	0.0	360.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	360.0
As and Compounds	38.4	0.0	52.5	43.9	899.9	18.0	0.0	0.0	0.0	79.0	1,551.1	8.5	0.0	0.0	2,691.3

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

Basin	UA	MD	RO	BG	RS	ME	BA	HR	SI	HU	SK	CZ	AT	DE	Substance
1,225.1	0.0	0.0	20.0	670.5	6.0	0.0	0.0	0.0	0.0	296.7	180.9	16.8	17.4	16.8	Cd and Compounds
16,126.1	0.0	0.0	4,165.9	6,930.5	0.0	0.0	2.4	626.0	218.0	2,091.6	776.5	108.0	790.0	417.2	Cr and Compounds
74,805.1	0.0	0.0	18,968.7	7,021.5	28,886.0	0.0	0.0	3,250.0	874.0	2,592.0	556.5	432.0	7,343.1	4,881.3	Cu and Compounds
343.7	0.0	0.0	18.0	20.4	0.0	0.0	0.4	27.8	0.0	43.4	204.2	19.5	0.0	10.0	Hg and Compounds
21,683.4	0.0	0.0	4,245.7	2,854.4	353.0	0.0	147.9	952.0	401.0	3,100.3	1,210.3	1,564.0	5,442.1	1,412.8	Ni and Compounds
14,604.2	0.0	0.0	1,976.3	3,210.2	3,426.0	0.0	162.6	0.0	0.0	2,901.0	1,650.3	42.0	968.4	267.5	Pb and Compounds
216,800.3	0.0	0.0	45,309.0	29,774.3	11,347.0	0.0	220.3	3,290.0	4,584.0	13,265.0	2,330.1	4,379.6	67,288.0	35,013.0	Zn and Compounds
457,072,576.8	0.0	0.0	325,590,000.0	7,952,441.8	0.0	0.0	842.4	0.0	2,897,562.0	10,400,000.0	8,637,866.7	4,963,864.0	0.0	96,630,000.0	Chlorides
12,191.6	0.0	0.0	7,455.0	8.0	561.0	0.0	0.0	0.0	48.0	451.0	1,283.9	124.6	2,260.0	0.0	Cyanides
305,663.0	0.0	0.0	3,570.0	554.5	0.0	0.0	0.0	0.0	0.0	21,170.0	81,945.5	31,533.0	127,660.0	39,230.0	Fluorides
1,340.7	0.0	0.0	968.0	0.0	0.0	0.0	0.0	2.1	16.0	0.0	199.4	36.5	16.2	102.5	DEHP
3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	Fluoranthene
130.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	59.0	0.0	0.0	2.7	66.5	0.0	NP/NPEs
3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	1.4	0.0	0.0	Octylphenols
64,864.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64,864.2	0.0	0.0	Organotin Compounds
21,609.0	0.0	0.0	12,274.7	2,324.7	92.0	0.0	0.0	257.3	0.0	3,187.8	2,530.4	404.1	538.0	0.0	Phenols
25.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.8	0.0	6.9	5.5	PAHs
14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.2	9.1	Diuron
2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.5	Isoproturon
1.3	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Lindane

Table 4: Number of industrial facilities and urban wastewater treatment plants with reported direct hazardous substance releases according to compounds and industrial sectors

Substance	Pollutant group	Energy sector	Production and processing of metals	Mineral industry	Chemical industry	Waste and industrial wastewater management	Urban wastewater management	Paper and wood production processing	Intensive livestock production and aquaculture	Products from the food and beverage sector	Other activities	Basin
Chloro-Alkanes (C10-13)	CHLORG	0	1	0	0	0	1	0	0	0	0	2
Dichloroethane-1,2 (DCE)	CHLORG	0	0	0	2	0	0	0	0	0	0	2
Dichloromethane (DCM)	CHLORG	0	1	0	2	0	0	0	0	0	0	3
Halogenated Organic Compounds	CHLORG	2	1	0	2	1	7	3	0	0	0	16
Pentachlorophenol (PCP)	CHLORG	0	0	0	0	1	0	0	0	0	0	1
Polychlorinated Biphenyls (PCBs)	CHLORG	1	0	0	0	0	0	0	0	0	0	1
Tetrachloroethylene (PER)	CHLORG	0	1	0	0	0	1	0	0	0	0	2
Trichlorobenzenes (TCH)	CHLORG	0	0	0	1	0	0	0	0	0	0	1
Trichloroethylene (TRI)	CHLORG	0	1	0	1	0	0	0	0	0	0	2
Trichloromethane	CHLORG	0	1	0	2	1	0	0	0	0	0	4
Vinyl Chloride	CHLORG	0	0	0	1	0	0	0	0	0	0	1
As and Compounds	HEVMET	4	1	4	0	3	10	0	0	0	0	22
Cd and Compounds	HEVMET	1	1	1	0	0	12	1	0	0	0	16
Cr And Compounds	HEVMET	3	6	0	1	0	21	2	0	0	0	33
Cu and Compounds	HEVMET	5	5	6	1	1	38	1	0	0	0	57
Hg and Compounds	HEVMET	1	1	0	4	0	12	1	0	0	0	19
Ni and Compounds	HEVMET	9	11	4	4	2	54	1	0	1	2	88
Pb and Compounds	HEVMET	4	5	4	1	1	21	2	0	0	0	38
Zn and Compounds	HEVMET	7	14	9	6	2	60	3	0	1	0	102
Chlorides	INORG	2	2	2	5	0	16	0	0	0	0	27
Cyanides	INORG	1	2	1	2	0	7	0	0	0	0	13
Fluorides	INORG	2	4	3	4	1	5	0	0	0	0	19
DEHP	OTHORG	0	1	0	2	1	26	1	0	0	1	32
Fluoranthene	OTHORG	0	1	0	0	0	0	0	0	0	0	1
NP/NPEs	OTHORG	0	2	0	1	2	12	1	0	0	0	18

Substance	Pollutant group	Energy sector	Production and processing of metals	Mineral industry	Chemical industry	Waste and industrial wastewater management	Urban wastewater management	Paper and wood production processing	Intensive livestock production and aquaculture	Products from the food and beverage sector	Other activities	Basin
Octylphenols and Ethoxylates	OTHORG	0	0	0	0	0	2	0	0	0	0	2
Organotin Compounds	OTHORG	0	0	0	0	0	1	0	0	0	0	1
Phenols	OTHORG	7	3	1	6	1	13	0	0	1	0	32
PAHs	OTHORG	1	1	0	0	1	1	0	0	0	0	4
Diuron	PEST	0	0	0	0	0	7	0	0	0	0	7
Isoproturon	PEST	0	0	0	0	0	2	0	0	0	0	2
Lindane	PEST	0	0	0	1	0	0	0	0	0	0	1

Table 5: Reported direct hazardous substance releases according to compounds and industrial sectors (kg/year)

Substance	Energy sector	Production and processing of metals	Mineral industry	Chemical industry	Waste and industrial wastewater management	Urban wastewater management	Paper and wood production processing	Intensive livestock production and aquaculture	Products from the food and beverage sector	Other activities	Basin
Chloro-Alkanes (C10-13)	0.0	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.8
Dichloroethane-1,2 (DCE)	0.0	0.0	0.0	567.0	0.0	0.0	0.0	0.0	0.0	0.0	567.0
Dichloromethane (DCM)	0.0	28.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	0.0	102.0
Halogenated Organic Compounds	3,141.7	1,389.8	0.0	7,480.0	2,610.0	9,446.4	21,071.7	0.0	0.0	0.0	45,139.6
Pentachlorophenol (PCP)	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	1.9
Polychlorinated Biphenyls (PCBs)	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Tetrachloroethylene (PER)	0.0	28.8	0.0	0.0	0.0	11.5	0.0	0.0	0.0	0.0	40.3
Trichlorobenzenes (TCH)	0.0	0.0	0.0	3.7	0.0	0.0	0.0	0.0	0.0	0.0	3.7
Trichloroethylene (TRI)	0.0	28.8	0.0	121.0	0.0	0.0	0.0	0.0	0.0	0.0	149.8
Trichloromethane	0.0	27.2	0.0	452.0	54.8	0.0	0.0	0.0	0.0	0.0	534.0
Vinyl Chloride	0.0	0.0	0.0	360.0	0.0	0.0	0.0	0.0	0.0	0.0	360.0
As and Compounds	63.4	11.0	73.5	0.0	704.0	1,839.4	0.0	0.0	0.0	0.0	2,691.3
Cd and Compounds	140.2	28.8	6.0	0.0	0.0	1,038.1	11.9	0.0	0.0	0.0	1,225.1

Substance	Energy sector	Production and processing of metals	Mineral industry	Chemical industry	Waste and industrial wastewater management	Urban wastewater management	Paper and wood production processing	Intensive livestock production and aquaculture	Products from the food and beverage sector	Other activities	Basin
Cr And Compounds	925.1	1,556.9	0.0	2.4	0.0	13,496.7	145.0	0.0	0.0	0.0	16,126.1
Cu and Compounds	1,310.1	2,183.0	42,487.0	437.0	110.5	28,007.5	270.0	0.0	0.0	0.0	74,805.1
Hg and Compounds	84.7	5.8	0.0	128.3	0.0	117.0	8.0	0.0	0.0	0.0	343.7
Ni and Compounds	2,515.2	1,711.8	232.0	198.8	660.1	16,106.1	139.0	0.0	59.1	61.4	21,683.4
Pb and Compounds	2,119.3	3,448.0	1,014.0	51.6	87.0	7,728.4	156.0	0.0	0.0	0.0	14,604.2
Zn and Compounds	2,360.8	27,112.9	10,099.3	20,584.0	3,332.7	150,346.8	2,463.8	0.0	500.0	0.0	216,800.3
Chlorides	842.4	7,491,044.7	7,952,441.8	325,496,822.0	0.0	116,131,426.0	0.0	0.0	0.0	0.0	457,072,576.8
Cyanides	65.5	2,206.4	561.0	320.5	0.0	9,038.2	0.0	0.0	0.0	0.0	12,191.6
Fluorides	20,474.0	35,150.0	8,314.5	110,397.5	10,100.0	121,227.0	0.0	0.0	0.0	0.0	305,663.0
DEHP	0.0	181.1	0.0	6.5	12.7	1,123.9	14.0	0.0	0.0	2.5	1,340.7
Fluoranthene	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0
NP/NPEs	0.0	4.5	0.0	2.1	8.1	112.1	3.4	0.0	0.0	0.0	130.3
Octylphenols and Ethoxylates	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	3.4
Organotin Compounds	0.0	0.0	0.0	0.0	0.0	64,864.2	0.0	0.0	0.0	0.0	64,864.2
Phenols	2,845.3	916.3	44.0	875.7	31.0	16,875.7	0.0	0.0	21.0	0.0	21,609.0
PAHs	5.1	7.7	0.0	0.0	6.9	5.5	0.0	0.0	0.0	0.0	25.2
Diuron	0.0	0.0	0.0	0.0	0.0	14.3	0.0	0.0	0.0	0.0	14.3
Isoproturon	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	2.5
Lindane	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	1.3
· · · · · · · · · · · · · · · · · · ·											

Technical information on the national inventories on priority substances emissions, discharges and losses were collected directly from the countries by a questionnaire. Summarizing tables of the answers are provided in the followings.

	Q1	Q2	Q3	Q4
Country	EU MS: what is the current status of the elaboration of the PS EDL inventory and when will the assessments be available? Non-EU MS: is there any similar activity on-going or planned?	Which point sources are involved into the assessments? How are the emissions quantified?	Do you address PS diffuse pollution? How do you assess the diffuse emissions?	Which pollutants/pollutant groups have been involved to the emission assessments?
DE	The second PS EDL inventory for Germany was prepared in December 2019. It comprises methodological aspects as well as values and assessments for all PS. The findings will be published soon in a contribution which will be included in all River Basin Management plans.	Point sources included industrial discharges, municipal discharges, and in the case of the RPA data, emissions from historic mining sites. Sources were: (a) PRTR data from industrial dischargers and municipal point sources (> 100,000 p.e.), if PRTR data were not available for the latter see (b). (b) For discharges from municipal WWTPs > 50 PE, data using emission factors were used (for 11 substances: Cd, Hg, Ni, Pb, Diuron, Isoproturon, DEHP, 4-iso-Nonylphenol, PFOS, Terbutryn, Fluoranthene), based on data from a Germany-wide research project (Toshovski et al. 2020). UWWTD data were used as baseline information. (c) Emissions from historical mining sites are based on monitoring information from the Ger-man federal states (for metals only). PRTR data: Measurements or estimates of wastewater concentrations. Municipal wastewater treatment plants: emission factors, if available.	Depending on data availability either the riverine load approach or the regionalised pathway-oriented analysis approach (Cd, Hg, Ni, Pb, PAHs) of CIS Guidance No 28 were used to estimate diffuse emissions. Therefore, the model MoRE (Modelling of Regionalized Emissions) was used.	All PS were considered using the 2-step approach described in CIS Guidance 28. 16 substances were identified as "not relevant" (in the context required in the Guidance) in all ten German RBD. Substances identified as relevant have been involved to further emission assessment.

Table 6: Answers to Questions 1-4

	Q1	Q2	Q3	Q4
Country	EU MS: what is the current status of the elaboration of the PS EDL inventory and when will the assessments be available? Non-EU MS: is there any similar activity on-going or planned?	Which point sources are involved into the assessments? How are the emissions quantified?	Do you address PS diffuse pollution? How do you assess the diffuse emissions?	Which pollutants/pollutant groups have been involved to the emission assessments?
AT	Status PS EDL: For point sources the Austrian Emission Register for emissions into surface waters EMREG-OW is the basis for the PS EDL supplemented by data from the E-PRTR. First estimates for diffuse emissions were developed within the project "Emissionsabschätzung prioritäre Stoffe". A detailed emission modelling was done within the project "STOBIMO Spurenstoffe". For selected ubiquitous persistent, bioaccumulative and toxic priority (uPBT) substances emissions to surface waters via various pathways were modelled.	The assessment considers urban wastewater treatment plants (UWWTP) as well as industrial facilities and waste disposal systems, discharging directly to surface waters. Emissions from these installations are either reported to the national emissions register EMREG-OW or to E-PRTR or estimated based on monitoring programs. Emissions from UWWTP were documented in the report "Emissionen ausgewählter prioritärer und sonstiger Stoffe aus kommunalen Kläranlagen". Selected uPBT substances were measured in industrial facilities representing the most important industrial facilities in AT within the project ,,STOBIMO Spurenstoffe". Those measured concentration values have been used in the modelling. In case no measures or emission factors are available for point sources emissions are calculated on base of maximum allowable concentrations (legislation).	Depending on data availability either the riverine load or the regional path analysis approach of CIS Guidance No 28 were used to estimate diffuse emissions. Within the projects "Emissionsabschätzung prioritäre Stoffe" und "STOBIMO Spurenstoffe" a combination of pathway and source-oriented approach was applied. Several pathways for diffuse emissions as direct atmospheric deposition for surface waters, surface runoff, diffuse emissions from urban areas via combined sewer overflows and separate sewer discharges, erosion from natural and agricultural soils as well as groundwater and interflow were included. Load calculation for these diffuse pathways are based on monitoring data. Selected pilot catchment areas were monitored in order to generate data for the AT wide modelling.	All PS were taken into account using the 2-step approach described in CIS Guidance 28. For point source emissions from UWWTP and industrial facilities all emission data reported to EMREG-OW and E-PRTR is assessed. Additionally, all substances identified as relevant for UWWTPs within the project "Emissionen ausgewählter prioritärer und sonstiger Stoffe aus kommunalen Kläranlagen" were considered. The modelling within the project "STOBIMO Spurenstoffe" focussed on uPBT substances as metals (cadmium, lead, nickel, mercury, copper and zinc), PBDE, TBT, PFOS and PAH.
CZ	In the Czech Republic, the PS EDL inventory was developing by the project in the years 2012 to 2014. Assessment is available in the form of certified methodology. The methodology establishes principles for the assessment of emissions impact; it describes the individual steps, from the identification of relevant pollutants in the catchment area, through the analysis of pollution sources and pathways, to the classification of the significance of groups of sources and pathways for individual substances and water bodies.	All known sources of pollution were involved into the assessment (municipal, industrial, combined, diffusion, point and nonpoint sources of pollution). Analysis of the sources and pathways of pollutants used a wide range of data available on a national scale. When emissions data were not available, emission factors were processed (coefficients of substances inputs per unit, designated by expert estimate).	The equation: "Difference of surface water load and point source emissions (- natural background load) = emissions from diffuse sources" is insufficient in some cases. More used is specific knowledge of movement of substances (behaviour substances). E.g. in agriculture: total applied load and pathways (use of emission factor for pathways) up to the pathway coming into surface waters.	There were assessed all priority and priority hazardous substances (Annex X of the Water Framework Directive) and other substances relevant for the Czech Republic (total 79 substances or quality indicators in the project).
SK	Elaboration of the PS EDL inventory is available.	Into assessment industrial facilities, E-PRTR were involved. (UWWTD data lack information on pollution by PS). Point sources emissions were quantified on the base of effluent measurements.	PS diffuse pollution was addressed. Diffuse loads were calculated by formula: Ldif = Ly (total riverine load) – Dp (total point source discharge) – Lb (natural background load) The quantification of emissions, discharges and losses was carried out by calculating of the riverine load (by OSPAR, 2004 equation - recommended by technical guidance) and then by linking results with existing information on the pollution sources or eventually with natural background. For metals the natural background concentrations - developed for	Relevance substances for RBD and sub-basins. They were identified on the base of following criteria: i.) the substance causing the failure state of at least one water bodies ii.) the average concentration of the substance is over half EQS in more than one waterbody

	Q1	Q2	Q3	Q4
Country	EU MS: what is the current status of the elaboration of the PS EDL inventory and when will the assessments be available? Non-EU MS: is there any similar activity on-going or planned?	Which point sources are involved into the assessments? How are the emissions quantified?	Do you address PS diffuse pollution? How do you assess the diffuse emissions?	Which pollutants/pollutant groups have been involved to the emission assessments?
			each of the WB, were taken into account. In case of synthetic substances - for level of background concentration, half of the limit of quantification (0,5LOQ) have been used.	 iii.) Data from E-PRTR and national Central water database (SEV) confirm the release, which could lead to a concentration corresponding to the above criteria, iv.) there are known sources and activities causing inputs to the basin that could lead to a concentration corresponding to the above criteria.
HU	The compilation of the inventory is still ongoing. Final results will be available by December of 2021.	UWWTPs, Industrial facilities. Industrial facilities - every facility with above 15 m ³ wastewater discharge/operative days, not just E-PRTR UWWTP - > effluent measures, industrial facilities effluent measures, and for metals also used emission factors.	Hungary takes into consideration loads from air deposition, groundwater and transportation. By air deposition we used data from European Monitoring and Evaluation Programme (EMEP) and Corine Land Cover. And also, we take account our air deposition monitoring program results. To assess loads from groundwater we took the estimated interflow and ps. concentrations of the infiltration area. By loads of transportation we used the number of motor vehicles and emission factors of toxic metal loads from break wear, tire wear and exhaust gases.	Due to the results of the chemical status assessment we tried to consider all the relevant substances. Depending on the substance it resulted in different detailed inventories.
SI	Summary of the PS EDL inventory is part of national RBMP.	In the assessment industrial facilities and UWWTPs data are included. For UWWTP > 100.000 PE the emissions were quantified using values reported in E- PRTR system. For the UWWTP < 100.000 PE and for industrial facilities annual reports of emission monitoring (effluent measurements) performed were used.	Evaluation of emissions from diffuse sources depends on data availability and takes into account the CIS Guidance No 28.	PS, PHS and pollutants relevant on the national level were involved.
HR	The compilation of the inventory is still ongoing. Summary of the PS EDL inventory will be available in national RBMP.	Point sources included industrial and municipal discharges. Emission from industrial and municipal discharges are based on measurements of wastewater concentrations or using emission factors.	Evaluation of emissions from diffuse sources depends on data availability and takes into account the CIS Guidance No 28.	PS, PHS and pollutants relevant on the national level were involved.
BA		No information avail	able.	
ME		No information avail	able.	
RS	There is no established inventory of emissions, discharges and losses. Currently, SEPA is developing and maintaining PRTR register in Serbia. From 2011, SEPA voluntarily report to the EEA E-PETR priority data flow. Serbian PRTR register was established in 2008 and in	All point sources subject to water permit, which means sewage systems and/or WWTPs and industrial facilities (PRTR facilities), are obligated to deliver a report on wastewater emissions, providing the concentrations of PS in wastewater, although the number and the quality of the reports are still not	No. PS diffuse pollution has not evaluated due to lack of adequate data.	Heavy metals, together with total phosphorus and nitrogen, are pollutants that are mostly represented and involved in emission assessment.

	Q1	Q2	Q3	Q4
Country	EU MS: what is the current status of the elaboration of the PS EDL inventory and when will the assessments be available? Non-EU MS: is there any similar activity on-going or planned?	Which point sources are involved into the assessments? How are the emissions quantified?	Do you address PS diffuse pollution? How do you assess the diffuse emissions?	Which pollutants/pollutant groups have been involved to the emission assessments?
	2010 was harmonized with the EU Regulation 166/2006, except for reporting thresholds. All PRTR facilities must report all emissions regardless to the reporting thresholds. All facilities which have obligation to report to Serbian PRTR register submit the relevant reports by means of the established information system. All pollutants prescribed by e-PRTR Protocol, with regard to the activity of the facility, are being reported to SEPA, and PRTR Report delivered to European Agency has only emissions above prescribed limit values The data collection and reporting system has been improved gradually to cover all releases and transfers to all media covered by the E-PRTR Regulation. Separately, there is Cadastre of polluters which contains register, permits and technical and other documentation on sources of pollution, quantity and type of emission, as well as information on recipients.	satisfying. Emissions are delivered based on measurements, estimates or calculation.		
RO	Romania has established the EDL inventory based on the EU Guidance no. 28 "Technical Guidance on the Preparation of an Inventory of Emissions, Discharges and Losses of Priority and Priority Hazardous Substances". The last inventory developed included the analysis of EDL from 2017-2019. This assessment/result of the inventory is part of the draft of the National Management Plan-2021 and of the draft River Basin Management Plans-2021 (at sub-unit level).	In Romania all point sources which are subject of water management license have been analysed in the inventory (i.e. urban waste waters and industrial waters) if priority substances were discharged. The concentrations in effluent have been measured and the PS load has been calculated.	The estimation of diffuse sources contribution was calculated (as difference between the total annual riverine load and the point source load).	Emission assessments were made only for relevant PS at the basin/sub-basin unit.
BG	The PS EDL inventory for Bulgaria was prepared in 2016 based on the EU Guidance no. 28 "Technical Guidance on the Preparation of an Inventory of Emissions, Discharges and Losses of Priority and Priority Hazardous Substances".	According to the guidelines for determining the mass load of pollutants in wastewater from point sources of pollution in the inventory of emissions, discharges and losses of priority substances and some other pollutants are taken into account the following data: from the monitoring of wastewater from the sites forming waste water, including treatment plants in settlements, including self-monitoring of permit holders, as well as reported data, in accordance with the obligation of operators listed in Annex I to Regulation № 166/2006 establishing a European Pollutant Release and Transfer Register (E-PRTR), to report data on the release and transfer of pollutants listed in Annex II of the Regulation.	An approximate estimate of the diffuse pollution from priority substances, calculated as an arithmetic difference between the calculated load of the surface water body and the emissions from point sources of pollution.	All PS were taken into account using the 2-step approach described in CIS Guidance 28. In the calculations data on the concentrations of the substances from the conducted monitoring of the surface waters from the "Water Monitoring Information System" were used and industrial facilities all emission data reported to E-PRTR is assessed. Five priority substances, four heavy metals - mercury, lead,

	Q1	Q2	Q3	Q4
Country	EU MS: what is the current status of the elaboration of the PS EDL inventory and when will the assessments be available? Non-EU MS: is there any similar activity on-going or planned?	Which point sources are involved into the assessments? How are the emissions quantified?	Do you address PS diffuse pollution? How do you assess the diffuse emissions?	Which pollutants/pollutant groups have been involved to the emission assessments?
		The calculation of the mass load of pollutants in the wastewater is based on the available data from the conducted own monitoring of the sites with discharge permits or complex permits, including the amount of wastewater and the concentration of emitted pollutants, as well as the data from the control monitoring. At concentrations of the substance below the limit of determination, ½ LOQ was used in the calculations. The mass load of pollutants in wastewater from point sources is calculated by multiplying the average annual concentration of the respective pollutant by the annual amount of discharged wastewater.		nickel, cadmium and 1,2 - dichloroethane were inventoried.
MD	In 2016 the e -PRTR register has been developed, aimed for the companies to report and for the public to get information about activities, types of pollutions, sources, etc. In 2018, the Regulation regarding the National Register of pollutant release and transfer was approved by GD #.373/ 2018. This Regulation addressed the basis for establishing of an automated national system with data on pollutant emissions into water, air, etc. to be reported by operators carrying out one or more activities.	In currently reported wastewater statistics, the emissions are counted on the basis of influent-effluent measures.	Currently, due to some objective reasons, the established Register is not officially handed over to the Environmental Agency which is a body responsible for its administration. By the time being, the Register contains some info collected during its elaboration before 2018, and only few of them relate to emission into water from operators situated out of Danube basin.	None.
UA	The only National Inventory of Pollutant Emissions operates by the time being. This inventory contains data on all substances, including PS. Monitoring begun in one river basin in 2019. In 2021 PS monitoring cover all other 7 river basin for 37 substances.	Point sources facilities (UWWTP and industry) which are subject of water management license are considered. Industrial facilities - every facility with above 20 m3 wastewater discharge. Point sources emission are calculated on the base of effluent concentrations.	Diffuse pollution is calculated as Total river load – Point sources emissions.	Emission assessments are made only for relevant PS at the basin/sub-basin unit.

Table 7: Answers to Questions 5-8

	Q5	Q6	Q7	Q8
ountry	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emissions?
DE	Most of the PS were measured at surveillance monitoring sites (mostly in water samples, sometimes also in suspended solid material). Especially the new substances were only rarely monitored yet. Most measurements were done at regular stations.	Using the 2-step approach described in the CIS Guidance No 28 two ubiquity substances were identified as "relevant" in all German RBD (Hg, BDE). 14 substances are "relevant in more than two German RBD. The main results will be published soon.	Several analytical problems have been encountered. For example, normal sampling times for emission monitoring programs are too short to provide a robust long-term average signal need-ed for load calculations. Sometimes the quantitation limit was not low enough to produce inventory data. The WFD sample preparation is not consistent for certain substances. Heavy metals are analysed as filtered sample for the status assessment, but as unfiltered sample for the inventory calculation. As is to be expected, the results differ. Similar problems exist for substances for which only biota standards are specified. For many substances, there is a lack of reliable environmental data to characterize diffuse emission pathways (groundwater, atmospheric deposition, erosion, urban wastewater systems).	Further analytical method development is necessary for some substances in order to meet the requirements of the EQS Directive and its national implementation (OGewV). There is a need for harmonisation in plannin and implementation of monitoring programs in the German federal states. The existing data base should be further expanded throug coordinated and harmonized research work. In view of the high priority of diffuse input pathways and the current data situation, further efforts must be made to im-prove the data basis as well as to further develop the tools for substance input modelling.
AT	Different pollutant groups are monitored regularly or in specific monitoring campaigns. Most of the PS were measured at surveillance monitoring sites in water or in biota samples. For Heavy metals the data frequency is appropriate for load calculations (12 per year) in single years. However, data above the detection limit are sparse for some substances, hindering the appropriate calculation of loads. Some pollutants (e.g. pesticides) are measured only in specific campaigns. Some PS, for which biota EQS are defined, are monitored in biota only. For those substances the calculation of appropriate riverine loads is not possible.	Nutrients and some ubiquity substances are in the focus: Tributyltin; PAH; mercury; PBDE and PFOS (Draft RBMP 2021).	The availability of resilient data for PS in different diffuse pathways (e.g. deposition, groundwater; erosion) are the most important gaps in Austria related to the inventory compilation.	Point source discharges have to meet the requirements of the branch specific emission ordinances (Abwasseremissionsverordnungen). For most relevant/ problematic PS as uPBT substances the dominant emissions derive from diffuse sources and one major emissio is via erosion. Reducing erosion also reduce EDL of uPBT substances to surface waters. In the draft version of the NGP (National water management plan) no specific measures are foreseen for the most problematic uPBT substances mercury and PBDE.
CZ	The monitored indicators are deriving according to the requirements of the National Monitoring Program, which be accepted by the Ministry of the Environment and the Ministry of Agriculture. In the monitored	Problematic is mainly the content of some heavy metals, PAH components and pesticides.	Knowledge about the loads of surface waters by priority substances coming from different diffuse pathways - derivation of emission factors.	-

	Q5	Q6	Q7	Q8	
Country	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emissions?	
	water bodies, where the measurement frequency is sufficient, you can calculate the load. In some cases (seasonal emission fluctuations), the measurement frequency needs a specific approach.				
SK	Priority substances and substances relevant for SK. Mostly surveillance and operational monitoring. For assessment of chemical status are measured all priority substances, frequency is one in month, 12 per year. River basin specific pollutants are measured in the relevant water bodies, where are discharged.	Following the requirements of the European Water Framework Directive (WFD), a process of selecting relevant dangerous substances and developing a related Pollution Reduction Programme (PRP) has started in the Slovakia in 2001. Based on the results of a three years investigative screening campaign, 59 chemical substances were identified as relevant dangerous substances in 2004 and included in the national PRP. From this list of 59 chemical substances, 33 priority substances were already included in the EQS Directive (2008/105/EC). The remaining 26 relevant dangerous substances were assigned as river basin specific pollutants (Annex VIII substances of the WFD) for the Slovakia. Priority substances: 1. Alachlor 2. Atrazine 3. Cadmium and its compounds 4. Cyclodiene pesticides 5. para-para-DDT 6. Bis(2-etylhexyl)- phthalate (DEHP) 7. Endosulfan 8. Fluoranthene 9. Hexachlorobenzene 10. Hexachlorocyclohexane 12. Lead and its compounds 13. Mercury and its compounds 14. Naphthalene 15. Nonylphenol (4-nonylphenol) 16. Octylphenol ((4-(1,1',3,3'- tetrametylbutyl)phenol)) 17. Pentachlorobenzene 18. Pentachlorobenzene 18. Pentachlorobenzene 19. Polyaromatic hydrocarbons (PAH)	 insufficiently precise analytical methods for determining some substances as required by Directive 2009/90 / EC laying down further to Directive 2000/60 /EC of the EP and a number of technical requirements for chemical analysis and monitoring of water status absence of data on the concentrations of PS and SK relevant substances (identified in 2008) in sediment and biota, insufficient scope of monitoring quality of discharged waste water in relation to PS and SK relevant substances (legislation lacks a tool for compulsory periodic updating of indicators of the pollution - monitoring the full range of PS and SK RS as part of the renewal of the authorization for the discharge of wastewater) lack of data on air pollution, specific organic substances (PS, SK RS) comparability of water contamination by heavy metals in the stream, and the wastewater discharge prescribe- the limit values for total form (bound, not only to water but also of suspended solids), in contrast to the requirements for the chemical status of water bodies - where EQS apply to the filtered water. Therefore, it is presently difficult to estimate the contribution from point and diffuse source in the total riverine load. insufficient information about the content of PL and RL pollution in municipal wastewater. 	For identified sources of pollution (point and diffuse) measures were proposed. In addition to improve future PS EDL inventory following measures were proposed: • reducing the limits LOQ laid down in the case of methods which do not meet the LOQ required by Directive 2010/108 / EC, respectively a switch to other matrix setting of relevant indicators, • introduce monitoring of the organic matter in the monitoring of emissions to air, • creating tools to increase the level of future emissions inventories (e.g. Models, data on the production and use of substances – e.g. REACH, from the analysis of substance cycles, production and emission factors).	

14

	Q5	Q6	Q7	Q8
Country	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emissions?
		21. Trichloromethane (chloroform)		
		From SK relevant substances (identified in 2008) 10 substances are relevant for Danube RBD: 1. 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2. 4-metyl-2,6-di-terc butylphenol, 3. arsenic and its compounds, 4. Dibutyl phthalate, 5. phenanthrene, 6. Chromium and its compounds 7. cyanides, 8. copper and its compounds, 9. PCB and its congeners (28, 52, 101, 118, 138, 153,180),		
HU	We used mainly the data of surveillance monitoring stations (12 samples/year), and many operational and investigative monitoring program results. Quantity and quality of monitoring data was almost sufficient.	10. zinc and its compounds. We have many problems with PBTs (almost all of it), PAHs and Cd.	Estimations on diffuse loads have significant uncertainty. Mainly from historical pollution sources e.g. diffuse emission from soil via erosion. Many of cross border influent water bodies are in bad status, but we have lack of information about emission source on the upstream catchments. Other problem is heterogenic monitoring data and information gap on priority substances emission coming from UWWT. Emission and immission data cannot be compared because the measured parameters are different. By metals the emission site measures the total amount yet the immission only the dissolved. Pesticides and organic compounds are measured as components, but by emissions we have got only parameter group data: halogenated organic compounds, or PAHs etc.	Between measures provided for river basin management plan there are many which consider supplementary monitoring (UWWTPs, industrial facilities). We plan investigate monitoring programs fb better describing emission pathways e.g. so and air depositions, and UWWTP and chemical industry discharge monitoring to get more information on PS discharges.
SI	One year during the RBMP period the surveillance monitoring on surveillance monitoring stations is being performed. In this surveillance monitoring mostly/mainly the whole set of priority substances is included.	Some substances are found as being relevant at the basin/sub-basin unit.	The lack of tools to estimate diffuse sources of pollution (such as pesticides/biocides from agricultural activities, illegal landfills, pollution from urban areas, storm overflows).	The requirements of the national legislation have to be fulfilled.

	Q5	Q6	Q7	Q8		
lountry	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emissions?		
	On the other (regular) monitoring stations or during the other 5 years of the RBMP period the priority substances are being measured as circumstances require with regard to emissions, discharges and findings of the previous monitoring (if any excess over the quality standard is being measured, we confirm it or annul it in the next years with proceeded monitoring). On principle specific campaigns are not performed, exceptionally for the purpose of the investigative monitoring. The frequency of priority substances measurement is in line with the WFD (12 times/year).					
HR	All Priority substances and substances relevant for HR. Mostly surveillance and operational monitoring. For assessment of chemical status are measured all priority substances, frequency is one in month, 12 per year. River basin specific pollutants are measured in the relevant water bodies, where are discharged.	We have problems with PBTs in biota (Hg, BDE).	The lack of tools to estimate diffuse sources of pollution (such as urban areas, storm overflows).	The requirements of the national legislation have to be fulfilled.		
BA	<u> </u>	No informati	on available.			
ME		No informati	on available.			
RS	In 2021, 54 prescribed priority substances were monitored through operational monitoring together with additional 32 that were chosen based on results from previous years. Frequency of monitoring varies depending on waterbody, from 4 to 12 times per year. Due to insufficient financial and human capacity, monitoring still doesn't cover all designated water bodies in RS.	In the Environmental Status Report, heavy metals are pointed out as relevant.	Main gap is insufficient data pool due to lack of human and financial resources. Also, the lack of information on diffuse emissions, no established system on gathering data on agricultural use of priority substances, landfill pollution, etc.	In the draft version of the RBMP proposed measures are implementation IED regulates and key measures: phasing-out / reduction of emissions, discharges and losses of PS, remediation of contaminated sites (historica pollution including sediments, groundwater. soil), upgrades or improvements of industria wastewater treatment plants and research, improvement of knowledge base reducing uncertainty.		

	Q5	Q6	Q7	Q8
Country	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emissions?
RO	The monitoring of emissions of priority substances (included in Annex 1 of the Directive 2013/39/EU) was performed taking into account the existence of analysis methods, the type of wastewater discharged (taking into account the specific field of activity from which they come), but also the presence (identification) of these substances in the water body. For C10-C13- chloroalkanes, no method was available. Tributyltin compounds, dioxins, and dioxin- type compounds are not analysed because the method held and applied involves high risks of use/operation for personnel. Monitoring data are coming from regular monitoring according to the WFD requirements. Sampling and analysis is usually conducted with frequencies of 12 times per year. The frequency of monitoring data is appropriate for annual riverine load calculation.	Heavy metals are found as being relevant at the basin/sub-basin unit. The relevance step was based on the criteria EU Guidance no. 28.	The main gaps are the followings: lack of tool to estimate the diffuse emissions, lack in certain cases of point sources and frequent of diffuse sources, there was not possible the assign a certain substance found in the aquatic environment to an appropriate source.	The measures proposed are designed for reduction of a number of substances (e.g. heavy metals).
BG	Pollutants from the group of Priority Substances, Annex 1 of EC Directive 2008/105 have been measured. The results are from the planned / conducted control and operational monitoring with a frequency of 12 / year, according to the monitoring program. Pollutants from the same group of Priority Substances have been measured and used in the assessment, but with a frequency of 1 to 4 times a year at the points of discharge of industrial plants and treatment plants, which are defined in the plans for own monitoring approved by the Danube Basin Directorate.	For all heavy metals in the group of priority substances, emissions from point sources of pollution have decreased for the period 2009- 2015. The substance 1,2-dichloroethane was not detected in 2015. For heavy metals cadmium, lead and nickel, emissions from diffuse sources of pollution have decreased for the period 2009-2015. The substance 1,2-dichloroethane in 2015 and as a diffuse source is not detected.	At the time of the inventory process, some of the PS / 4 in number / are not analyzed due to undeveloped in the EEA methodologies for analysis. Some priority substances do not have a set of 12 samplings and a correspondingly lower number of results within a year due to bad weather conditions (monitoring stations are high in the mountains). Lack or insufficiently correct monitoring of the quantities of discharged wastewater.	Mercury emissions through diffuse pollution have increased and as a result, expanded monitoring of mercury in the other two matrices is planned - biota and sediment for the period of RBMP 2016-2021, seeking additional information from the analysis of priority substances.
MD	In the frameworks of Feasibility Study, there were preliminary identified HS relevant for entire Republic of Moldova, as well as facilities emitting HS. Thus, on the nation- wide level, there were identified next relevant to PRTR industrial sectors fall under the Protocol's requirements according to capacity thresholds: energy (3 facilities), production and processing of metals (1 facility), mineral	Particular HS of national importance were not identified yet.	Institutional constrains & lack of funds.	None.

17

	Q5	Q6	Q7	Q8		
intry	Which pollutants/pollutant groups have been measured in the water bodies? What kind of monitoring is used? Is the data frequency appropriate for load calculations?	What particular substances have been found of national importance?	What are the most important problems/gaps identified related to the inventory compilation?	Have specific measures been recommended to control PS emission		
	 industry (ac. 19 facilities), chemical industry/ pharmaceutical (1 facility), waste and waste water management (4-5 facilities, from which 1 landfill, and 3-4 UWWTPs), paper production and processing (2 facilities), intensive livestock production, etc. However, it shall be mentioned that not even one UWWTP or industrial facility with exceeding threshold values was identified in the Moldovan part of the Danube basin Besides, there were identified the following officially reported to national statistics HS: N tot., P tot., As, Cd, Cr, Cu, Pb, Ni, Hg, Zn, DDT, Benzene, Phenols, PAH, chlorides, and cyanides. For the monitoring are used both regular stations and specific campaigns. In fact, Hydrometeorological Service regularly monitors in rivers 73 chemical parameters, including heavy metals, organic substances, organochlorine pesticides and PAH. Data frequency is appropriate for load calculation. 					
UA	37 from the 45 PS are measured at surveillance monitoring sites. Frequency is one in month, 12 per year.	Screening of water samples and bottom sediments is performed to determine the list of specific synthetic and non-synthetic pollutants in 3 river basins. List of hazardous substances in wastewater from enterprises was compiled based on national industry standards; special investigations Pollutant groups are: 21 pesticides (some of which were banned in EU), trace metals, polyaromatic hydrocarbons (PAH), trichloromethane, pentachlorobenzene.	The main gaps are the followings: insufficiently precise of analytical measurements for determining some substances, absence data in sediments and biota, lack of tool to estimate the diffuse emissions constrains & limited funds.	No specific measures have been recommended.		

Hazardous substances concentration data in wastewater effluents were collected and analysed in the framework of the SOLUTIONS project (<u>https://www.solutions-project.eu/</u>). The data served the assessments of the toxicity risk of the released substances. Summarizing tables of the analysis results are presented in the followings.

Detailed technical information is available: Alygizakis, N. A., Besselink, H., Paulus, G. K., Oswald, P., Hornstra, L. M., Oswaldova, M., Medema, G., Thomaidis, N. S., Behnisch, P. A., Slobodnik, J. (2019). Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis. Environment International, Volume 127, 420-429.

Chemical group	Bucharest	Cluj	Sabac	Zagreb	Varazdin	Ljubljana	Budapest	Vipap	Zilina	Brno	Amstetten	Augsburg
Pharmaceuticals	73	68	67	71	51	71	82	35	61	69	55	67
Antibiotics	23	23	20	21	12	19	22	9	17	18	17	16
Antipsychotic drugs	22	26	29	30	21	28	31	13	25	31	29	27
Hypoglycaemic agents and artificial sweeteners	6	5	5	6	5	6	6	4	5	5	4	6
Drugs of abuse, steroids and tobacco ingredients	20	17	15	17	19	18	17	10	13	17	17	17
Pesticides & Insecticides	25	23	27	26	17	22	25	17	12	22	17	18
Industrial chemicals	24	23	19	23	15	22	29	23	23	23	27	25
Total	193	185	182	194	140	186	212	111	156	185	166	176

Table 8: Number of detected organic compounds at the selected WWTPs according to substance groups

Table 9: Cumulated PNEC exceedance ratios of the sampled WWTPs for organic compounds according to substance groups

					-	-		-					
Chemical group	WWTP1	WWTP2	WWTP3	WWTP4	WWTP5	WWTP6	WWTP7	WWTP8	WWTP9	WWTP10	WWTP11	WWTP12	All WWTPs
Pharmaceuticals	103.7	74.7	85.5	12.5	105.7	90.9	40.3	9.5	67.1	32.7		22.2	644.8
Antibiotics	151.2	14.5	15.4	4.0		12.2	28.0	1.4	1.6	3.0		1.1	232.3
Antipsychotic drugs	1.6	1.1		2.4			12.3	1.6	2.6	2.4		1.0	25.0
Hypoglycaemic agents, sweeteners													
Drugs of abuse, steroids, tobacco	1.4						2.2			1.6			5.1
Pesticides & Insecticides	12.1	2.8	23.0	3.7		9.9	5.5	1.3	2.0	2.8	2.0	7.2	72.2
Industrial chemicals	68.4	102.8	35.5	116.5	26.1	15.0	11.0	83.4	20.4	30.1	44.9	12.7	566.7
Total	338.4	195.8	159.3	139.1	131.7	128.0	99.3	97.2	93.6	72.5	46.9	44.3	1,546.1

PNEC: Predicted No Effect Concentration

WWTPs are ranked based on the PNEC exceedance (WWTP1... WWTP12)

Total	7.8	7.3	6.5	5.0	3.8	3.3	3.1	2.7	2.0	1.9			43.6
Zinc	2.0	5.3	3.8	3.6	1.4	3.3	1.7	1.6	2.0	1.9			26.7
Lead													
Nickel	1.3			1.4	1.3		1.4						5.4
Mercury					1.1								1.1
Copper								1.2					1.2
Chromium	2.5												2.5
Cadmium	2.0	2.0	2.7										6.7
Heavy metal	WWTP1	WWTP2	WWTP3	WWTP4	WWTP5	WWTP6	WWTP7	WWTP8	WWTP9	WWTP10	WWTP11	WWTP12	All WWTPs

Table 10: Cumulated PNEC exceedance ratios of the sampled WWTPs for heavy metals
--

WWTPs are ranked based on the PNEC exceedance (WWTP1... WWTP12)

Emissions of selected hazardous substances from point and diffuse sources were estimated by the DHSM model in the framework of the Danube Hazard m3c project (preliminary results to be revised, updated and completed in 2022). Summarizing tables of the preliminary modelling results are presented in the followings.

Detailed technical information is available: Assessment of preliminary modelling results - Pilot region modelling and basin-wide results. Interim Report, Deliverable of the Danube Transnational Programme Project "Danube Hazard m³c - Tackling hazardous substances pollution in the Danube River Basin by Measuring, Modelling-based Management and Capacity building" (DTP3-299-2.1), Deltares, 2021.

Table 11: Summary overview of quantified emission sources for the investigated substances

Substance	Atmospheric deposition	Agriculture	Road Traffic	Built environment	Households	Industry	Mining	Navigation	Natural background
Cadmium	Х	х	х		Х	Х			
Lead	Х	х	х	Х	Х	Х			
Copper	Х	х	х	Х	Х	Х			
Arsenic	Х		х		Х	Х			
Nickel	Х	х	Х		Х	Х			
Mercury	Х	х			Х	Х			
Zinc	Х	х	Х	Х	Х	Х		Х	
Benzo[a]pyrene	Х		Х		Х			Х	
PFOS					Х				
PFOA					Х				
Bisphenol A					Х				
Nonylphenol			х		Х	Х			
4-tert-octylphenol					Х	Х			
Metolachlor		х			Х				
Tebuconazole		Х			Х				
Carbamezepine					Х				
Diclofenac					Х				

Substance	Atmospheric deposition	Agriculture	Road traffic	Built environment	Households	Industry	Mining	Navigation	Natural background
Metals	х	Х	XX	х	XX	XX	-	х	X
Benzo[a]pyrene (PAH)	XX		XX	-	XX	-		х	
PFAS	-		-	-	XX	-			
Industrial chemicals	-		XX	-	XX	Х			
Pesticides		х		-	х				
Pharmaceuticals		-			х				

 Table 12: Summary overview of quality of emission source quantification per substances group

xx: quantification is considered adequate

x: quantification is considered preliminary

- : quantification is lacking

Grey cells are considered irrelevant

Compound	Symbol	Atmosphere	Agriculture	Households	Industry	Navigation	Runoff	Mixed sewers	Urban runoff	Soils	Total
Cadmium	Cd	251.8	0.0	22.2	1,210.1	0.0	321.2	825.9	44.0	23,312.4	25,987.6
Lead	Pb	6,373.7	0.0	407.1	14,064.0	0.0	6,469.1	9,777.0	2,688.9	1,160,873.9	1,200,653.7
Copper	Cu	15,945.0	0.0	2,819.0	74,855.0	0.0	26,401.0	75,160.6	8,179.9	1,182,312.0	1,385,672.5
Arsenic	As	2,093.1	0.0	121.9	2,696.3	0.0	1,441.1	5,823.9	262.3	464,101.3	476,539.9
Nickel	Ni	3,744.8	0.0	301.3	21,305.0	0.0	4,094.3	15,754.3	1,603.2	1,222,800.0	1,269,602.9
Mercury	Hg	150.8	0.0	17.8	343.7	0.0	151.5	543.8	15.9	4,707.0	5,930.5
Zinc	Zn	118,880.0	0.0	9,624.5	216,600.0	6,873.7	139,160.0	594,363.0	253,321.5	2,396,827.0	3,735,649.7
Benzo[a]pyrene	BaP	296.8	0.0	2.5	0.0	182.6	156.5	82.9	96.6	1,287.4	2,105.2
PFOS	PFOS	0.0	0.0	1.2	0.0	0.0	0.0	102.4	0.0	0.0	103.6
PFOA	PFOA	0.0	0.0	3.6	0.0	0.0	0.0	302.0	0.0	0.0	305.6
Bisphenol A	BPA	0.0	0.0	43.3	0.0	0.0	0.0	2,490.3	0.0	0.0	2,533.5
Metolachlor	Met	0.0	78.3	1.4	0.0	0.0	19.4	119.8	0.0	20.5	239.5
Tebuconazole	Teb	0.0	1,855.5	0.2	0.0	0.0	100.4	17.8	0.0	0.0	1,973.9
Carbamezepine	Car	0.0	0.0	26.8	0.0	0.0	0.0	2,247.1	0.0	0.0	2,273.8
Diclofenac	Dic	0.0	0.0	107.0	0.0	0.0	0.0	5,160.0	0.0	0.0	5,267.0
Nonylphenol	NP	0.0	0.0	17.7	130.3	0.0	0.0	371.2	167.3	0.0	686.4
4-tert-octylphenol	4tO	0.0	0.0	5.8	3.4	0.0	0.0	486.9	0.0	0.0	496.0

Table 13: Long-term average, basin-wide surface water emissions of selected hazardous substances according to pathways (in kg/year)

Data on Accident Hazard Sites were collected directly from the countries. Data on Tailings Management Facilities were collected by the Danube TMF project and confirmed by the Danube countries (except SI and RS, for these countries data are preliminary). The data served the assessments of the accident hazard of operating industrial sites and the hazard and risk of the tailings ponds. Summarizing tables of the data submitted are presented in the followings.

Detailed technical information on Accident Hazard Sites is available: Inventory of Potential Accidental Risk Spots in the Danube River Basin, Technical report, ICPDR (2001), <u>http://www.icpdr.org/main/issues/accidental-pollution</u>.

Detailed technical information on Tailings Management Facilities is available: Safety of the Tailings Management Facilities in the Danube River Basin, Technical Report, UBA (2020), <u>https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2020_11_30_texte_185-2020_danube_river_basin_0.pdf</u>.

		All sites			Sites with WHI >5	
Country	Number of facilities	WHC3_EQ (kg)	WHI	Number of facilities	WHC3_EQ (kg)	WHI
DE*	139	2,350,971,458.2	9.4	116	2,350,218,706.7	9.4
AT	46	16,453,577.5	7.2	13	15,979,341.8	7.2
CZ	46	601,873,734.0	8.8	19	601,309,932.1	8.8
SK	39	2,049,505,525.5	9.3	36	2,049,412,299.1	9.3
HU	316	502,003,733.6	8.7	46	498,958,095.3	8.7
SI	49	389,769,201.2	8.6	24	389,340,667.2	8.6
HR	26	40,258,531.1	7.6	16	39,956,198.2	7.6
BA	18	115,405,091.6	8.1	5	115,211,872.3	8.1
ME	0	0.0	0.0	0	0.0	0.0
RS	23	1,172,820,772.0	9.1	18	1,172,779,395.1	9.1
BG	33	54,750,997.7	7.7	23	54,683,826.9	7.7
RO	234	4,438,144,124.4	9.6	139	4,436,127,001.8	9.6
MD	24	64,709,018.6	7.8	14	64,521,156.2	7.8
UA	17	3,061,676.6	6.5	4	2,995,794.5	6.5
Basin	1,010	11,799,727,442.1	10.1	473	11,791,494,287.2	10.1

Table 14: Number of AHS, summed stored volume of substances and total WHI of the Danube countries

WHC3_EQ: Water Hazard Class 3 Equivalent, WHI: Water Hazard Index

* Data are available only from Bavaria

		Sites with WHI >5	
Industrial sector	Number of facilities	WHC3_EQ (kg)	WHI
Energy sector	215	7,915,321,370.2	9.9
Production and processing of metals	38	24,277,359.4	7.4
Mineral industry	11	148,065,547.5	8.2
Chemical industry	108	1,813,031,621.8	9.3
Waste and wastewater management	10	21,148,458.0	7.3
Paper and wood production processing	3	1,892,872.0	6.3
Intensive livestock production and aquaculture	1	398,107.2	5.6
Animal and vegetable products from the food and beverage sector	3	1,959,638.9	6.3
Transportation and storage	58	1,793,571,367.0	9.3
Other activities	26	71,827,945.1	7.9
Basin	473	11,791,494,287.2	10.1

Table 15: Number of AHS, summed stored volume of substances and total WHI of the industrial sectors (sites with WHI > 5)

Country	Number of TMFs	Number of active TMFs	Tailings volume (million m ³)	Weighted Toxicity (WHC)	THI_Cap	THI_Tox	THI_Man	THI_Seism	THI_Flood	THI_Nat	THI_Dam	THI	TEI_Pop	TEI_Env	TEI	TRI
DE																
AT																
CZ	10	5	28.559	2.24	6.18	1.60	1.80	0.00	0.30	0.30	1.00	10.88	3.80	2.00	5.80	16.68
SK	60	26	128.006	1.40	5.75	1.70	1.50	0.43	0.72	1.15	1.00	11.10	3.45	1.98	5.43	16.53
HU	39	3	99.814	1.51	5.46	1.87	0.23	0.41	0.23	0.64	1.00	9.20	4.31	2.31	6.62	15.82
SI	30	8	53.836	1.56	4.88	1.70	0.80	0.87	0.13	1.00	1.00	9.38	3.37	2.37	5.73	15.11
HR																
BA	6	5	46.915	1.71	6.39	2.00	2.50	1.00	0.00	1.00	1.00	12.89	3.00	2.17	5.17	18.06
ME	4	2	13.780	1.59	6.30	2.50	1.50	1.00	0.00	1.00	1.00	12.30	4.25	2.00	6.25	18.55
RS	31	20	754.400	2.25	6.67	2.55	2.71	1.00	0.29	1.29	1.00	14.22	2.48	2.03	4.52	18.73
BG	3	0	1.643	2.88	5.36	2.67	0.00	1.00	0.00	1.00	1.00	10.03	3.67	2.00	5.67	15.69
RO	152	27	468.714	1.77	6.03	1.75	0.53	0.63	0.17	0.80	1.00	10.11	3.49	2.13	5.61	15.72
MD																
UA																
Basin	335	96	1,595.667	1.95	5.88	1.84	0.98	0.62	0.28	0.90	1.00	10.60	3.48	2.13	5.61	16.21

Table 16: Total number of TMFs.	summed tailings volume.	weighted average taili	ngs toxicity and averag	e hazard and risk factors for the Danube countries

WHC: Water Hazard Class, THI_Cap: Capacity Index, THI_Tox: Toxicity Index, THI_Man: Management Index, THI_Flood: Flood Hazard Index, THI_Seism: Seismic Hazard Index, THI_Nat: Natural Hazard Index, THI_Dam: Dam Stability Index, THI: Tailings Hazard Index, TEI_Pop: Population Exposure Index, TEI_Env: Environmental Exposure Index, TEI: Tailings Risk Index

Preliminary data for Slovenia and Serbia, official approval is pending.

No relevance for Germany, Austria, Croatia, Moldova and Ukraine.

LIST OF FUTURE INFRASTRUCTURE PROJECTS

ANNEX 7

As in previous cycles, a list of future infrastructure projects (FIPs) of basin-wide importance has been compiled for the DRBMP Update 2021. The following criteria were applied for the data collection.

 $Criteria \ for \ the \ collection \ of \ future \ infrastructure \ projects \ for \ the \ Danube \ River \ and \ other \ DRBD \ rivers \ with \ catchment \ areas >4,000 \ km^2$

	Danube River	Other DRBD rivers with catchment areas >4,000 km ²
	Strategic Environmental Assessment (SEA) and/or Environmental Impact Assessments (EIA) are performed for the project	Strategic Environmental Assessment (SEA) and/or Environmental Impact Assessments (EIA) are performed for the project
Criteria	<u>or</u>	and
	project is expected to provoke transboundary effects	project is expected to provoke transboundary effects

These FIPs, if implemented without full consideration to effects on water status, are likely to provoke impacts on water status due to hydromorphological alterations. Consequently, these projects need to be addressed by integrating mitigation measures in order to reduce/cancel the potential impacts on water status.

Explanation of abbreviations for the tables

- EIA = Environmental Impact Assessment
- SEA = Strategic Environmental Assessment
- WFD = Water Framework Directive

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
BG	Dunav	BG1DU000R001	Fast Danube Sector 7 Belene	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location 1 km north of Belene; between km 577 and km 560	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
BG	Dunav	BG1DU000R001	Fast Danube Sector 8 Vardim	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location 5 km northeast of Vardim; between km 542 and km 539	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
BG	Dunav	BG1DU000R001	Fast Danube Sector 9 Yantra	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location: 3 km north of Krivina; between km 537 and km 534	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
BG	Dunav	BG1DU000R001	Fast Danube Sector 10 Batin	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location: 2 km north of Batin; between km 530 and km 520	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
BG	Dunav	BG1DU000R001	Fast Danube Sector 11 Konsui	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location 6 km east of Oltenita; between km 428 and km 423	Implementation of project	2021	Yes	Yes	No	Intended	Yes*

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
BG	Dunav	BG1DU000R001	Fast Danube Sector 12 Popina	Navigation	Improvement of the navigation conditions on the RO-BG Danube Sector - Location: 1 km north of Popina; between km 408 and km 401	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
DE	Donau	DERW_DEBY_1_F361	Ausbau der Wasserstraße und Verbesserung des Hochwasserschutzes zwischen Straubing und Vilshofen, Teilabschnitt 1: Straubing bis Deggendorf	Navigation ¹	Improvement of flood protection (technical measures for 100-year flood events), Improvement of navigation conditions (River engineering works - stream regulation)	Implementation of project	2020	No	No	No	Already done	No
DE	Donau	DERW_DEBY_1_F477	Ausbau der Wasserstraße und Verbesserung des Hochwasserschutzes zwischen Straubing und Vilshofen, Teilabschnitt 2: Deggendorf bis Vilshofen	Navigation ¹	Improvement of flood protection (technical measures for 100-year flood events), Improvement of navigation conditions (River engineering works - stream regulation)	Planning under preparation	Not yet determined	No	Yes	No	Already done	No
HR	Kupa	HRCSRN0004_001, HRCSRN0004_002, HRCSRN0004_003, HRCSRN0004_004, HRCSRN0004_005, HRCSRN0004_006, HRCSRN0004_007, HRCSRN0004_008	Projekt "Sustav zaštite od poplava karlovačko-sisačkog područja"	Flood protection	Projekt "Sustav zaštite od poplava karlovačko-sisačkog područja"	Officially planned	2020	No	No	Already done	Already done	No

¹ Future infrastructure projects can have multiple purposes, e.g. the main purpose of the project "Straubing-Vilshofen" in Germany is twofold: improvement of flood protection, and navigation.

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
HR	Sava	HRCSRI0001_001, HRCSRI0001_002, HRCSRI0001_003, HRCSRI0001_004, HRCSRI0001_005, HRCSRI0001_006, HRCSRI0001_007, HRCSRI0001_008, HRCSRI0001_009	Modernizacija lijevoobalnih savskih nasipa	Flood protection	Modernizacija lijevoobalnih savskih nasipa	Implementation of project	2017	No	No	Already done	No	No
HR	Drava	HRCDRI0002_021	Rekonstrukcija nasipa Otok Virje Brezje	Flood protection	Rekonstrukcija nasipa Otok Virje Brezje - Projekt FRISCO 2.3 - Prekogranično usklađeno smanjenje rizika od poplava 2.3 – strukturne mjere na slivovima rijeka Drave i Kolpe/Kupe.	Implementation of project	2019	No	No	Already done	Already done	No
HU	Mosoni- Duna	HUAEP810	Water-level rehabilitation of the Mosoni-Danube confluence	Flood protection	Restoring low and mean water levels in the estuary section of Mosoni-Danube	Implementation of project	2016	No	Yes	No	Already done	No
HU	Duna	HUAEP443	Nagyműtárgyak fejlesztése és rekonstrukciója (Dunakiliti)	Flood protection	Rekonstruction of Dunakiliti dam to allow the reduction of flood risk.	Implementation of project	2016	No	Yes	No	No	No
HU	Duna	HUAEP446	Esztergom árvízvédelmének fejlesztése I. ütem	Flood protection	Flood risk reduction of the city Esztergom by the development of former dykes.	Implementation of project	2016	No	No	No	Already done	No
ни	Duna	HUAEP443, HUAEP446, HUAOC752, HUAOC753, HUAOC754, HUAOC755, HUAOC756	Navigation development on the Danube	Navigation	The navigable days on the HU Danube stretch is now under 250. It is not in line with the international expectations (Belgrade and AGN Convention). On 43 sites (92 km)	Planning under preparation	2022	Yes	No	Already done	No	Yes*

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
					modifications are foreseen.							
RO	CWB: Cap Singol- Eforie Nord	ROCT02_B1	Reducerea Eroziunii costiere Faza II, finantat prin Programul Operational Infrastructura Mare (2014-2020)	Others	Protectia coastei litoralului Marii Negre pe teritoriul Romaniei de efectele eroziunii costiere prin dezvoltarea unui program de lucrari specificecare au in vedere reabilitarea si protejarea liniei tarmului,	Implementation of project	2014	Yes	No	Already done	Already done	Yes*
RO	CWB: Eforie Nord-Vama Veche	ROCT02_B2	Reducerea Eroziunii costiere Faza II, finantat prin Programul Operational Infrastructura Mare (2014-2020)	Others	Protectia coastei litoralului Marii Negre pe teritoriul Romaniei de efectele eroziunii costiere prin dezvoltarea unui program de lucrari specifice care au in vedere reabilitarea si protejarea liniei tarmului,	Implementation of project	2014	Yes	No	Already done	Already done	Yes*
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Garla Mare - sector de navigatie administrat de AFDJ; Mehedinti - UAT Garla Mare	Navigation	1 km sud de Garla Mare, aval Vrav	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RO	CWB: Eforie Nord-Vama Veche	ROCT02_B2	Reducerea Eroziunii costiere Faza II, finantat prin Programul Operational Infrastructura Mare (2014-2020)	Others	Protectia coastei litoralului Marii Negre pe teritoriul Romaniei de efectele eroziunii costiere prin dezvoltarea unui program de lucrari specifice care au in vedere reabilitarea si protejarea liniei tarmului,	Implementation of project	2014	Yes	No	Already done	Already done	Yes*

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Salcia - sector de navigatie administrat de AFDJ; Mehedinti - UAT Salcia	Navigation	3 km sud de Salcia, aval Iasen	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Bogdan - Secian - sector administrat AFDJ;Dolj - UAT Calafat	Navigation	<1 km sud-vest de Ciupercenii Vechi, 3 km est de Vidbol- Dunavsti	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Dobrina - sector de navigatie administrat de AFDJ;Dolj - UAT Desa	Navigation	6 km sud de Desa, 3 km nord de Dobri dol - Silivata - Orsoia	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Bechet - sector de navigatie administrat de AFDJ;Dolj - UAT Bechet	Navigation	3 km sud-est de Bechet, aval Oryahovo, 1.5 km nord de Lekovet	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RO	Dunarea	RORW14-1_B3	FAST DANUBE - Corabia - sector de navigatie administrat de AFDJ;Olt - UAT Corabia	Navigation	la sud de Corabia, <1km nord-vest de Zagrajden	Implementation of project	2021	Yes	Yes	No	Intended	Yes*
RS	Dunav	RSD_05	Rehabilitation and construction of the Bulk and General Cargo Terminal of the Port of Smederevo	Navigation	Rehabilitation and construction of the Bulk and General Cargo Terminal of the Port of Smederevo	Implementation of project	2021	No	No	Already done	Already done	Yes*/**
RS	Sava	RSDR_1_A, RSSA_6, RSSA_7	River traning and dredging works on the Sava Drina Confluence	Navigation	River traning and dredging works on the Sava Drina Confluence	Officially planned	2022	No	No	Already done	Intended	Yes*/**
RS	Lim	RSLIM_4_D	Projekat izgradnje HE Brodarevo 1 i HE Brodarevo 2	Hydropower	Hydropower plant 13,5 MW	Officially planned	Not yet determined	Yes	Yes	Already done	Already done	Yes*/**

Country	River or Coastal Waterbody	Water body	Project title	Main purpose	Description	Project status	Start imple- mentation	Expected deterioration of water body status	Trans- boundary impact	SEA	EIA	Exemption WFD Art. 4(7)
RS	Lim	RSLIM_4_C	Projekat izgradnje HE Brodarevo 1 i HE Brodarevo 2	Hydropower	Hydropower plant 22,25 MW	Officially planned	Not yet determined	Yes	Yes	Already done	Already done	Yes*/**

* The EIA study in relation to the Fast Danube Project (including the Impact Assessment on Water Bodies) is an ongoing process, and only its completion will conclude if a WB deterioration will take place or not.

** Data reported for RS is not based on an official WFD Article 4(7) application as there is no transposition of WFD exemptions in national water law yet.

GROUNDWATER IN THE DRBD

ANNEX 8

GWB	Nat.	Area	Aquifer characteristics		Mainung	Overlying				
	part	[km²]	Aquifer Type	Confined	Main use	strata [m]	Criteria for importance			
1	AT-1	1,650	K	Yes		100 1000	Intensive use			
	DE-1	4,250	ĸ	res	SPA, CAL	100-1000				
2	BG-2	13,034	F, K	Yes	DRW, AGR, IND	0-600	> 4000 km²			
	RO-2	11,340	г, к	168	DKW, AGK, IND	0-000	> 4000 KIII-			
3	MD-3	9,662	Р	Yes		0-150	> 4000 km ² , GW use, GW			
	RO-3	12,646	Г	168	DRW, AGR, IND	0-130	resource			
4	BG-4	3,308	K, No		DRW, AGR, IND	0-10	> 4000 km²			
	RO-4	2,187	F-K	Yes	DRW, AOR, IND	0-10	> 4000 KIII-			
5	HU-5	4,989	Р	No	DRW, IRR, IND	2-30	> 4000 km ² , GW resource,			
	RO-5	2,227	1	110	DRW, IKK, IND	2-30	DRW protection			
6	HU-6	1,034	Р	No	DRW, AGR, IRR	5-30	GW resource, DRW			
	RO-6	1,459	-	110	DRW, MOR, IRR	5.50	protection			
7	HU-7	7,098		No	DRW, AGR, IND,		> 4000 km², GW use, GW			
	RO-7	11,355	Р	Yes	IRR	0-125	resource, DRW protection			
	RS-7	10,506		No			, , , , , , , , , , , , , , , , , , ,			
8	8 HU-8 1,152		-		DRW, IRR, AGR,		GW resource, DRW			
	SK-8	2,186	Р	No	IND	2-5	protection, dependent ecosystems			
9	HU-9	750	No				GW resource, DRW			
	SK-9	1,470	Р	Yes	DRW,IRR	2-10	protection, dependent ecosystems			
10	HU-10	493	K				GW resources, DRW			
	SK-10	598	K, F	No	DRW, OTH	0-500	protection, dependent ecosystem			
11	HU-11	3,337	K	Vac		0.2500	Thermal water resource			
	SK-11	563	F, K	Yes	DRW, SPA, CAL	0-2500				
12	HU-12	146	Р	No	DRW, AGR	0-10	DRW protection, dependent ecosystems, GW resource			
	SK-12	198	r	INU	DIAW, AUK	0-10				

Table 1: Nominated transboundary	GWBs of Danube	basin wide importance
----------------------------------	----------------	-----------------------

3

Table 2: Nominated transboundar	y GWBs of Danube basin wide importance
---------------------------------	--

		National GWB Codes	Area [km²]	Area [km²]	Aquifer characteri- sation			strata	l for Ince
Transboundary GWB	Nat. part				Aquifer Type	Confined	Main use	Overlying strata	Criteria for importance
1:	AT-1	ATGK100158	5,900	1,650	Κ	Yes	SPA, CAL	100– 1000	Intensive use
Deep Thermal	DE-1	DEGK1110		4,250					
2: Upper Jurassic – Lower Cretaceous	BG-2 RO-2	BG1G0000J3K051 RODL06	24,374	13,034 11,340	F, K	Yes	DRW, AGR, IND	0–600	>4000 km²
3:	MD-3	MDPR01	22,308	9,662	Р	Yes	DRW, AGR,	0-150	>4000 km ² ,
Middle Sarmatian - Pontian	RO-3	ROPR05		12,646			IND		GW use, GW resource
4:	BG-4	BG1G00000N049	5,495	3,308	-	No /	DRW, AGR,	0–10	>4000 km ²
Sarmatian	RO-4	RODL04		2,187	F-K	Yes	IND		
5: Mures / Maros	HU-5	HU_AIQ605 HU_AIQ604 HU_AIQ594 HU_AIQ593	7,216	4,989	Р	No	DRW, IRR, IND	2-30	>4000 km ² , GW resource, DRW protection
	RO-5*	ROMU20 ROMU22		2,227 1,774					
6: Somes / Szamos	HU-6	HU_AIQ649 HU_AIQ648 HU_AIQ600 HU_AIQ601	2,493	1,034	Р	No	DRW,AGR, IRR	5–30	GW resource, DRW protection
	RO-6*	ROSO01 ROSO13		1,459 1,392					
7: Upper Pannonian- Lower Pleistocene / Vojvodina / Duna- Tisza köze déli r.	HU-7	HU_AIQ528 HU_AIQ523 HU_AIQ532 HU_AIQ532 HU_AIQ590 HU_AIQ529 HU_AIQ522 HU_AIQ533 HU_AIQ486 HU_AIQ591	28,959	7,098	Ρ	No / Yes / No	DRW, AGR, IND, IRR	0-125	> 4000 km², GW use, GW resource, DRW protection
	RO-7	ROBA18		11,355					
	RS-7	RS_TIS_GW_I_1 RS_TIS_GW_SI_1 RS_TIS_GW_I_2 RS_TIS_GW_I_2 RS_TIS_GW_I_3 RS_TIS_GW_SI_3 RS_TIS_GW_I_4 RS_TIS_GW_SI_4 RS_TIS_GW_I_7 RS_TIS_GW_SI_7 RS_D_GW_I_1 RS_D_GW_SI_1		10,506	5				
8: Podunajska Basin, Zitny Ostrov /	HU-8	HU_AIQ654 HU_AIQ572 HU_AIQ653 HU_AIQ573	3,338	1,152	Р	No	DRW, IRR, AGR, IND	2–5	GW resource, DRW protection,

Transformedian	Net	Netional OWD		A	Aqu chara sat	cteri-		strata	for ince
Transboundary GWB	Nat. part	National GWB Codes	Area [km²]	Area [km²]	Aquifer Type	Confined	Main use	Overlying strata	Criteria for importance
Szigetköz, Hanság- Rábca	SK-8	SK1000300P SK1000200P		2,186					dependent ecosystems
9: Bodrog	HU-9	HU_AIQ495 HU_AIQ496	2,220	750	Р	No / Yes	DRW,IRR	2–10	GW resource, DRW
	SK-9	SK1001500P		1,470					protection, dependent ecosystems
10:	HU-10	HU_AIQ485	1,091	493	К	No	DRW, OTH	0–500	GW resource,
Slovensky kras / Aggtelek-hgs.	SK-10	SK200480KF		598	K, F				DRW protection, dependent ecosystems
11: Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11	HU_AIQ558 HU_AIQ552 HU_AIQ564 HU_AIQ660	3,900	3,337	К	Yes	DRW, SPA, CAL	0– 2,500	Thermal water resource
	SK-11	SK300010FK SK300020FK		563	F, K				
12:	HU-12	HU_AIQ583	344	146		No	DRW, AGR	0–10	DRW
Ipel / Ipoly	SK-12	SK1000800P		198	Р				protection, dependent ecosystems, GW resources

*...GWBs overlying

Explanation to Table 1 and 2

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
National GWB Codes	National codes of the individual GWBs forming the national part of a transboundary GWB of basin wide importance.
Area	Whole area of the transboundary GWB covering all countries concerned / Area of national shares in $\rm km^2$
Aquifer characterisation	Aquifer Type: Predom. \mathbf{P} = porous/ \mathbf{K} = karst/ \mathbf{F} = fissured. Multiple selections possible: Predominantly porous, karst, fissured and combinations are possible. Main type should be listed first.
	Confined: Yes / No
Main use	DRW = drinking water / AGR = agriculture / IRR = irrigation / IND = Industry / SPA = balneology / CAL = caloric energy / OTH = other. Multiple selection possible.
Overlying strata	Indicates a range of thickness (minimum and maximum in metres)
Criteria for importance	If size $< 4\ 000\ \text{km}^2$ criteria for importance of the GW body have to be named, they have to be bilaterally agreed upon.

Table 3: Number of monitoring stations and density per GWB

			CHEMIC/		na density	Associate		QUANTI	v		Associated to			
			CHEMIC/	4L		1		QUANTI	T			ed to		
Transboundary GWB	Nat. part	Area [km²]	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s	Sites	km²/ site	Sites bilaterally agreed for data exchange	Drinkin g water protect ed areas	Eco- system s		
4	AT-1 DE-1	1,650 4,250	4 4	413 1,063	_2 _2	-	-	3 4	550 1,063	_2 _2	-	-		
1 Deep Thermal	DE-1 Σ	4,250 5,900	4	738		-	-	4	1,003 843		-	-		
2	2 BG-2	3,900 13,034	o 9	1,448	2	1/00	-	10	1,303	2	1/00			
Z Upper Jurassic –	RO-2	13,034 11,340	9 26	436	4	yes	-	10	11,340	4	yes 0	-		
Lower	NU-2	11,340	20	430	4		-	I	11,340	4	0	-		
Cretaceous	Σ	24,374	35	696				11	2,216					
3	MD-3	9,662	6	1,610				7	1,380					
Sarmatian –	RO-3	12,646	19	666	0	-	-	17	744	0	0	-		
Pontian	Σ	22,308	25	892				24	930					
	BG-4	3,308	7	473	2	yes	-	5	662	2	yes	-		
4	RO-4	2,187	18	122	4		-	18	122	4	0	-		
Sarmatian	Σ	5,495	25	220				23	239					
	HU-5	4,989	125	40	6	94	5	110	45	5	20	8		
		2,227	20	111				16	139					
5	RO-5*	1,774	3	591	5	0	-	3	591	5	0	-		
Mures/Maros	Σ	7,216	148	48				129	56					
	HU-6	1,034	25	41	5	12	4	18	57	1	2	2		
		1,459	33	44				115	13					
6	RO-6*	1,392	6	232	2	0		7	199	2				
Somes/Szamos	Σ	2,493	64	39				141	18					
7	HU-7	7,098	159	45	0	105	14	151	47	0	22	15		
Upper Pannonian	RO-7	11,355	44	258		0	-	24	473	_	0	-		
 Lower Pleisto- cene / Vojvodina 	RS-7	10,506	11	955	0	yes	**	93	113	0	**	**		
/ Duna-Tisza														
köze deli r.	Σ	28,959	214	135				268	108					
8	— HU-8	1,152	59	20	0	24	18	108	11	24	31	22		
Podunajska	SK-8	2,186	133	16	0	**	**	274	8	136	**	**		
Basin, Zitny														
Ostrov /														
Szigetköz,	_	0 000	400	47										
Hanság-Rábca	Σ	3,338	192	17				382	9	40				
	HU-9	750	12	62	0	6 **	0 **	16	47	12	0 **	2 **		
9 Dedreg	SK-9	1,470	93 405	16	0	•••	•••	92	16	8	~~	•••		
Bodrog	Σ HU-10	2,220	105	21	^	10	6	108 16	21 31			0		
10 Clause also know	HU-10 SK-10	493 598	13 7	38 85	0 0	10 **	6 **	16 22	31 27	9 3	6 **	6 **		
Slovensky kras	SK-10 Σ	598 1,091	/ 20	55 55	U			38	27 29	3				
/Aggtelek-hsg.	2 HU-11	3,337	20	55 167	0	20	1	38 48	29 70	10	5	0		
Komarnanska	SK-11	3,337 563	23 4	107	0	20 **	۱ **	40	188	10	C **	U **		
Kryha /	01-11	000	4	141	U			5	100	-				
Dunántúli-khgs.														
Északi r.	Σ	3,900	27	144				51	76					
	HU-12	146	6	29	0	6	3	7	21	1	0	2		
12	SK-12	198	26	8	0	**	**	19	10	7	**			
Ipel / Ipoly	Σ	344	32	11				26	13					

*...GWBs overlying; ** no information; ² unrestricted data exchange on demand; + will be updated

Explanation to Table 3

Transboundary GWB	ICPDR GWB code which is a unique identifier and the name
Nat. part	Code of national shares of ICPDR GWB
•	Area of the whole transboundary ICPDR GWB covering all countries concerned and of
Area	the national shares of the ICPDR GWB in km ² .
CHEMICAL / QUANTITY	
Sites	Number of monitoring sites - Reference year (AT/DE 2018/19, BG 2016/19, RO
Sites	2017/19, SK 2018)
km²/site	Area in km ² represented by each site – Reference year (AT/DE 2018/19, BG 2016/19,
KIII-/Site	RO 2017/19, SK 2018)
Number of sites bilaterally	Number of monitoring sites for which transboundary data exchange is bilaterally
agreed for data exchange	agreed.
Associated to	
Drinking water protected areas	Number of monitoring sites associated to drinking water protected areas
Ecosystems	Number of monitoring sites associated to ecosystems

	AT/DE	BG	RS	HU	MD	RO	SK
Transboundary GWB	1	2,4	7	5-12	3	2 - 7	8-12
C	HEMICAL (with e	stimatio	n of fre	equency)			
Oxygen	1/a	>1/a	1/a	1/6; <1/a		1/a***	>1/a
pH-value	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Electrical conductivity	1/a (cont. DE)	>1/a	1/a	>1/a*		1/a	>1/a
Nitrate	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Ammonium	1/a	>1/a	1/a	>1/a*		1/a	>1/a
Temperature	cont.	>1/a	1/a	>1/a*		1/a	>1/a
Further parameters, e.g. major ions	x**	х	1/a	Х		Х	Х
		-			_		
operational		х		х		х	х
Q	UANTITY (with e	stimatio	n of fre	equency)			
GW levels/well head pressure	Х	х	х	х		Х	х
spring flows		х		х		Х	х
Flow characteristics							х
Extraction (not obligatory)	Х						
Reinjection (not obligatory)	Х						

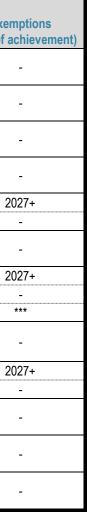
Table 4: Parameters and frequency for the surveillance monitoring program

Remarks:

Transboundary GWB:	Code of transboundary GWB of Danube basin wide importance
>1/a:	More than 1 per year
x:	Parameter is measured
*	In the starting year
**	A yearly program and a five year monitoring program were established. Further parameters in
	DE are chloride, sulphate and total hardness
***	Monitoring frequency is according to surveillance monitoring program. The frequency is
	>1/year (2/y) in case of operational monitoring program

GWB	Nat. part			Da	nube RBM Plai	n 2015					Danube	e RBM Plan 202	1		
		Chemical Status 2015	Status Pressure Types 2015	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2013 → 2021	Risk Pressure Types →2021	Exemptions from 2021	Chemical Status 2021	Status Pressure Types 2021	Significant upward trend (parameter)	Trend reversal (parameter)	Risk 2019→2027	Risk Pressure Types →2027	Exemptions (Year of achievement)
GWB-1	AT-1 DE-1	Good	-	-	-	-	-	-	Good	-	-	-	-	-	-
GWB-2	BG-2 RO-2	Good	-	-	-	-	-	-	Good	-	-	- Cl	· _	-	-
GWB-3	MD-3 RO-3	Good	-	-	-	Risk -	PS, DS, WA -	-	Good	-	-	-	-	-	-
GWB-4	BG-4 RO-4	Good	-	-	-	-	-	-	Good Poor	- DS	-	-	- Risk	- DS	- 2027
GWB-5	HU-5	Poor	DS	SO4	-	Risk	DS	2027	Poor	DS	NO3, NH4, EC, SO4	Cr. Dh	Risk	DS	2027+
GWB-6	RO-5 HU-6 RO-6	Good	-	NH4 -	-	-	-	-	Good	-	-	Cr, Pb -	-	-	-
GWB-7	HU-7 RO-7	Poor	DS	NO ₃	-	Risk	DS	2027	Poor	DS	-	- PO4, CI	Risk	DS	2027+
GWB-7	RO-7 RS-7	Good Good*	-	-	-	-		-	Good Good	-	-	- PO4, CI	-	-	-
GWB-8	HU-8 SK-8	Good Good	-	- NH4, NO3, CI, As, SO4	-	-	- PS, DS		Good	-	PO4	NH4 ^{, ***} , Cl ^{***} , SO4, TOC	- Risk	- PS, DS	-
GWB-9	HU-9 SK-9	Good	-	-	-	-	-	-	Good Poor	DS, PS	NH4 PO4	- NH4 [,]	Risk	DS	2027+
GWB-10	HU-10 SK-10	Good	-	-	-	-	-	-	Good	-	-	-	Risk	PS	-
GWB-11	HU-11 SK-11	Good Unknown	-	- Unknown*	-	-	-	-	Good	-	-	-	-	-	-
GWB-12	HU-12 SK-12	Good Poor	DS DS	NO3 SO4	-	Risk	-	-	Good Poor	- DS	-	-	- Risk	- DS	- 2027+

Table 5: Groundwater QUALITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027


'-' means 'No'; * The status information is of low confidence as it is based on risk assessment; ** Not yet discussed; *** The trend was partially reversed, it means for some sites identified with significant upward trends in the 2nd RBMP. TOC - total organic carbon

Explanation: see next page

GWB	Nat. part			Danube RBM Pla	n 2015				Danube RBM Plan 2	2021	
		Quantitative Status 2015	Status Pressure Types 2015	Risk 2013 → 2021	Risk Pressure Types →2021	Exemptions from 2021	Quantitative Status 2021	Status Pressure Types 2021	Risk 2019 → 2027	Risk Pressure Types →2027	Exem (Year of ac
GWB-1	AT-1 DE-1	Good	-	-	-	-	Good	-	-	-	
GWB-2	BG-2 RO-2	Good	-	-	-	-	Good	-	-	-	
GWB-3	MD-3 RO-3	Good	-	-	-	-	Good	-	-	-	
GWB-4	BG-4 RO-4	Good	-	-	-	-	Good	-	-	-	
	HU-5	Poor	WA	Risk	WA	2027	Poor	WA	Risk	WA	20
GWB-5	RO-5	Good	-	-	-	-	Good	-	-	-	
GWB-6	HU-6 RO-6	Good	-	-	-	-	Good	-	-	-	
	HU-7	Poor	WA	Risk	WA	2027	Poor	WA	Risk	WA	20
GWB-7	RO-7	Good	-	-	-	-	Good	-	-	-	
	RS-7	Poor*	WA	Risk	WA	**	Poor	WA	Risk	WA	ż
	HU-8	Poor	WA	Risk	WA	2027	Cood				
GWB-8	SK-8	Good	-	-	-	-	Good	-	-	-	
GWB-9	HU-9	Cood					Poor	OP	Risk	OP	20
GWB-9	SK-9	Good	-	-	-	-	Good	-	-	-	
GWB-10	HU-10 SK-10	Good	-	-	-	-	Good	-	- Risk	- WA	
GWB-11	HU-11 SK-11	Good Unknown	_	-	-	-	Good	-	-	-	
GWB-12	HU-12 SK-12	Good	-	-	-	-	Good	-	-	-	

Table 6: Groundwater QUANTITY: Risk and Status Information of the ICPDR GW-bodies over a period of 2013 to 2027

- ... no / not applicable; * ... Status information is of low confidence as it is based on risk assessment; ** ... not yet discussed; ***... information will be provided, when the Plan is officially adopted.

Explanation to Table 5 and Table 6

Explanation to Tuble 5 and Tuble 6								
GWB	ICPDR GWB code which is a ur	CPDR GWB code which is a unique identifier.						
Nat. part	Code of national shares of ICPD	R GWBs						
Danube RBM Plan 2015	Danube RBM Plan 2021							
[Chemical/Quantitative] Status 2015	Status 2021	Good / Poor / Unknown						
Status Pressure Types 2015	Status Pressure Types 2021	Indicates the significant pressures causing poor status in 2015. $AR =$ artificial recharge, $DS =$ diffuse sources, $PS =$ point sources, $OP =$ other significant pressures, $WA =$ water abstractions						
Significant upward trend (parameter)	Significant upward trend (parameter)	Indicates for which parameter a significant sustained upward trend has been identified.						
Trend reversal (parameter)	Trend reversal (parameter)	Indicates for which parameter a trend reversal could have been achieved.						
Risk 2013→2021	Risk 2019→2027	Risk / - (which means 'no risk')						
Risk Pressure Types →2021	Risk Pressure Types →2027	Indicates the significant pressures causing risk of failing to achieve good status in 2021. AR = artificial recharge, DS = diffuse sources, PS = point sources, OP = other significant pressures, WA = water abstractions						
Exemptions from 2021	Exemptions (Year of achievement)	Indicates the year by when good status is expected to be achieved.						

10

Table 7: Groundwater QUALITY: Status 2021 - Reasons for failing good groundwater chemical status in 2021 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of status assessment	Chemical Status 2021	Which parameters cause poor status	Failed general assessment of GWB as a whole	Saline or other intrusion	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Art 7 drinking water protected area affected
				good /poor	parameter	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	Good	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	Good	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2018 2017	Good	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	Good Poor	- NO3	- Yes	-	-	-	-
GWB-5	Mures / Maros	HU-5	2020	Poor	NO3, SO4, NH4, CI,	-	-	-	-	Yes (NO ₃ , SO ₄ , NH ₄ , Cl)
		RO-5	2017		NO ₃	Yes				-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	Good	-	-	-	-	-	-
GWB-7	Upper Pannonian – Lower Pleistocene /	HU-7 RO-7	2020 2017	Poor Good	NO ₃	Yes (NO ₃₎	-	-	_	-
	Vojvodina / Duna-Tisza köze deli r.	RS-7	2019	Good	-	-				
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2013-2018	Good	-	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2013-2018	Good Poor	- NH4, PO4	Yes	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2013-2018	Good	-	-	-	-	-	-
GWB-11	Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2020 2013-2018	Good	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2013-2018	Good Poor	- NO3, SO4, PO4	- Yes	-	-	-	-

'-' means 'No'; * The status information is of low confidence as it is based on risk assessment;

Table 8: Groundwater QUALITY: Risk 2027 - Reasons for risk of failing good groundwater chemical status in 2027 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of risk assessment	,at risk' 2021	Which parameters cause risk	Failed general assessment of GWB as a whole	Saline or other intrusions	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Art 7 drinking water protected area affected
				Risk / -	parameter	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)	Yes / - / Unknown (parameter)
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	-	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	- Risk	- NO3	- Yes	-	-	-	-
GWB-5	Mures / Maros	HU-5	2018	Risk	NH4, glyphosate*, Cl, SO4	Yes (NH4)	-	-	-	Yes (NO ₃ , Cl, SO ₄₎
GWB-6	Somes / Szamos	RO-5 HU-6	2017 2018	<u> </u>	NO ₃	Yes _				-
		RO-6 HU-7	2017	Risk	Glyphosate*, EC,	Yes (NH ₄ , NO ₃)				NO3, EC
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.	R0-7	2018 2017	-	NH4, NO3 -	-	-	-	-	-
GWB-8	Podunajska Basin, Zitny Ostrov /	RS-7 HU-8 SK-8	2019 2018 2020	- -	- - - NH4	-	_	-	-	- Yes
GWB-9	Szigetköz, Hanság-Rábca Bodrog	HU-9 SK-9	2020 2018 2020	Risk Risk	NH4 NH4 NH4, PO4	- Yes	-	-	-	Yes (NH4)
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020	Risk	TCE	-	-	-	-	TCE
GWB-11	Komarnanska Kryha / Dunántúli-khgs. északi r.	HU-11 SK-11	2018 2020	-	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2018 2020	- Risk	- NO3, PO4, SO4	- Yes	-	-	-	-

'-' means 'No'; * based on single data after risk assessment period

Table 9: Groundwater QUANTITY: Status 2021 - Reasons for failing good groundwater quantitative status in 2021 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of status assessment	Quantitative status 2021	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or lik to alterations of flow direct level chan
				good / poor	Yes / - / Unknown	Yes / - / Unknown	Yes / - / Unknown	Yes / - / Unknown If yes, which?	Yes / - Unknow
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	Good	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	Good	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2017	Good	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	Good	-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Poor Good		-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	Good	-	-	-	-	-
GWB-7	Upper Pannonian – Lower Pleistocene / Vojvodina / Duna- Tisza köze deli r.	HU-7 RO-7 RS-7	2020 2017 2019	Poor Good Poor	Yes - Yes	- - Unknown	Yes - Unknown	- - Yes	- - - Unknow
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2013-2017	Good	-	-	-	-	-
GWB-9	Bodrog	HU-9 SK-9	2020 2013-2017	Poor Good	Yes -	-	-	-	Unknow -
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2013-2017	Good	-	-	-	-	-
GWB-11	Komarnanska Kryha / Dunántúli- khgs. északi r.	HU-11 SK-11	2020 2015-2017	Good	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2013-2017	Good	-	-	-	-	-

likely to happen due rections resulting from anges
/- / own
_
own
own

Table 10: Groundwater QUANTITY: Risk 2027 - Reasons for risk of failing good groundwater quantitative status in 2027 for the ICPDR GW-bodies.

GWB	GWB Name	National part	Year of risk assessment	ʻat risk' 2027	Exceedance of available GW resource	Failed achievement of Article 4 objectives for associated surface waters	Significant damage to GW dependent terrestrial ecosystem	Uses affected (drinking water use, irrigation etc.)	Intrusions detected or likely to happen due to alterations of flow directions resulting from level changes
				Risk / -	Yes/- / Unknown	Yes / - / Unknown	Yes/-/ Unknown	Yes / - / Unknown If yes, which?	Yes /- / Unknown
GWB-1	Deep GWB – Thermal Water	AT-1 DE-1	2020	-	-	-	-	-	-
GWB-2	Upper Jurassic – Lower Cretaceous GWB	BG-2 RO-2	2019 2017	-	-	-	-	-	-
GWB-3	Middle Sarmatian - Pontian GWB	MD-3 RO-3	2018 2017	-	-	-	-	-	-
GWB-4	Sarmatian GWB	BG-4 RO-4	2019 2017	-	-	-	-	-	-
GWB-5	Mures / Maros	HU-5 RO-5	2020 2017	Risk -		-	Yes -	-	-
GWB-6	Somes / Szamos	HU-6 RO-6	2020 2017	-	-	-	-	-	-
GWB-7	Pleistocene / Vojvodina / Duna-	HU-7 RO-7	2020 2017	Risk -	Yes -		Yes -	-	
	Tisza köze deli r.	RS-7	2019	Risk	Yes	Unknown	Unknown	Yes, DW	Unknown
GWB-8	Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca	HU-8 SK-8	2020 2017	-	-	-	-	-	-
GWB-9	Dedreg	HU-9	2020	Risk	Yes				
GWD-9	Bodrog	SK-9	2017	-	-	-	-	-	-
GWB-10	Slovensky kras / Aggtelek-hgs.	HU-10 SK-10	2020 2017	Risk	-	- Yes	_	-	-
GWB-11	Komarnanska Kryha / Dunántúli-	HU-11 SK-11	2020 2017	-	-	-	-	-	-
GWB-12	Ipel / Ipoly	HU-12 SK-12	2020 2017	-	-	-	-	-	-

- means 'No';

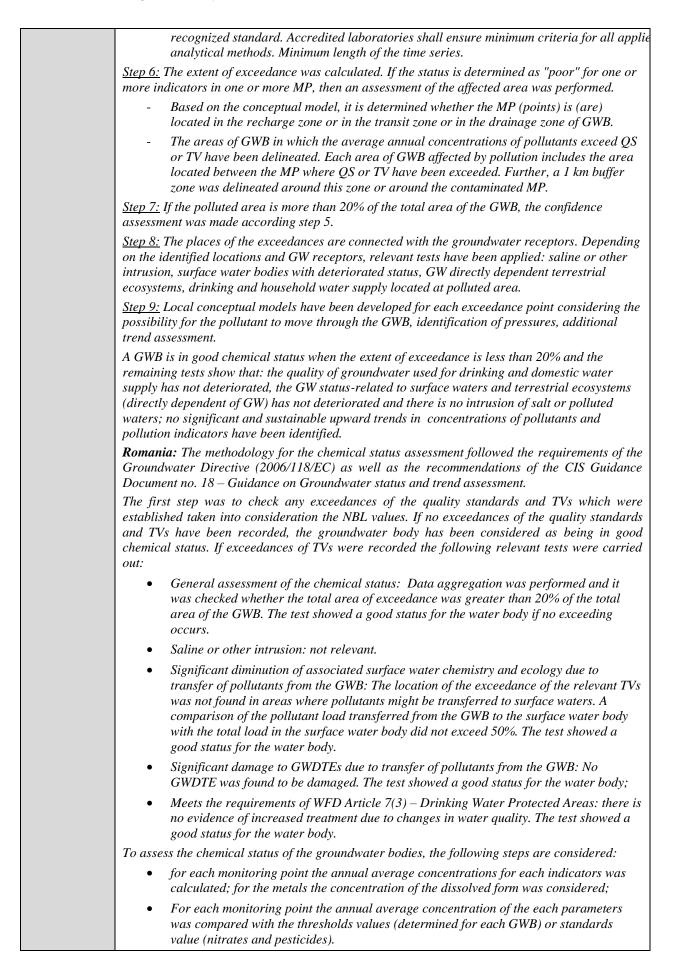
likely to happen due rections resulting from anges
/- / own
own

Table 11: Summary table: Groundwater threshold values

		GWB-1	GWE	3-2	GWB-3	GW	B-4	G	WB-5	GV	VB-6	GWB-	7		GWB-8	GV	VB-9	GW	B-10	GWB-11	GWB	3-12
Parameter	unit		BG-2	RO-2	RO-3	BG-4	RO-4	RO-5	HU-5	HU-6	RO-6	HU-7	R0-7	HU-8	SK-8	HU-9	SK-9	HU-10	SK-10	HU-11 SK-11**	HU-12	SK-12
Ammonium	mg/l		0.4487	0.5	6.4	0.38	0.7	0.5–1.9	2–5	2–5	0.5–1.3	2–5	6.4	1–2	0.26	2–5	0.30	0 .5	0.27	0.5–no TV	2	0.90
AOX	µg/l								20	20		20		20		20		20		20–no TV	20	
Arsenic	µg/l		7.6	10	10	7.7	10	40		-	10				6		6		5.5			6
Benzene	µg/l			10	10		10	10			10		10		0.8		0.8		0.8			0.8
Cadmium	µg/l		3.8	5	5	3.9	5	5	5	5	5	5	5	5	3.0	5	3.0	5	2.7	5–no TV	5	2.9
Chloride	mg/l		189	250	250	188.75	250	250	250-500	250	250	250	250	250	135.8-137.3	250	147.4	250	131.8	250–no TV	250	135.7
Chromium	µg/l		38.875		50	38.25		50			50		50		26		27		25			26
COD Mn	mg O2/I		3.975			3.8625																
Conductivity	µS/cm		1640.625			1713.6			2500-4000	2500		2500-4000		2500		2500		2500		2500–no TV	2500	
Copper	µg/l		152.7		100	150.1		100			100		100		1001-1002		1004		1001			1003
Cyanides	mg/l		0.04			0.04																
Iron total	mg/l		0.1607			0.15									0.125-0.135		0.150		0.105			0.150
Lead	µg/l		8.1	10	10	7.6	10	10–20	10	10	30–70	10	10	10	6.5-7.0	10	9.0	10	5.5	10–no TV	10	7.0
Manganese	mg/l		0.038			0.038									0.030		0.030		0.027			0.100
Mercury	µg/l		0.8	1	1	0.8	1		1	1	1	1	1	1	0.7-0.8	1	0.7	1	0.6	1–no TV	1	0.6
Nickel	µg/l		15.05		20	15.5	20	20			20		20									
Nitrates**	mg/l		38.5			39.87												25		25–50–no TV		
Nitrites	mg/l		0.3801	0.5	0.5	0.375	0.5	0.5			0.5		0.5		0.26		0.26		0.26			0.26
Phenols	µg/l							2			2		4									
Phosphates	mg/l		0.3805	0.5	1.4	0.3798	0.5	0.5–0.6			0.5		1		0.22		0.22		0.24			0.24
Orthophosphate	mg/l								2–5	0.5–2		1–5		1		1–2		0.25		0.25-no TV	2	
Sodium	mg/l		156.75			158.25									104.5-105.8		111.0		52.3			119.8
Sulphates	mg/l		192	250	250	189	250	250	250–500	250	250	250–500	250	250	148.9–157.6	250	167.4	250	167.6	250–no TV	500	140.8
Tetrachloroethylen	µg/l		7.5*	10	10	7.5*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Trichlorethylene	µg/l		*	10	10	*	10	10	10	10	10	10	10	10	7.5*	10	7.5*	10	7.5*	10	10	7.5*
Zinc	mg/l		0.777		5	0.7537	5	5			5		5									
Pesticides total**			0.375			0.375																

*...7.5 for Tetrachloroethylen + Trichlorethylene; ** the quality standards for nitrates (50 mg/l) and for pesticides (0.1 for individual pesticides and relevant metabolites and 0.5 for total pesticides) are not mentioned in the table. **...The criterion for evaluating the chemical status of geothermal GWB is the stability of the chemical composition

Methodologies of status and trend assessment of the ICPDR GW-bodies


GWB-1: Deep Groundwater Body – Thermal Water

GWB-1		National share	AT-1 DE-1	Status 2021 for GW						
				Chemical (substance)	Quantity					
List of individual	GW-bodies forming	AT	ATGK100158	Good	Good					
the whole national	l share (national code	DE	DEGK1110	Good	Good					
incl. country code)									
Description/Cha racterisation of the ICPDR GW- body	Molasse Basin is of tr The geothermal used The transboundary G 55 km. The aquifer is below sea level in the is mainly composed of precipitation in the no 820 l/s. The GW-body	ansboundary import water is totally re-in W-body covers a tot Malm (karstic limes Bavarian part and 2 f subterranean inflo- orthern part of the G • is selected as of bas	rst (Upper Jurassic) in the tance. It is used for spa pu- jected in the same aquifer al area of 5,900 km ² ; the tone); the top of the Maln 2,000 m in the Upper Aust w of the adjacent Bohemid WB area. The total groun sin-wide importance beca ral exchange of informati	urposes and to gain ge r. length is 155 km and t n reaches a depth of m trian part. The ground an Massif and infiltrat ndwater recharge was use of its intensive use	othermal energy. he width is up to nore than 1,000 m lwater recharge tion of determined to e. An expert					
Description of	Chemical Status									
status assessment methodology.	Chemical Status The chemical status of the deep GWB will be described on the basis of measurement and analysis data according to a procedure agreed between the two states. The decisive parameters for the evaluation of the qualitative status of near-surface GWBs (such as nitrate and pesticides) are not relevant for deep GWBs.									
	As expected, the parameters measured in the GWB extending over 5900 km ² differ (in some cases considerably) from site to site. This is due to regionally different geo-hydraulic conditions. Therefore the description of the qualitative status cannot be made in the same way as that for near-surface GWBs (on the basis of aggregated data), but made on the basis of measurement and analysis data available at every individual measuring site. Contrary to near-surface GWBs, it should be considered that, due to the utilization of the waters (balneological and thermal uses), good status is not only not achieved if the concentration of certain contents rises above a certain level, but also if it falls below it. The available data is presently not sufficient to identify precisely enough the scope of fluctuations relevant for individual parameters at the individual measuring sites.									
	Good chemical status is considered to be reached if the threshold value (TV) of the decisive parameters neither exceed nor fall below the scope of fluctuations determined for every measuring site. It is planned to examine the current selected scope of fluctuations on the basis of many years of monitoring, (at least over a period of 10 years) and to adapt them, where required.									
	In any case, the GWB is considered to be in a good chemical status if at least 75% of the measuring sites meet good status.									
	The following parameters are used as a basis for the determination of the qualitative status of the deep GWB: temperature, electrical conductivity, total hardness, sulphate and chloride.									
	Quantitative Status									
	No Changes since 2009									
	There is no interaction between deep groundwater and surface waters and/or terrestrial ecosystems.									
	The quantitative status of the deep GWB can be described by means of:									
	- the identification of trends over a period of many years monitoring of the level of hydraulic pressure at groundwater measuring sites and wells;									
	- a balancing calculation: a comparison between the thermal water supply and thermal water abstractions.									
	Apart from Bad Füssing (records since 1948), no long-term monitoring of pressure potentials that would be significant for a trend analysis is available.									
	As early as in 1998, detailed thermal water balancing was carried out for the deep GWB. In the course of this balancing an exploitation of the available thermal water resources by thermal water abstractions of about 25% was recorded, which corresponds to a good quantitative status (at least 30% of the quantity available).									
			as been considerably red gs the obligation to reinje							

	the thermal waters of With a view to the reg abstracted water quan	is could be even further improved on the basis of the level of hydraulic pressure in ad Füssing which has risen again since then. onally uneven distribution of the available quantity, water abstraction points and ities, a sub-division of the balance area into sub-areas can be made. For these nce parameters can be determined separately						
Groundwater threa relationships	shold value	No changes since 20	015					
Verbal description assessment metho		No changes since 2015						
Verbal description reversal assessme		No changes since 2015						
Threshold values	per GWB							
Pollutant / Indicator		TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]			

GWB-2: Upper Jurassic – Lower Cretaceous GWB

GWB-2		National share	BG-2, RO-2	Status 2021 for each national GWB?									
				Chemical (substance)	Quantity								
List of individua	l GW-bodies	BG-2	BG1G0000J3K051	Good	Good								
	le national share	RO-2	RODL06	Good	Good								
(national code in	ncl. country code)												
Description/C haracterisation of the ICPDR GW-body	BG1G0000J3K051 additional sub-divis lithological compos strata consists of me mentioned deposits small cropped out a	(Upper Jurassic-I ion on the basis o ition of GWB is: l arls, clays, sands, is Hauterivian, Sa ureas the GWB is y	tifying the geographical be Lower Cretaceous) is the g of groundwater flow lines of imestones, dolomitic limes limestones, pebbles and lo urmatian, Pliocene and Qu very well protected. There is for drinking water, agric	geological bounda and piezometric ha stones and dolomi pess. The age of th aternary. With th is no significant is	ries. After that eads.The tes. Overlying ne above e exception of mpact on the								
	Romania: Criteria permeable deposits limestones, dolomit	for delineation is and water conten ic limestones and and loess. The ag	development of Upper Jur t in these deposits. The lith dolomites. Overlying strat e of the above mentioned of	assic-Lower Creta hological composi a consists of marl	aceous tion is s, clays, sands,								
	Groundwater body RODL06- Valachian Platform has great extension and partially covers Valah platform. It is a transboundary water body of great potential, the depth aquifer having partially a free level (in the sector adjacent to the Danube) and is quartered in calcareous formations, sometime fissured and karstic, with regional extension in the whole South Dobrogea. These deposits are characterized by a hydraulic communication through an aquitard.												
	From the geological point of view, this aquifer complex has a complex structure, being divided by a system of major older than the Sarmatian fault with orientations approximately NNE-SSW and WNW-ESE.												
	Excluding small cropped out areas the GWB is very well protected. The main use is for drinking water supply, agriculture and industry supply. In Romania the GWB has an interaction with Lake Siutghiol situated near the Black Sea.												
	The criterion for se	lection as 'import	ant' is for both GWBs the	size which exceed	s 4,000 km ²								
Description of	Chemical Status												
status assessment	Bulgaria: Assessment of the chemical status of groundwater has been done by carrying out the following tests and steps:												
methodology.	GQA-Test: General assessment of the chemical status of GWB.												
	<u>Step 1:</u> Calculation of arithmetic means per monitoring point (MP) for each indicator for the period 2017-2020. Values below LoQ are replaced by ½ LoQ.												
	<u>Step 2:</u> Comparison of arithmetic means with the lowest QS or TVs (EQS, intrusion of salt or polluted waters, drinking water standard or other).												
	<u>Step 3: Assessment of the chemical status in the area of the MP:</u>												
	- If for all indicators, the status is "good", then the GWB in the area of the MP is "good";												
	- If for one or more indicators, the status is "poor", then the GWB in the area of the MP is "poor". In this case, a careful analysis was carried out of the primary hydrochemical data. If the data are doubtful or insufficiently reliable, the indicator (indicators) are rejected from the final assessment and a respective justification for this is presented.												
	Step 4: If in the areas of all MP the status is good, the GWB is determined 'good' and no other tests are needed.												
	<u>Step 5:</u> The confider	nce of the assessm	ent is determined by the fe	ollowing criteria:									
	 Density of the monitoring points in GWB: low (1 MP on area > 200 km²); medium (1 MP on area 50–200 km²), high (1 MP on area <50 km²); 												
					 MP on area 50–200 km²), high (1 MP on area <50 km²); Data have to meet the following requirements: All analytical methods are validated in accordance with standard BDS EN ISO / IEC-17025 or other equivalent internationally 								

	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
	 The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average during the whole observation period
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Bulgaria: Drinking Water standards
relationships	
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu,
	Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian
	<i>Regulation N-9.</i> <i>When NBL > CV, the TV is equal to NBL.</i>
	When $CV > NBL$, the $TV = NBL + Ktv^*$ (CV-NBL). $0 < Ktv < 1$

	Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1st branch – till the date of the maximum and the second branch - after the peak.
	 In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment. Initially, the entire curve of the experimental data is approximated by a polynomial curve of
	degree 2 (quadratic regression curve). If there is detected a maximum in the polynomial curve it means that a change of the direction
	of the trend is available - from ascending to descending. If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.

	<i>Then, (in case of available maximum) the entire curve is divided into two branches:</i> 1 st branch – <i>till the date of the maximum and the second branch - after the peak</i>								
	In case with	available minimum:	1^{st} branch – till the date of the		nd branch				
	- after the m		anoh ano oonsidonod oon anatoh	and any approximate	I had line and				
	Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines								
	corresponds to the date at which it changes the direction of the linear trend - from ascending to								
	descending or from descending to ascending								
	By extrapola	ntion of the second (f	alling) trend can be predicted of	date at which the start	ing				
	concentratio		ur case 60% TV) will be reache						
		-	ment methodology consists also	o in the use of Gwstat .	software.				
			ue series can be characterized l						
			(analysis period). Thus, by ap						
			end is identified, if in the first						
		e pollutant concentra	n the slope of the trend is nega ation tendency:	live. The stages of the	metnoa oj				
	• opt	imizing the choice of	f time sections regarding the sh	ape of the resulting m	odel				
			nce of the rift for the simple lin	ear regression model l	based on				
	the	square of the residu	e sum						
			test to verify that the 2-section.	s model is significantly	more than				
	a si	mple regression mod	del.						
Threshold	d values per GWB								
					Related				
				Level of TV	to risk in				
				establishment	this				
	Pollutant /	TV (or range)		(national, RBD,	GWB				
	Indicator	[unit]	NBL (or range) [unit]	GWB)	[yes/-]				
RO	Nitrates	50 mg/l		National	-				
RO	Benzen	10 μg/l		National	-				
RO RO	Tricloretilena Tetracloretilena	10 μg/l		National National	-				
RO	Ammonium	10 μg/l 0.5 mg/l	0.31mg/l	GWB	-				
RO	Chlorides	250 mg/l	73,87 mg/l	GWB	-				
RO	Sulphates	250 mg/l	71,44 mg/l	GWB	-				
RO	Nitrites	0.5 mg/l	0.039 mg/l	GWB	-				
RO	Phosphates	0.5 mg/l	0.08 mg/l	GWB	-				
RO	Cadmium	0.005 mg/l	0.0001mg/l	GWB	-				
RO	Mercury	0.001 mg/l	0.000042 mg/l	GWB	-				
RO	Lead	0.01 mg/l	0.0011 mg/l	GWB	-				
RO	Arsenic Nitratas	0.01 mg/l	0.00075 mg/l	GWB	-				
BG BG	Nitrates Pesticides sum	38.5 mg/l 0.375 µg/l	2.2 mg/l	GWB GWB	-				
BG BG	Arsenic	0.0076 mg/l	0.0004 mg/l	GWB					
BG	Lead	0.0070 mg/l	0.0026 mg/l	GWB					
BG	Cadmium	0.0038 mg/l	0.0002 mg/l	GWB					
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB					
BG	Ammonium	0.4487 mg/l	0.295 mg/l	GWB					
BG	Chlorides	189 mg/l	6 mg/l	GWB					
BG	Sulphates	192 mg/l	18 mg/l	GWB					
BG	<i>Tri</i> + <i>Tetrachlo</i> - <i>roethyle</i>	7.5 μg/l		GWB					
BG	Conductivity	1640.625 µS/cm	562.5 μS/cm	GWB					
BG	Manganese	0.038 mg/l	0.022 mg/l	GWB					
BG	Total Iron	0.1607 mg/l	0.043 mg/l	GWB					
BG	Nitrites	0.3801 mg/l	0.0207mg/l	GWB					
BG	Sodium	156.75 mg/l	27 mg/l	GWB					

BG	Chromium	38.875 mg/l	5.5 μg/l	GWB
BG	Cupper	0.1527 mg/l	0.0108 mg/l	GWB
BG	Nikel	15.05 μg/l	0.2 μg/l	GWB
BG	Zink	0.777 mg/l	0.109 mg/l	GWB
BG	COD - Mn	3.975 mgO2/l	0.9 mgO2/l	GWB
BG	PO4	0.3805 mg/l	0.022 mg/l	GWB
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB

GWB-3: Middle Sarmatian - Pontian GWB

GWB-3		National share	MD-3 RO-3	Status 2021 for GW	
				Chemical (substance)	Quantity
List of individua	al GW-bodies		MDPR01	Good	Good
	ole national share		ROPR05	Good	Good
(national code in	ncl. country code)				
Description/C haracterisation of the ICPDR GW-body	deposits on the terr River Basins. Lithol thin layer. Geologic Buglovian, Volhynia Sarmatian deposits considered that the the Early Buglovian Meotian boundary, Lithologically, the v medium grain-size (350 meters. Hydrogeologically of areal differences, of differences of quant The overlying strata The groundwater is The criterion for set Republic of Moldov lines; chemical and interaction. The MI <u>Silurian - Cretaceon</u> for centralized wate limestone, sandston from 50-60 m to 100 Dominating values m/day, Km=10-50 r heterogenous. In the and dominating hyd south chemical com sulphate-sodium an increases to 2-10 m <u>Baden-Sarmatian</u> a water supply. Water sand, sometimes cla	itories of Neamt, Baca logically, the water-be cally, the wells have pro- an, Basarabian and C thickness is highly van Sarmatian deposits un a is lacking. The upper is difficult to assign d vater-bearing deposits (sands, rarely gravels) and hydrochemically, f quantitative and qua- titative order are espe- a is represented by cla- mainly used for drink lection as "important pa: Criteria for deline one quantitative statu O GWB consists of five us aquifer (S-K2) is sp or supply only in the nu- e, with interlayers of O-120 m. Water bearin of hydraulic conductive n2/day). The chemical e northern part of the loccarbonate-sulphate position of the aquifer d hydrocarbonate so g/l. quifer (N1b-s) is the n r-bearing layers are ra- tys, marls and gypsum	the GWB was the deve au and Vaslui districts, earing deposits are con- ierced the following su- hersonian. The wells a riable, going from 295 aconformably overlay boundary of Sarmatia ue to the lack of sure p s are constituted of this), sometimes with lens the investigation of we litative order, both how cially due to the Sarma y of about 50 meters to sing water supply, agru consists in its size the ation are: geological h us; GWB vulnerability; e deep aquifers. pread on the whole terr orthern part of the bas Silurian marls and arg ng capacity of the aquity vity and transmissivity l composition of the Si basin fresh groundwas r the characteristics is lium type and the amount nost productive and me epresented by limestor at 25 m. In the norther	situated in the Si astituted of sands ab-stages of the Sa lata have indicate in (Iaşi) to 886 m the Late Badeniar an, respectively the baleontological ele n layers with fine aspect, situated a ells data has revea rizontally and ver- atian deposits gra hickness. icultural and indu- at exceeds 4,000 k boundaries; groun surface-groundw ritory of the basin in. Groundwater rilites with total th fers vary in a wid are rather low (K lurian-Cretaceous ters with minerali, ions are detected. changing to hydr unt of total dissolv ost important for o the with interlayers ifer reaches 50 m,	ret and Prut and sandstones urmatian: d that the ($Barlad$). It is a ones, because the Sarmatian- ements. towards t depth of 30– aled important tically. The in size. strial supplies. cm^2 . adwater flow vater and it is used is contained in ickness varying fe range. C=0.12-0.37 s aquifers is sation <1g/1 Going to the ocarbonate- red solids centralized of fine grained in some places

	sediments outcrop to the pre-Quaternary surface and these areas coincide with the recharge zones of the aquifer. Groundwater is discharging into the valley of Prut's tributaries. Southwards Baden-Sarmatian aquifer occurs deeper and near the village Gotesti it was detected by drilling at the depth of 572 m.Hydraulic properties of the aquifer are rather poor. Hydraulic conductivity reaches 1–12 m/day, with mean values of 5 m/day, transmissivity is also low – only 5–20 m ² /day. Capacity of wells varies in a range of 0.09–8l/s.
	When water bearing rocks are composed of limestones they contain fresh or slightly mineralised hydrocarbonate-calcium-sodium water with mineralization below 1 g/l. Such areas, however, are rather scarce and groundwaters with mineralization above 1 g/l are prevailing in the basin.
	<u>Upper Sarmatian Meotic</u> aquifer system (N1s3-m), which can be included in this GWB is only partially exploited for groundwater abstraction in the southern part of the river basin. Sarmat- Meotis deposits in the area are represented by fine-grained sands and clay with the lenses of quartz sand with total thickness of the aquifer 60–70 m. This sand is water-bearing and contains good quality water. The thickness of water bearing layers is 4–5 m. Yields of exploitation wells vary between 3 and 7 m ³ /h. Waters from the aquifer system are supplying the needs of several enterprises. Near the Prut river valley yields of the wells increase to 10 m ³ /h with the drawdown of up to 30 m. This aquifer contains hydrocarbonate-sodium waters with total mineralization of 1-1.5 g/l. In some areas chemical composition changes to sulphate-hydrocarbonate-sodium and mineralization increases to 2 g/l. Hydraulic parameters of the aquifer are rather poor: hydraulic conductivity varies between $0.8-5$ m/day with mean values of 2.3 m/day and transmissivity changes in a range of $10-25$ m ² /day, mean being 5 m ² /day.
	Groundwater monitoring results over three wells for the period from 2005 to 2009 indicate a decrease in the level of groundwater. The rate of decrease is 0.5–1.4 meter per year. This can be attributed to an increase in the water abstraction from the operating wells located in the vicinity.
	<u>Middle Sarmatian (Congeriev) aquifer</u> (N1s2) is used for a centralised water supply in the southern part of Republic of Moldova. Groundwater is contained in fine-grained sands with interlayers of clays, sandstones and limestones. Thickness of water bearing sediments varies from 5–15 m to 40–50 m with mean values of 20–30 m. Hydraulic properties of water bearing sands are quite poor. Hydraulic conductivity changes from 0.6 to 1.9 m/day average being 1.3 m/day. Transmissivity values are also very low and do not exceed 20–50 m ² /day. Depth to groundwater aquifer depends on the landscape and varies from 1.5 to 100 m. Yields of wells vary from 5 to 75 l/s. When hydrocarbonate-sulphate-chloride anions dominate in groundwater its mineralisation is below 1.5 g/l. When chloride–hydrocarbonate and sodium ions prevail total mineralization increases up to 2 g/l. Monitoring of the aquifer indicates a slight decrease in groundwater level with the rate of 0.4–0.65 m/a.
	 <u>Pontian aquifer (N2p)</u> is spread in the southern part of Republic of Moldova. Water bearing sediments are composed of sandy clays with interlayers of sand and shell limestone with the total thickness of 70–80 m.Prevailing hydraulic properties of water bearing sands are rather poor. Hydraulic conductivity changes from 3.5–3.7 with mean values of 3 m/day. Transmissivity coefficient varies between 18–45 m²/day in some places (e.g. Giurgiulesti village) increasing to 250–260 m²/day. Depth to groundwater aquifer depends on the landscape and varies from 2 to 125 m. Yields of wells vary from 1.1–2.3 l/s, increasing southwards to 3.7–7.6 l/s. Near the village of Taraklia few springs are discharging into Prut river valley with the capacity of 8–9 l/sec. Aquifer contains fresh groundwater with mineralisation <1 g/l (figure 2.6) and prevailing ions of hydrocarbonate -sulphate-chloride-sodium, sometimes sulphate –hydrocarbonate-sodium. Groundwater from this aquifer is used for drinking and agricultural water supply.
Description of	Chemical Status
status assessment methodology.	Republic of Moldova: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step was to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs have been recorded, the groundwater body has been considered as being in good

chemic out:	al status. If exceedances of TVs were recorded the following relevant tests were carried
•	General assessment of the chemical status: Data aggregation was performed and it was checked whether the total area of exceedance was greater than 20% of the total area of the GWB. The test showed a good status for the water body if no exceeding occurs.
٠	Saline or other intrusion: not relevant.
•	Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: The location of the exceedance of the relevant TV was not found in grass where pollutants might be transforred to surface waters.

•	Significant alminution of associated surface water chemistry and ecology due to
	transfer of pollutants from the GWB: The location of the exceedance of the relevant TVs
	was not found in areas where pollutants might be transferred to surface waters. A
	comparison of the pollutant load transferred from the GWB to the surface water body
	with the total load in the surface water body did not exceed 50%. The test showed a
	good status for the water body.

- Significant damage to GWDTEs due to transfer of pollutants from the GWB: No *GWDTE* was found to be damaged. The test showed a good status for the water body;
- Meets the requirements of WFD Article 7(3) Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality. The test showed a good status for the water body

To assess the chemical status of the groundwater bodies, the following steps are considered:

- for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
- For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
- The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
- The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.

Quantitative Status:

Republic of Moldova: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance № 18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole period.

Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Republic of Moldova:
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC.

				gher than MAC, a small addition		l, in order
		to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$). The updated list of TVs established for each GWB was published in the new Order of the Minster				
		no. 621/2014	approving TV for g	groundwater bodies from Roman	via.	
Verbal description the trend		chemical and at least 22 ye	alysis from the moni ears (1996-2018).	o assess the trend in pollutant co toring points have been used. M	inimum period of ana	lysis was
assessmen methodolo	-		n the monitoring pol	trend in pollutant concentration ints have been used. Minimum po		
		of the data fr		significant upper trends consists g points on groundwater bodies.		
		The steps use	ed for trend assessm	ent were:		
				ing points and the associated res es, for each year of reference pe		lysis,
		• Esta	ablishment of baseli	ne concentration for each paran d during the year 2000		
			0	werage for the available data in	each monitoring poin	nt
			-			
		-		ds were identified by Gwstat sof		
Verbal descriptio the trend reversal assessmer methodolo	nt	This method change with distribution, positive, and	assumes that the tim in the time interval (a reversal of the tre	ment methodology consists also ne series can be characterized by analysis period). Thus, by apply nd is identified, if in the first sec on the slope of the trend is negat ation tendency:	y two linear trends wi ing the 95% quantile tion the slope of the t	th a slope of the rend is
		• opti	mizing the choice of	f time sections regarding the sha	pe of the resulting m	odel;
		_		nce of the rift for the simple line		
			square of the residu		0	
			ducting a statistical mple regression mo	test to verify that the 2-sections del.	model is significantly	more than
Threshold	d value	es per GWB				
			l	1		Related
	Pollu Indic	tant / ator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	to risk in this GWB [yes/-]
RO	Nitra		50 mg/l		National	-
RO	Benze		10 μg/l		National	-
RO	Tricl	oretilena	10 μg/l		National	-
RO	-	cloretilena	10 μg/l		National	-
RO		onium	6.4 mg/l	5,34 mg/l	GWB	-
RO	Chlo		250 mg/l	78,87 mg/l	GWB	-
RO	Sulphates Nitrites		250 mg/l	192 mg/l	GWB CWP	-
RO RO	-		0,5 mg/l 1,4 mg/l	0.34 mg/l 1,13 mg/l	GWB GWB	-
RO	Phosphates Chromium		0,05 mg/l	0.0003033 mg/l	GWB	-
RO	Nicke		0,02 mg/l	0.00053 mg/l	GWB	-
RO	Copp		0,1 mg/l	0.00307 mg/l	GWB	-
RO	Zinc		5 mg/l	0.02425 mg/l	GWB	-
RO	Cadn		0,005 mg/l	0.0000455 mg/l	GWB	-
RO	Merc		0,001 mg/l	0.000003385 mg/l	GWB	-
RO RO	Lead		0,01 mg/l 0,01 mg/l	0.0001825 mg/l 0.003175 mg/l	GWB GWB	-
ΛU	Arsenic 0,01 mg/l 0.003175 mg/l GWB -					-

GWB-4: Sarmatian GWB

GWB-4		National share BG-4 RO-4		Status 2021 for each national GWB?		
				Chemical (substance)	Quantity	
List of individua	ll GW-bodies	BG-4	BG1G00000N049	Good	Good	
	le national share	RO-4	RODL04	Poor (nitrates)	Good	
(national code in	ncl. country code)					
Description/C haracterisation of the ICPDR GW-body	 The starting point for identifying the boundaries of the GWB BG1G000000N049 Sarmatian is the geological boundaries. The lithological composition of water-bearing deposits is as follows: in Bulgaria: limestones, sands; Overlying strata consists of loess and loesses clays and clays. The age of the above mentioned deposits is Quaternary. The GWB is vulnerable with cropped out regions of limestones and sandstones or covered with loess. GWB main use is for drinking water supply, agriculture and industry supply. Romania: Criteria for delineation are the development of Sarmatian permeable deposits is oollitic limestones and organogenic limestone. Overlying strata consists of loess and clays. The GWB is well protected in the clay covered areas, but is vulnerable to pollution in pre-dominantly loess and sands covered areas. This explains nitrate contamination in some areas. 				is is as follows: we mentioned tones and riculture and deposits and deposits is y covered reas. This purposes.	
	The main pressures	are agriculture a	ctivities, waste landfills an	nd less industrial p	olants.	
	The criterion for se	lection as "import	ant" is the size, which exc	ceeds 4000 km².		
Description of status assessment methodology.	<u>Chemical Status</u> Bulgaria: Assessment of the chemical status of groundwater has been done by carrying out the following tests and steps: GQA-Test: General assessment of the chemical status of GWB.					
	<u>Step 1:</u> Calculation of arithmetic means per monitoring point (MP) for each indicator for the period 2017-2020. Values below LoQ are replaced by $\frac{1}{2}LoQ$.					
	<u>Step 2:</u> Comparison of arithmetic means with the lowest QS or TVs (EQS, intrusion of salt or polluted waters, drinking water standard or other).					
	<u>Step 3: A</u> ssessment	of the chemical st	atus in the area of the MP.	:		
	- If for all indicators, the status is "good", then the GWB in the area of the MP is "good";					
	- If for one or more indicators, the status is "poor", then the GWB in the area of the MP is "poor". In this case, a careful analysis was carried out of the primary hydrochemical data. If the data are doubtful or insufficiently reliable, the indicator (indicators) are rejected from the final assessment and a respective justification for this is presented.					
	Step 4: If in the areas of all MP the status is good, the GWB is determined 'good' and no other tests are needed.					
	Step 5: The confidence of the assessment is determined by the following criteria:					
	 Density of the monitoring points in GWB: low (1 MP on area > 200 km²); medium (1 MP on area 50–200 km²), high (1 MP on area <50 km²); 					
	- Data have to meet the following requirements: All analytical methods are validated in accordance with standard BDS EN ISO / IEC-17025 or other equivalent internationally recognized standard. Accredited laboratories shall ensure minimum criteria for all appli analytical methods. Minimum length of the time series.					
	<u>Step 6:</u> The extent of exceedance was calculated. If the status is determined as "poor" for one or more indicators in one or more MP, then an assessment of the affected area was performed.					
		-	del, it is determined wheth or in the transit zone or in	-	s) is (are)	

- The areas of GWB in which the average annual concentrations of pollutants exceed QS or TV have been delineated. Each area of GWB affected by pollution includes the area located between the MP where QS or TV have been exceeded. Further, a 1 km buffer zone was delineated around this zone or around the contaminated MP.
<u>Step 7:</u> If the polluted area is more than 20% of the total area of the GWB, the confidence assessment was made according step 5.
<u>Step 8:</u> The places of the exceedances are connected with the groundwater receptors. Depending on the identified locations and GW receptors, relevant tests have been applied: saline or other intrusion, surface water bodies with deteriorated status, GW directly dependent terrestrial ecosystems, drinking and household water supply located at polluted area.
<u>Step 9:</u> Local conceptual models have been developed for each exceedance point considering the possibility for the pollutant to move through the GWB, identification of pressures, additional trend assessment.
A GWB is in good chemical status when the extent of exceedance is less than 20% and the remaining tests show that: the quality of groundwater used for drinking and domestic water supply has not deteriorated, the GW status-related to surface waters and terrestrial ecosystems (directly dependent of GW) has not deteriorated and there is no intrusion of salt or polluted waters; no significant and sustainable upward trends in concentrations of pollutants and pollution indicators have been identified.
Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
• Saline or other intrusion: not relevant.
• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered.
• for each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.
The chemical status of the GWB RODL06 is poor, considering the results of applying the methodology for chemical status assessment

	Quantitative Status
	Bulgaria: The assessment considered data from national and self-monitoring of groundwater abstraction facilities according to the issued permits. The main criteria for assessing good quantitative status are the exploitable (available) groundwater resources of GWB and the groundwater level. To verify compliance with the requirements of the WFD, various tests were performed. The assessment was based on data from 2017–2020 and trends were assessed, with data from 2007–2020. The following tests were performed:
	- Water balance test: the assessment of the GW level downward trend is an indication that, the available GW resources were exceeded and the GWB is in poor status.
	- Surface water test and terrestrial ecosystem test: both not applicable in BG-2 as surface water bodies and terrestrial ecosystems are not associated/connected.
	- Saline intrusion test: not relevant
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account the CIS Guidance no.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Bulgaria: Drinking Water standards
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	Romania: The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting. As described above, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where NBL are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for GWBs from Romania.
	Bulgaria: The methodology for TV determination in Bulgaria has been developed according to CIS Guidance No. 18. TVs are determined by comparing NBLs with criterial values (CVs). CVs is the concentration of a pollutant (without taking into account the NBLs), which, if exceeded, could lead to a distortion of the criteria for good status. CVs should take into account the risk assessment and receptors of groundwater. The NBL were established for each GWB as a result of the project report 'Assessment of the natural hydrochemical background of the substances composition of groundwater in Bulgaria" (GEOFUND V-402), 1998' NBLs are available for Ca, Mg, SO4, Cl, HC03, Total hardness, Cu, Pb, Zn, As, Fe, F, Al, Mn, Cr, Co, V, J, Ag, Ni, Na, K. The NBLs were determined for each hydrogeological classes (5 classes) in the 90th percentile
	and 50th percentile (median) of the statistical sample. Criterial values (CVs) have been drinking water standards according to the Bulgarian Regulation N-9. When NBL > CV, the TV is equal to NBL.
	When $CV > NBL$, the $TV = NBL + Ktv^*$ ($CV-NBL$). $0 < Ktv < 1$ Ktv is usually between 0.5 and 0.75, as recommended and providing reasonable assurance. Ktv <0.5 has a large certainty and is used for GWBs, which have important economic significance and are the sole source of drinking water supply of settlements. This value should be used for such GWB to which they are attached particularly valuable wetlands presence of

	dependent PA terrestrial ecosystems. The higher value (0.75) is used in all other cases or GWBs already classified bodies at risk.
Verbal description of the trend	Bulgaria: The trend analysis is based on recognized statistical methods such as regression method and a time series of data from 2012 to 2019 (using annual values, semi-annual or quarterly values).
assessment methodology	Based on regression analysis is assessed whether there is a break in the trend i.e. after sustained upward trend follows sustained downward trend or the opposite case the sustained downward trend is followed by sustained upward trend.
	• Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches : 1st branch – till the date of the maximum and the second branch - after the peak.
	• In case with available minimum: 1st branch – till the date of the minimum and the second branch - after the minimum.
	• Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending
	By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached
	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000–2017).
	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.
	The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
Verbal description of the trend reversal assessment methodology	Bulgaria: The starting point for trend reversal should be placed where the concentration of the pollutant reaches 75% of the groundwater quality standard or 75% of the threshold value of the relevant pollutant. Selected starting points should be possible to reverse trends in the most effective way before pollutant concentrations can cause irreversible changes in groundwater quality. When we have GWB who responds too slowly to changes, there may be a need for an early starting point and vice versa - for responsive GWB should be chosen starting point at a later moment.
	Initially, the entire curve of the experimental data is approximated by a polynomial curve of degree 2 (quadratic regression curve).
	• If there is detected a maximum in the polynomial curve it means that a change of the direction of the trend is available - from ascending to descending.
	• If there is detected a minimum in the polynomial curve it means that a change of the direction of the trend is available - from descending to ascending.
	• Then, (in case of available maximum) the entire curve is divided into two branches: 1 st branch – till the date of the maximum and the second branch - after the peak
	In case with available minimum: 1^{st} branch – till the date of the minimum and the second branch - after the minimum.

ann

. ..

Data from the first and second branch are considered separately and are approximated by linear trends (straight lines). The date at which it crossed the two approximating straight lines corresponds to the date at which it changes the direction of the linear trend - from ascending to descending or from descending to ascending

By extrapolation of the second (falling) trend can be predicted date at which the starting concentration (75% GWQS in our case 60% TV) will be reached .Practically for the second RBMP we have used 60 % from the TV.

Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:

- optimizing the choice of time sections regarding the shape of the resulting model;
- *examining the significance of the rift for the simple linear regression model based on the square of the residue sum;*
- conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.

Thresho	ld values per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
RO	Nitrates	50 mg/l		National	Yes
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.7 mg/l	0.504 mg/l	GWB	-
RO	Chlorides	250 mg/l	189 mg/l	GWB	-
RO	Sulphates	250 mg/l	120.5 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.069 mg/l	GWB	-
RO	Phosphates	0,5 mg/l	0.21 mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.035 mg/l	GWB	-
RO	Zinc	5 mg/l	0.355 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000202 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.00012 mg/l	GWB	-
RO	Lead	0.01mg/l	0.001 mg/l	GWB	-
RO	Arsenic	0.01 mg/l	0.0013 mg/l	GWB	-
BG	Nitrates	39.87 mg/l	9.49mg/l	GWB	-
BG	Pesticides sum	0.375 μg/l		GWB	-
BG	Arsenic	0.0077 mg/l	0.0007mg/l	GWB	-
BG	Lead	0.0076 mg/l	0.0005 mg/l	GWB	-
BG	Cadmium	0.0039 mg/l	0.0005 mg/l	GWB	-
BG	Mercury	0.0008 mg/l	0.0002 mg/l	GWB	-
BG	Ammonium	0.3758 mg/l	0.0031mg/l	GWB	-
BG	Chlorides	188.75 mg/l	5 mg/l	GWB	-
BG	Sulphates	189 mg/l	6 mg/l	GWB	-
BG	Tri+Tetraclo- retilena	7.5 μg/l		GWB	
BG	Conductivity	1713.6 µS/cm	854.5 μS/cm	GWB	-
BG	Manganese	0.0379 mg/l	0.016 mg/l	GWB	-
BG	Total Iron	0.1513 mg/l	0.005 mg/l	GWB	-
BG	Nitrites	0.375 mg/l	0.0001 mg/l	GWB	-
BG	Sodium	158.25 mg/l	33 mg/l	GWB	-
BG	Chromium	38.25 mg/l	3 μg/l	GWB	-
BG	Cupper	0.1501 mg/l	0.003 mg/l	GWB	-

BG	Nikel	15.5 μg/l	$2 \mu g/l$	GWB	-
BG	Zink	0.7537 mg/l	0.015 mg/l	GWB	
BG	COD - Mn	3.8625 mgO2/l	0.45 mgO2/l	GWB	-
BG	PO4	0.3798 mg/l	0.0195 mg/l	GWB	-
BG	Cyanides	0.04 mg/l	0.01 mg/l	GWB	-

GWB-5: Mures / Maros

GWB-5		National share	HU-5 RO-5	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individuation forming the who	al GW-bodies ble national share	HU	HU_AIQ605	Poor (NH4, NO ₃ , SO ₄ , Cl)	Good
	ncl. country code)	HU	HU_AIQ604	Good	Good
``	, , , , , , , , , , , , , , , , , , ,	HU	HU_AIQ594	Poor (NH ₄ , NO ₃ , SO ₄)	Poor
		HU	HU_AIQ593	Good	Good
		RO	ROMU20	Poor (nitrates)	Good
		RO	ROMU22	Good	Good
GW-body	 The alluvial deposit of the Maros/Mures River lies along both sides of the southern Hungarian – Romanian border, to the north of the actual river bed of the Maros/Mures. In particular, it is an important water resource for drinking water purposes for both countries and water abstraction in one country influences the water availability in the other. The basin of the SE part of the Great Hungarian Plain is filled up with more than 2000 m thick deposits of different ages, which are progressively thinning in Romania. The alluvial fan of the Maros/Mures River forms the Pleistocene part of the strata. The aquifer is divided into several GWBs in both countries. Despite the differences in the delineation method of the two countries it was possible to select the relevant water bodies from the transboundary point of view. Of the four water bodies containing cold water in Hungary (HU), two contain Quaternary strata from the surface to a depth of 30 m, namely the shallow GWBs (HU_AIQ605, HU_AIQ594). Underneath them are two porous GWBs (GWB HU_AIQ604, HU_AIQ593), which, besides Quaternary strata, include some parts of the Upper - Pannonian deposits as well (to a depth of 400–500 m corresponding to the surface separating cold and thermal waters). Two Quaternary water bodies have been selected in Romania. On the Romanian method there is a separating horizon at the limit of the Upper (GWB ROMU20) and Lower Pleistocene (GWB ROMU22) age of the strata. Both water bodies can b lithologically characterised by pebbles, sands and clavy inter-layers, but the upper part is significantly coarser with better permeability. Virtually following the same separation line on the Hungary sile, and and clay, and the upper part is mainly sand with gravel, so that permeability improves towards the surface (the hydraulic conductivity of the aquifers ranges between 5–30 m/day). The covering layer is mainly sandy silt and clay of 3-13 m thickness. On the Romanian side, the upper water body is unconf				

	(uncertain value based on limited available knowledge). The direction of the groundwater flow is from the recharge area to the discharge areas (main river valleys and zones with groundwater level close to the surface) i.e. from SE to N and NW					
Description of	Chemical status					
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.					
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:					
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area the GWB. In case there are no exceedances, the test indicate a good status for the water body.					
	• Saline or other intrusion: not relevant.					
	• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.					
	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;					
	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.					
	To assess the chemical status of the groundwater bodies, the following steps are considered:					
	• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;					
	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).					
	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.					
	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface.					
	The chemical status of the GWB ROMU20 is poor, considering the results of applying the methodology for chemical status assessment.					
	Hungary: Assessment of the chemical status of GWBs was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The NBLs were calculated and used to determine TVs. TVs have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.					
	The following parameters were investigated:					
	a) NBL was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthosphosphate					
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the TVs (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).					
	c) Different tests were conducted to assess GWB status: Diffuse pollution test (nitrate, ammonium, orthosphosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these					

	tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead,
	cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, GWB was evaluated.
	Quantitative Status
	Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	water balance
	• the connection with surface waters
	• the influence on the terrestrial ecosystems which depend directly on the GWB
	• the effects of saline or other intrusions
	The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the whole observation period.
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	<u>GW alteration (Drawdown) test</u>
	Water Balance test
	Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	Saline or other Intrusion test
Groundwater threshold value	Receptors considered Romania: Drinking Water standards Hungary: Drinking water
relationships	
	Consideration of NBL and EQS (environmental quality standards, drinking water standards) in the TV establishment:
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where NBL are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL = 1.2 NBL$).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary:
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000-2017).

assessmer methodolo								
				ving the monitoring points and the associated results of chemical analysis, nent of data series, for each year of reference period (2000–2017)				
			shment of baseline concentration for each parameter as the average tration registered during the year 2000					
		Calcula	itio	n of annual average	e for the available data in each	h monitoring poin	t	
		ë i	ant upward trends were identified by Gwstat software, based on Anova Test					
monitoring syste		sess the trend of pollutant concentrations, chemical data of the surveillance ems were used for the period of 2000 to 2012. The trend analysis was done ogram package of Man-Kendall method with fitted Sen slope. The steps used nent were:						
			the assessment trend of all components for all monitoring objects were created early average data and excluding time series with less than 4 data points.					
	•••		nd of groundwater body level aggregates of yearly annual data were assessed					
					ard trends were identified on S od with Sen's slope.	95 and 90% signij	ficance	
Verbal descriptio the trend reversal assessmen methodolo	nt	 Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency: optimizing the choice of time sections regarding the shape of the resulting model; examining the significance of the rift for the simple linear regression model based on the square of the residue sum; conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model Hungary: To assess the trend reversal of pollutant concentrations, two consecutive time periods were compared and evaluated						
Threshol	d valu	es per GWB						
	1	-					Related	
						Level of TV	to risk	
						establishment	in this	
				TV (or range)		(national,	GWB	
	Poll	utant / Indicator		[unit]	NBL (or range) [unit]	RBD, GWB)	[yes/-]	
HU	Nitre	ates	50) mg/l	0,5-12.1 mg/l	GWB	Yes	
HU	Amn	nonium		5 mg/l	1,97-4.54 mg/l	GWB	Yes	
HU		onductivity		500-4000 µS/cm	1210-2500 µS/cm	GWB	-	
HU		Sulfate		50-500 mg/l	20-481 mg/l	GWB	Yes	
HU	-	Chloride		50-500 mg/l	32,5-300 mg/l	GWB	Yes	
HU		tophosphate		5 mg/l	0.65-1.71 mg/l	GWB		
HU	-	admium		ug/l	0.16-0.83 μg/l	national	-	
HU	Lead	ead ercury) μg/l	2.7-5 μg/l 0.39-0.49 μg/l	national	-	
HU HU		rcury chlorethylene		иg/l) µg/l	0.59-0.49 µg/l	national national	-	
HU HU		trachloroethylene		μg/l		national	-	
HU	Abso	sorbed organic logens AOX) μg/l		national	-	
HU	Pest	sticides by mponents		1 µg/l		national	-	
HU	Pesticides all		0,	5 µg/l		national	-	
RO	Nitrates			mg/l		National	Yes	

RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	0.5–1.9 mg/l	0.216–1.56 mg/l	GWB	-
RO	Chlorides	250 mg/l	66.755–179.57 mg/l	GWB	-
RO	Sulphates	250 mg/l	102.04–193.99 mg/l	GWB	-
RO	Nitrites	0,5 mg/l	0.046–0.2 mg/l	GWB	-
RO	Phosphates	0,5–0.6 mg/l	0.134–0.5 mg/l	GWB	-
RO	Chromium	0,05 mg/l	0.006296–0.00811mg/l	GWB	-
RO	Nickel	0,02 mg/l	0.009–0.00836 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0113–0.0117 mg/l	GWB	-
RO	Zinc	5 mg/l	0.125–0.0274 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.0035 mg/l	GWB	-
RO	Lead	0.01-0.02 mg/l	0.0075–0.01316 mg/l	GWB	-
RO	Arsenic	0.04 mg/l	0.0289 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.0015 mg/l	GWB	-

GWB-6: Somes / Szamos

GWB-6		National share	HU-6 RO-6	Status 2021 for each nationa GWB?		
				Chemical (substance)	Quantity	
List of individua	al GW-bodies	HU	HU_AIQ649	Good	Good	
	forming the whole national share		HU_AIQ648	Good	Good	
	ncl. country code)	HU	HU_AIQ600	Good	Good	
	•	HU	HU_AIQ601	Good	Good	
		RO	ROSO01	Good	Good	
		RO	ROSO13	Good	Good	
haracterisation of the ICPDR GW-body	Reasons for selection as an important transboundary GWB The alluvial deposit of the Somes/Szamos River extends on both sides of the northern part of the Hungarian-Romanian border. It is also connected to the aquifer system lying in Ukraine close to the borders. The aquifer system supplies drinking water to a population of approx. 170,000 inhabitants in Romania and 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Romania and Ukraine, thus the available groundwater resource and the status of the terrestrial ecosystems on the Hungarian side depend on the lateral flow from the neighbouring countries. The Romanian and Hungarian parts of the water body complex are described below. General description					
	The aquifer is divided into several GWBs in both countries. Despite the differences in the delineation method of the two countries, it was possible to select the relevant water bodies from the transboundary point of view. Four water bodies containing cold water occur in Hungary. Two of them contain Quaternary strata from the surface to a depth of 30 m, namely the shallow GWBs (HU_AIQ649, HU_AIQ600). Underneath are the porous GWBs (HU_AIQ648, HU_AIQ601), which beside Quaternary strata include some parts of the Upper- Pannonian deposits as well, to a depth of 400–500 m corresponding to the surface separating cold and thermal waters. This Holocene-Pleistocene formation is divided vertically in Romania by the horizon separating the Upper- and Lower-Pleistocene strata. In Romania two water bodies are considered, overlapping each other, covering a surface of 1,440 km ² . According to the Hungarian approach of delineation, the cold part of the Upper-Pannonian and the Pleistocene and Holocene layers are vertically unified. The Hungarian part can be characterised only by an upward flow system, thus no further horizontal separation is applied. The area covered by the water body is 1,035 km ² .					

In Romania , the shallow (Holocene-Upper-Pleistocene) aquifer is unconfined, consisting of sands, argillaceous sands, gravels and even boulders in the eastern part, and has a depth of 25–35 m. The silty-clayey covering layer is 5–15 m thick.
The deeper (Lower-Pleistocene) aquifer is confined (it is separated from the Upper-Pleistocene part by a clay layer); its bottom is declining from 30 m to 130 m below the surface from East to West. The gravely and sandy strata (characteristic to westwards from Satu-Mare town) represent the main aquifer for water supply in the region.
In Hungary (as part of the cold water body), the Quaternary (Pleistocene) and Holocene strata are 50 m thick at the Ukrainian border and its continuously declining bottom is around 200 m below the surface at the western boundary. Mainly confined conditions characterise the Hungarian part, with a silty clayey covering layer of $1-6$ m (increasing from the NE to the SW). The Quaternary aquifer is sand or gravelly sand, and the hydraulic conductivity ranges between 10-30 m/d. It should be noted that the Hungarian water body includes the cold water bearing part of the Upper-Pannonian formation as well, to a depth of 400–500 m (under this level, thermal water of a temperature greater than 30 °C can be found).
Depth of the groundwater level (mainly pressure in confined area) below the surface ranges between 2 and 5 m in Hungary. The flow direction is from the ENE to the WSW in both countries, corresponding to the recharge and main discharge zones (rivers and area with groundwater level close to the surface).
The recharge area is in the Romanian part of the water body (and in Ukraine). In Hungary the infiltrated amount from local recharge zones supplies neighbouring discharge zones and cannot be considered as part of the available groundwater resources.
Chemical status
Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of the GWB. In case there are no exceedances, the test indicate a good status for the water body.
• Saline or other intrusion: not relevant.
• Significant diminution of associated surface water chemistry and ecology due to transfer of pollutants from the GWB: the location of the exceedance of the relevant TVs was not found in areas where pollutants might be transferred to surface waters; a comparison of the pollutant load transferred from the GWB to the surface water body with the total load in the surface water body did not exceed 50%. The test show a good status for the water body if these criteria are achieved.
• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To assess the chemical status of the groundwater bodies, the following steps are considered:
• For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.

ng of the e ermine 18.
e ermine
e EC.
e, ercury,
studied
tion rous trend onents ysis pH
sment 0
age of ing the
d be v evant CIS
urds) in ding to

	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law					
	no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB ($TV = NBL + 0.2 NBL$ = 1.2 NBL).					
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.					
	Hungary:					
	EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.					
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.					
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.					
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 10 years (2000-2011).					
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program.					
	The steps used for trend assessment were:					
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2011)					
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000					
	• Calculation of annual average for the available data in each monitoring point					
	• Significant upward trends were identified by Gwstat software, based on Anova Test					
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:					
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.					
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.					
	 Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope. 					
Verbal description of the trend reversal assessment methodology	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:					
	• optimizing the choice of time sections regarding the shape of the resulting model;					
	• examining the significance of the rift for the simple linear regression model based on the square of the residue sum;					
	• conducting a statistical test to verify that the 2-sections model is significantly more than a simple regression model.					
	<i>Hungary:</i> To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated					
Threshold valu	es per GWB					

	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1-11.5 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.5-3.3 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	649-1787 µS/cm	GWB	-
HU	Sulfate	250 mg/l	17.8-184 mg/l	GWB	-
HU	Chloride	250 mg/l	21.4-138 mg/l	GWB	-
HU	Orthophosphate	0.5-2 mg/l	0.11-0.92 mg/l	GWB	
HU	Cadmium	5 μg/l	0.04-0.16 µg/l	national	-
HU	Lead	10 μg/l	0.38-4.7 μg/l	national	-
HU	Mercury	1 μg/l	0.005-0.27 µg/l	national	-
HU	Trichlorethylene	10 μg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 μg/l		national	-
HU	Pesticides all	0,5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 μg/l		National	-
RO	Tetracloretilena	10 μg/l		National	-
RO	Ammonium	0.5-1.3 mg/l	0.22-1.05 mg/l	GWB	-
RO	Chlorides	250 mg/l	19.46-51.5 mg/l	GWB	-
RO	Sulphates	250 mg/l	19,01- 91.78 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.08- 0.15 mg/l	GWB	-
RO	Phosphates	0.5 mg/l	0.16-0.41 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.0071-0.010 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.011-0.005 mg/l	GWB	-
RO	Copper	0.1 mg/l	0.0153-0.024 mg/l	GWB	-
RO	Zinc	5 mg/l	0.26-0.262 mg/l	GWB	-
RO	Cadmium	0,005 mg/l	0.00085-0.0023 mg/l	GWB	-
RO	Mercury	0,001 mg/l	0.000035-0.00002 mg/l	GWB	-
RO	Lead	0.03-0.07 mg/l	0.022-0.055 mg/l	GWB	-
RO	Arsenic	0.01mg/l	0.0021- 0.006 mg/l	GWB	-
RO	Phenols	0.002mg/l	0.001- 0.0013 mg/l	GWB	-

GWB-7		National share	HU-7 RO-7	Status 2021 for GW	r each national /B?
			RS-7	Chemical (substance)	Quantity
List of individua	al GW-bodies	HU	HU_AIQ528	Good	Good
	ble national share	HU	HU_AIQ523	Good	Good
	ncl. country code)	HU	HU_AIQ532	Good	Good
`	5 /	HU	HU_AIQ487	Good	Good
		HU	HU_AIQ590	Good	Good
		HU	HU_AIQ529	Good	Poor
		HU	HU_AIQ522	Good	Poor
		HU	HU_AIQ533	Good	Poor
		HU	HU_AIQ486	Good	Poor
		HU	HU_AIQ591	Poor (NO ₃)	Good
		RO	ROBA18	Good	Good
		RS	RS_TIS_GW_I_1	Good	Poor
		RS	RS_TIS_GW_SI_1	Good	Good
		RS	RS_TIS_GW_I_2	Good	Poor
		RS	RS_TIS_GW_SI_2	Good	Good
		RS	RS_TIS_GW_I_3	Good	Poor
		RS	RS_TIS_GW_SI_3	Good	Good
		RS	RS_TIS_GW_I_4	Good	Poor
		RS	RS_TIS_GW_SI_4	Good	Good
		RS	RS_TIS_GW_I_7	Good	Poor
		RS	RS_TIS_GW_SI_7	Good	Good
		RS RS	RS_D_GW_I_1 RS_D_GW_SI_1	Good Good	Poor Good
haracterisation of the ICPDR GW-body	The whole aquifer s mountainous region The western boundar the Hungarian bor- eastern boundary is Banat as well, who important discharg there is some flow u The porous aquifer the Pannonian Bass Romania. Serbia an because: (i) size, (ii to satisfy the water of the GWB comp conservation areas In Serbia , the area Banat). However, th borders with Hung RS_TIS_GW_SI_3) with Romania (a RS_D_GW_SI_1) a of water bodies situ total aggregated ar	ystem of the Danub of Hungary to the L rry is the Danube its der it enlarges tow somewhat east from ose eastern part is e-lines but cannot under the river in the system between the in. It lies mainly in ad Hungary have su) importance in supp demand of agricult olex (protection zo and nitrate-sensitiv of the whole Duna to the whole Duna ary (a total of 6 G and 3 deep (RS_TIS) ated towards Hunga ea of 10,506 km2 for	w aquifer system is 17, portance is related only WBs: 3 shallow (RS_T) TIS_GW_I_1; RS_TIS_C s: 3 shallow (RS_T), GW_I_4; RS_TIS_GW ary is 5,647 km2 and to r the Vojvodina GWB.	s from the foothill, we the river flows to pest in Hungary b in part of Backa in ngary and in Serbu- bube, Tisza and T hydrodynamic bo not discharged in rs is the biggest g with a smaller part ant transboundary or the population a protected areas co rinking water res 435 km ² (the area to the GWBs adja IS_GW_SI_1; RS_ GW_I_2; RS_TIS S_GW_SI_4; RS_ V_I_7; RS_D_GW wards Romania 4,	s of the northern o the south-east. ut after crossing in Croatia). The ia it includes the imis Rivers are oundaries, since to the river. eological unit of t in Croatia and y GWB complex and (iii) the need wer a large part sources, nature as of Backa and acent to the state _TIS_GW_SI_2; _GW_I_3)) and _TIS_GW_SI_7; '_I_1). The area a,859 km2, with a
	total aggregated area of 10,506 km2 for the Vojvodina GWB. In Hungary , the aquifer system is divided into several water bodies according to major subsurface catchment areas and downward-upward flow systems. For the transboundary conciliation, only the southern part of the aquifer system is considered, which includes 10 cold water bodies. Five of them contain Quaternary strata from the surface to a depth of 23–30 m.				

GWB-7: Upper Pannonian – Lower Pleistoce	ne / Vojvodina / Duna-Tisza köze deli r.
---	--

	Beneath these are five porous GWBs. Besides Quaternary strata, these include part of the Upper- Pannonian deposits as well, to a depth of 400–500 m corresponding to the surface and separating cold and thermal water bodies. The Hungarian part can be characterised by both upward and downward flow systems that are the basis for the horizontal separation of the GWBs. The area covered by these water bodies is 7,098 km2. The aquifer can be considered unconfined in the shallow GWBs, despite a considerable area where the water level is in the semi-permeable covering layer, and confined in the deeper ones. The depth of the groundwater level below the surface ranges between 3 and 5 m in Hungary, with a maximum depth of 7–12 m in the main recharge zones (HU_AIQ529, HU_AIQ591 and HU_AIQ533). In Romania , the aquifer system covers around 11,408 km2 and is adjacent to the state border with Serbia. The GWB is generally confined, its covering strata being of Quaternary age. The depth of the groundwater level below surface ranges from 3–20 m. The protection degree of the GWB is very good. The main aquifer is the Quaternary alluvial deposit of the Danube lying on the Pannonian strata. Its thickness is a few tens of meters at the northern, western and southern boundary and increases up to 700 m in the middle of the basin (in the lower Tisza-valley). At the eastern boundary, the thick Quaternary deposit is a mixture of the alluvial deposits of the Danube and the Carpathian rivers. In respect to lithology, the aquifer consists of medium and coarse sands and gravely sands with inter-layers and lenses of silty sands and silty clays. Average hydraulic conductivity ranges between 5–30 m/d. The topographically elevated ridge between the Danube and the Tisza is formed of eolian sand with relatively good recharge conditions and phreatic groundwater. In the river valleys and east of the Tisza, mainly confined conditions appear. The depth of the fluvial-swamp silty clays and swamp clays overlying strata varies from
	10-20 m in the western and southern part, and up to 100–125 m in the north-eastern part of Backa and in Banat. Here, prior to intensive groundwater abstraction, an artesian type of groundwater occurred. The main recharge area is in Hungary, in the eolian sand ridge, and in Romania. In Hungary, the estimated value of the recharge is approx. 220 Mm3/year. In Serbia, only local recharge areas exist (areas of the Deliblat Sands and the Subotica/Horgos Sands), thus the lateral flow crossing the border from the neighbouring country - as a component of the overall recharge - is very important.
	The groundwater is mainly discharged by the rivers (and drainage canals) and by the surplus of evapotranspiration from vegetation in the areas characterised by groundwater levels close to the surface. Small lakes and marshes in locally deeper areas (i.e. in topographic depressions) must be considered as local discharge areas – they are important from the nature conservation point of view. Besides natural discharge, there is also significant groundwater tapping for various uses (drinking water, agriculture, industry, irrigation etc.). In Vojvodina, the entire public water supply relies exclusively on groundwater from aquifers formed at different depths, from 20 m to more than 200 m.
	The direction of the groundwater flow in the upper part of the aquifer-system follows the topography and recharge-discharge conditions. At the Hungarian-Serbian border, the flow direction is almost parallel to the border (flowing slightly from Hungary towards Serbia). In the deeper part, the general flow direction is NW to SE i.e. from the Danube to the Tisza in Hungary and in Backa, while in Banat the general direction of the groundwater flow is from E to W. GWB is mainly used for drinking water supply, agricultural and industrial supplies. The criterion for selection as "important" consists in its size that exceeds 4000 km ² .
Description of	Chemical status
status assessment methodology.	Romania: The methodology for the chemical status assessment followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 – Guidance on Groundwater status and trend assessment.
	The first step is to check any exceedances of the quality standards and TVs which were established taken into consideration the NBL values. If no exceedances of the quality standards and TVs are recorded, the groundwater body is considered as being in good chemical status. If exceedances of TVs or quality standards are recorded the following relevant tests are carried out:
	• General assessment of the chemical status: Data aggregation is performed and it is checked whether the total area of exceedance is greater than 20% of the total area of

	the GWB. In case there are no exceedances, the test indicate a good status for the water body.
	Saline or other intrusion: not relevant.
•	• Significant damage to GWDTEs due to transfer of pollutants from the GWB: No GWDTE was found to be damaged. The test show a good status for the water body if this criteria is achieved;
•	• Meets the requirements of WFD Article 7(3) – Drinking Water Protected Areas: there is no evidence of increased treatment due to changes in water quality.
To as	ssess the chemical status of the groundwater bodies, the following steps are considered:
•	For each monitoring point the annual average concentrations for each indicator was calculated; for the metals the concentration of the dissolved form was considered;
•	• For each monitoring point the annual average concentration of the each parameters was compared with the thresholds values (determined for each GWB) or standards value (nitrates and pesticides).
•	• The GWB is of good chemical status when no EQS or TV is exceeded in any monitoring point.
•	• The GWB is of poor chemical status when EQS or TV are exceeded at monitoring points representing more than 20% of the GWB surface
chem press thres Conte	gary: Assessment of the chemical status of groundwater was conducted: Analysing of the ical data of individual monitoring points within each of the GWBs; Identifying of the ures - sources of pollution; The background levels were calculated and used to determine hold value. Threshold values have been determined according to CIS Guidance No. 18. amination limits have been determined for all indicators listed in Annex II Part B of ctive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
The f	following parameters were investigated:
a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophoshate
b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
C) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophoshate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
press where demo conne	ia: The criteria for the chemical status assessment were: present groundwater quality, bures and their impacts, natural protection (overlying strata),. Pressures and impacts e assessed on the basis of the census data at settlement level for the 2011 regarding by graphics, sanitation and water supply practices (septic tanks, sewerage, water supply, ection rates) and agricultural census data from 2012 (livestock, Agricultural land use).
agric COR organ	Census data was projected to 2016 for the purpose of STATUS assessment. Non cultural land use pressures were evaluated on the basis of CORINE 2016 data set and INE CLASS specific pollution coefficients for BOD, TN. Pressures were evaluated for nic pollution and nutrients (Indicators used were BOD, TN). Pressure analysis were ucted for 160 analytical units (settlements covering the total area of ground water bodies).

Monitoring data for 16 groundwater monitoring stations for the 12 GWB in Serbia covering a period from 2004 to 2018 was evaluated and stations with at least 5 years of data on monitoring were selected for status and impact assessment. Parameters considered for the analysis included NO3 and pesticides. For each of the monitoring stations trend analysis were conducted on all available data (minimum for 5 years, maximum for 15 years). Trend significance was classified in terms of annual rate of increase/decrease in a manner that would lead to the exceedance of the threshold value for NO3 (50 mg/L as NO3) within 10 years in relation to the observed average NO3 concentration at any given station. Regression coefficient values were used as a measure of a level of confidence of the trend assessment so that if r2 value was above 0,7 trend assessment was to be considered as high confidence assessment, values of r2 between 0,4 and 0,7 lead to medium confidence.

- The GWB is of good chemical status when no TV is exceeded in any monitoring point and when no significant increasing trend is detected, and GW is not under significant pressure (Pressure is considered to be significant if total load on the GWB exceeds 10 kg TN-N/ha/yr)
- The GWB is of poor chemical status when TV are exceeded at monitoring points representing more than 20% of the GW samples analysed at the particular monitoring point in the period from 2004 to 2018.
- The GWB is declared under risk if observed trend would lead to the exceedance of the TV for NO3 within 10 if the observed trend continued at any of the monitoring stations for a given water body. The assessment of Risk is accompanied with level of confidence of the assessment.

Quantitative Status

Romania: The criterion for risk assessment of the quantity status is based on trend assessment evolution of the groundwater levels. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- water balance
- the connection with surface waters
- the influence on the terrestrial ecosystems which depend directly on the GWB
- the effects of saline or other intrusions

The quantitative status analysis has been done for the GWB level by comparing the average of the hydrostatic level from 2017 (reference year) with the multiannual average levels during the observation period.

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Serbia: Considering the risk of not achieving good quantitative status, groundwater bodies within which there is a registered trend of groundwater level decrease as a consequence of abstraction are considered to be at risk. For this purpose, data time series of registered groundwater levels were used only for shallow GWBs, since no organized monitoring of deep aquifers exists.

For groundwater bodies where no quantitative monitoring exists, the estimate of groundwater balance is calculated, using available data on precipitation, abstraction etc. Assessment of risk from non-achievement of the good quantitative status until 2015 was carried out based on the criteria that average GW abstraction over several years < 50% of groundwater recharge, no substance intrusion into the body caused by the change of GW streaming direction and associated surface ecosystems are not endangered by GW abstraction.

Groundwater	Receptors considered:
threshold	Romania: Drinking Water standards
value relationships	Hungary: Drinking water
-	Serbia:
	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards) in</u> <u>the TV establishment:</u>
	<i>Romania:</i> The methodology for TV establishment in Romania has been developed according to CIS Guidance No. 18. NBL are the key elements in the process of TV setting.
	As described previously, during the TV establishment, the NBL have been compared with the drinking water standards. The maximum allowable concentrations (MAC) provided by the Law no.458/2002 as amended, were chosen as TV where natural background levels (NBL) are smaller than MAC. Where background levels are higher than MAC, a small addition of 0.2 NBL was used, in order to avoid misclassification of the respective GWB (TV = NBL + 0.2 NBL = 1.2 NBL).
	The updated list of TVs established for each GWB was published in the new Order of the Minster no. 621/2014 approving TV for groundwater bodies from Romania.
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18. Serbia:
Verbal description of the trend	Romania: In order to assess the trend in pollutant concentrations, the results of the chemical analysis from the monitoring points have been used. Minimum period of analysis was at least 17 years (2000-2017).
assessment methodology	The methodology for identifying significant upper trends consists in adjustment and aggregation of the data from each monitoring points on groundwater bodies. The trend analysis was done using the Gwstat program. The steps used for trend assessment were:
	• Identifying the monitoring points and the associated results of chemical analysis, assessment of data series, for each year of reference period (2000–2017)
	• Establishment of baseline concentration for each parameter as the average concentration registered during the year 2000
	• Calculation of annual average for the available data in each monitoring point
	• Significant upward trends were identified by Gwstat software, based on Anova Test
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Man-Kendall method with fitted Sen slope. The steps used for trend assessment were:
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.
	Significant upward or downward trends were identified on 95 and 90% significance level using Man-Kendall method with Sen's slope.
	Serbia: No methodology for trend assessment has been developed.
Verbal description of the trend reversal assessment methodology	Romania: Trend reversal assessment methodology consists also in the use of Gwstat software. This method assumes that the time series can be characterized by two linear trends with a slope change within the time interval (analysis period). Thus, by applying the 95% quantile of the distribution, a reversal of the trend is identified, if in the first section the slope of the trend is positive, and in the second section the slope of the trend is negative. The stages of the method of reversing the pollutant concentration tendency:

	optimiz	ing the choice of time	sections regarding the shap	pe of the resulting m	odel;
		ing the significance o are of the residue sun	f the rift for the simple lined 1;	r regression model i	based on
		ting a statistical test t simple regression mod	o verify that the 2-sections i del.	model is significantly	v more
	Hungary: To as were compared		l of pollutant concentration	s two consecutive tin	ne periods
	Serbia: No meth	nodology for trend rev	ersal assessment has been d	leveloped	
Throch	old values per GWB			•	
Thresho		I	1	T	1
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	0.5-9.6 mg/l	GWB	Yes
HU	Ammonium	2-5 mg/l	1.3-4.54 mg/l	GWB	-
HU	Conductivity	2500-4000 µS/cm	565-2004 μS/cm	GWB	-
HU	Sulfate	250-500 mg/l	5.6-373 mg/l	GWB	-
HU	Chloride	250 mg/l	8-183 mg/l	GWB	-
HU	Orthophosphate	1-5 mg/l	0.16-1.71 mg/l	GWB	
HU	Cadmium	5 μg/l	0.01-0.52µg/l	national	-
HU	Lead	10 µg/l	1-6 μg/l	national	-
HU	Mercury	1 μg/l	0.06-0.52 μg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
RO	Nitrates	50 mg/l		National	-
RO	Benzen	10 µg/l		National	-
RO	Tricloretilena	10 µg/l		National	-
RO	Tetracloretilena	10 µg/l		National	-
RO	Ammonium	6.4 mg/l	5.33 mg/l	GWB	-
RO	Chlorides	250 mg/l	51.66 mg/l	GWB	-
RO	Sulphates	250 mg/l	69.47 mg/l	GWB	-
RO	Nitrites	0.5 mg/l	0.137 mg/l	GWB	-
RO	Phosphates	1 mg/l	0.774 mg/l	GWB	-
RO	Chromium	0.05 mg/l	0.00505 mg/l	GWB	-
RO	Nickel	0.02 mg/l	0.009573 mg/l	GWB	-
RO	Copper	0,1 mg/l	0.017913 mg/l	GWB	-
RO	Zinc	5 mg/l	0.350642 mg/l	GWB	-
RO	Cadmium	0.005 mg/l	0.000333 mg/l	GWB	-
RO	Mercury	0.001 mg/l	0.0004 mg/l	GWB	-
RO	Lead	0.01-mg/l	0.00744 mg/l	GWB	-
RO	Phenols	0.004 mg/l	0.003 mg/l	GWB	-

GWB-8		National share HU-8 SK-8		Status 2021 for each national GWB?			
				Chemical (substance)	Quantity		
List of individua	al GW-bodies forming	HU	HU_AIQ654	Good	Good		
	al share (national code	HU	HU_AIQ572	Good	Good		
incl. country coo		HU	HU_AIQ653	Good	Good		
		HU	HU_AIQ573	Good	Good		
		SK	SK1000300P	Good	Good		
		SK	SK1000200P	Good	Good		
Description/C	Slovakia: The delineat	ion consists of the f	following steps:				
haracterisation of the ICPDR GW-body	quaternary st considered as	rata containing cold thermal by classifi		ifers (temperature	$e > 25^{\circ}C$ or it is		
			irther divided horizo sured rocks, karstic ro				
		ation is due to the anagement units.	borders of the surfac	e catchment area	s considered as		
	Hungary: The delinear	tion of groundwater	r bodies in Hungary h	as been carried o	out by:		
	2. Thermal water bodies are separated according to the temperature greater than 30 °C. In the case of porous aquifers it is done vertically, while in karstic aquifers horizontally. There are no thermal aquifers in the mountainous regions other than karstic.						
	(in the case of	ion is related to the subsurface catchment areas and vertical flow system fporous aquifers) and to the structural and hydrological units (in the case ifers and mountainous regions).					
	because of the numero		ter bodies the more detailed further characterisation is carried out (n.b. us transboundary water bodies and the expected further 20–30 % due to ood status, Hungary decided to apply the methodology of further l water bodies).				
	Reasons for selecting	as important transl	boundary GWB				
	The large alluvial deposit of the River Danube downstream Bratislava lies in three countries: Slovakia (Podunajská lowland and its part: Žitný ostrov), Hungary (Northern part of Kisalföld including the Szigetköz) and in Austria. The aquifer system has been considered by Slovakia and Hungary as an important transboundary aquifer because of (i) its size, (ii) the unique amount of available groundwater resource and the important actual use for drinking water and other purposes as well (iii) the groundwater dependent terrestrial ecosystem of the floodplain, (iv) majority of the area is protected (protection zones of drinking water abstraction sites, nitrate sensitive areas, nature conservation areas), (v) the existence of the Gabcikovo Hydropower System.						
	General description						
	The Danube has been p aquifer is made up of sands, gravels, interc conductivity is in the ra in the centre of the bas 3,500 m.	15–500 m thick Qu valated with nume inge of 100–500 m/d in. Here, the bottom	uaternary alluvia: hy rous clay and silt day providing extreme 1 of the underlying Pa	draulically conne lenses. The ave ely high transmiss unnonian deposits	cted mixture of rage hydraulic ivity, especially is at a depth of		
	The aquifer is divided i in the delineation meth from transboundary po beside the Quaternary depth of 400–500 m c km2) and two Quatern km2 in total (see the su	od of the two count pint of view: two w strata include some orresponding to th ary water bodies in	ries, it was possible ta ater bodies containin e part of the Upper-P e surface separating n Slovakia (2,186 km	o select the releva og cold water in H annonian deposit cold and therma	nt water bodies Hungary, which s as well, to the l waters (1,152		

GWB-8: Podunajska Basin, Zitny Ostrov / Szigetköz, Hanság-Rábca

	The aquifer can be considered as unconfined, despite the considerable area where the water level is in the semi-permeable covering layer.
	Due to the high transmissivity of the aquifer, the groundwater regime and groundwater quality mainly depend on the surface water. The flow system and the type of covering layer provide surplus recharge condition in the majority of the area, but the main source of groundwater recharge is the Danube. Before the construction of the hydropower system (1992), the riverbed had been the infiltration surface, and the Danube's line had been the hydraulic boundary between the countries as well (in upper parts of Danube stream between Devín and Hrušov, approximately since 1970's, river bed started to drain groundwater). In the actual situation, the artificial recharge system is the main source for the vicinity of the Danube, but a remaining part of the aquifers in the Hungarian territory is recharged by the Čunovo reservoir. Where the reservoir is in the neighbourhood of the main channel (between Rajka and Dunakiliti) considerable transboundary groundwater flow appears under the Danube. The Danube's river bed downstream the reservoir – due to the derived flow and the consequently decreased average water level - drains the neighbouring groundwater, causing considerable drop of groundwater level in the imminent vicinity of the river bed. Both the quantity and the quality of the recharge from the reservoir highly depend on the continuously increasing deposit in the reservoir and the developing physico-chemical processes. Deposits in the reservoir are extracted. Signs of long-term changes of quantity and quality of recharge caused by continuously increasing deposit in the reservoir were not observed in the Slovak part of the aquifer yet.
	prior to the derivation of the Danube the groundwater has fluctuated in the covering layer and the existing artificial recharge system does not compensate sufficiently the former influence of the Danube. On the Slovak territory, annual artificial flooding of the river system in the high water periods seems to efficiently supply groundwater as well as the soil moisture resources.
Description of	Chemical Status
status assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, the data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated

ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org

data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated

	total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical
	status. Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the
	chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	• <u>GW alteration (Drawdown) test</u>
	Water Balance test
	• Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	 Saline or other Intrusion test
	Slovakia: Assessment of groundwater quantitative status consists of 4 tests:
	 balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	 evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
	<i>3.</i> assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
	<i>4.</i> assessment of the impact of groundwater quantity on surface water.
Groundwater	Receptors considered
threshold	Slovakia: Drinking water, Surface water
value relationships	Hungary: Drinking water
	Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:

Verbal description of the trend assessment methodology	 Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EU. The TV for organic compounds were derived according to the formula: TV = (NBL + DWS)/2. The TV for organic compounds were derived using the formula: TV = 0.75 * DWS: These TV were used for GQA and DWPA tests. An updated list of the TV established for each GBB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll. For the Surface water test, the TV were derived as follows: TV = CV = AF * EQS (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case). For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as TV = NBL. Hungary: EQS for herbicides and total pesticides, tri, tetrachloroethylenes based on 2010/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KVVM-EüM-FVM common ministerial decree in correspondence to 1. Annex of the 2006/118/EC directive. In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable. For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TV is a monitum. SO4 and EC were defined by taking into account these higher yalues. as described in Guidance Document No. 18. Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring frequency depends on the GWB sympt. In the analysis. GWB with decreasing trends bu with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends in Comparing th
	 The trend of groundwater body level aggregates of yearly annual data were assessed as well. Significant upward or downward trends were identified on 95% significance level using Man- Kendall method with Sen's slope.
Verbal description of the trend	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series

assessment methodology evaluation period was 14 years. The evaluation was performed time series into two sections with different lengths and then evaluated significance of the trends separately for each allocated section indicated if the following conditions were met at the same time the trends evaluated within individual sections is higher than to trend evaluated on the basis of all data forming the evaluated of representing the results of monitoring in the older period show		entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trends evaluated within individual sections is higher than the statistical significance of the trend evaluated on the basis of all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant wound trend which is followed by a statistically significant
		upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of the results of monitoring in the newer period
		Hungary: To assess the trend reversal of pollutant concentrations two consecutive time period was compared and evaluated

Threshold values per GWB

Threshold val	lues per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	2.9-12 mg/l	GWB	-
HU	Ammonium	1-2 mg/l	0.4-0.86 mg/l	GWB	-
HU	Conductivity	2500 µS/cm	657-1030 μS/cm	GWB	-
HU	Sulfate	250 mg/l	88.8-220 mg/l	GWB	-
HU	Chloride	250 mg/l	30-49.7 mg/l	GWB	-
HU	Orthophosphate	1 mg/l	0.24-0.44 mg/l	GWB	
HU	Cadmium	5 μg/l	0.17-1.1 μg/l	national	-
HU	Lead	10 µg/l	1.9-3.1 µg/l	national	-
HU	Mercury	$1 \mu g/l$	0.07-0.2 µg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	AOX	20 µg/l		national	-
HU	Pesticides by components	0,1 µg/l		national	-
HU	Pesticides all	0,5 μg/l		national	-
SK1000300P	Ammonium	0.26 mg/l	0.02 mg/l	GWB	Yes
	Arsenic	6 µg/l	$2 \mu g/l$	GWB	-
	Benzene	0.8 μg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	137.3 mg/l	24.6 mg/l	GWB	-
	Chromium	26 µg/l	2 µg/l	GWB	-
	Copper	1002 μg/l	$4 \mu g/l$	GWB	-
	Iron total	0.135 mg/l	0.07 mg/l	GWB	-
	Lead	7.0 μg/l	4 μg/l	GWB	-
	Manganese	0.030 mg/l	0.01 mg/l	GWB	-
	Mercury	0.8 µg/l	0.5 μg/l	GWB	-
	Nitrates	50 mg/l	6.6 mg/l	GWB	-
	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
	Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
	Sodium	104.5 mg/l	8.9 mg/l	GWB	-
	Sulphates	157.6 mg/l	65.2 mg/l	GWB	-
	Tetrachloroethylen	7.5* μg/l	-	national	-
	Trichlorethylene	7.5* µg/l	-	national	-
SK1000200P	Ammonium	0.26 mg/l	0.01 mg/l	GWB	-
	Arsenic	6 µg/l	2 µg/l	GWB	-
	Benzene	0.8 μg/l	-	national	-
	Cadmium	3.0 µg/l	1 μg/l	GWB	-
	Chloride	135.8 mg/l	21.5 mg/l	GWB	-
	Chromium	26 µg/l	1 μg/l	GWB	-
	Copper	1001 µg/l	$2 \mu g/l$	GWB	-

Iron total	0.125 mg/l	0.05 mg/l	GWB	-
Lead	6.5 μg/l	3 μg/l	GWB	-
Manganese	0.030 mg/l	0.01 mg/l	GWB	-
Mercury	0.7 μg/l	0.4 μg/l	GWB	-
Nitrates	50 mg/l	14.2 mg/l	GWB	-
Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
Phosphates	0.22 mg/l	0.04 mg/l	GWB	-
Sodium	105.8 mg/l	11.5 mg/l	GWB	-
Sulphates	148.9 mg/l	47.8 mg/l	GWB	-
Tetrachloroethylen	7.5* μg/l	-	national	-
Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-9: Bodrog

GWB-9		National share	HU-9 SK-9	Status 2021 for each national GWB?	
				Chemical (substance)	Quantity
List of individua	al GW-bodies forming	HU	HU_AIQ495	Good	Good
the whole nation	hal share (national code	HU	HU_AIQ496	Good	Poor
incl. country coo	le)	SK	SK1001500P	Poor (NH ₄ , PO ₄)	Good
Description/C	Delineation: see GWB	-8			
haracterisation of the ICPDR GW-body	At the common east, corresponding to the H Záhony and Tokaj (corr its significance in mee groundwater in the via water aquifer system is General description The aquifer is the allux lowland area in Hunga silty-clayey layers cove thick in the Slovakian at (50-200 m). The fluvia intercalated silt and cla In the Slovakian part or complex while in Hung app. 500 m, correspond The main recharge are mountains and penetra area surface waters al. mainly unconfined or discharge position and level lies close to (bet surface, the groundwate which are adapted to th groundwater. The surf collect the upward grou discharged groundwate known (that is why bot aquifer). The general d River and SE-NW in th The regional hydro-gen recharging groundwate low TDS, Ca-Mg-HCO the middle and wester Bodrogköz region. At th migration from the dee The major water qualiti is the high iron and ma arsenic-content occurs The estimated amount Slovakian part, out of Hungarian part. It is the receives water from the available for abstraction Major pressures and in	Bodrog River catch fluence with the Ba eting the water den- cinity of state bord in Ukraine. vial deposit of the E try into Bodrogköz er the surface with side and its thickne l sediments (from s ay lenses) can be ch aly the Quaternary a vary the Upper part ding to water temper er ais in the Slovakia the main aquifers ween 2 and 4 m ba er can considerably hat condition, and a plus of evapotrans bundwater flow. Fra- er as well, but the b th discharge areas lirection of the grout e Rétköz and uncer ochemical picture f er, the water qualith 13 type waters occurs n part of Rétköz, a he centre of the Bo per zones. y problem of natura nganese content (rec- t of available gro that 10–15 Mm3/ya o be mentioned, that e southern recharge on in the Bodrogköz	ment area in Slovak bodrog River) has been mand of the region, fer between Slovakia Bodrog River and its in (northern part) and H peaty areas. The Quiss gradually increases sandy gravels in the Quiss gradually increases sandy gravels in the for aracterized by 5 – 30 aquifer system is part of the Pannonian for erature less than 30°C in territory. The rain deep aquifers. In the erecharge. In the Sloverthy confined. In Hu can be considered as elow) the surface. Why contribute to the trans consequently they are piration and the art for South, the sandy for consequently they are piration and the art for South, the sandy for coundary of the water in Hungary have bee ndwater flow is N-S (tain below the Tisza. follows the flow system y is almost the same r in the recharge area and mixture of these for all origin in the Bodrog educing conditions). I undwater resources at the southern part of areas as well, but no	ia and the Tisza- is selected as impo- (ii) contamination and Hungary. So tributaries. The Ti- Rétköz (Southern p maternary aquifer es in Hungary tow North to sands is 0 m/d hydraulic co of the transbounde mation is also atte C). waters infiltrate a upstream part of vakian side the wa ngary both water confined. Here th here it is around nspiration need of very sensitive to t ificial drainage s hills of Nyírség co s of different origi m attached to the NE-SW) to the No n. Close to the riv as in surface strea as, Na-HCO3 wate two types in the w -content indicates gköz Quaternary a in the Rétköz eleval is almost 50 Mi ined as lateral fla- of the Hungarian	valley between vrtant due to (i) in threat of the me part of the isza divides the part). Holocene is around 60 m vards the South the South with onductivity. ary water body- ached (depth is at the marginal the catchment ater bodies are bodies are in the groundwater 2 m below the the vegetation, he status of the ystem (canals) ontribute to the n is not exactly transboundary with of the Tisza er bed sections ams. Generally ers dominate in vestern part of strong upward equifer complex ted (10–30 µ/l) n3/year in the odischarge area

	The groundwater is mainly used for drinking water supply, but partially for industrial and
	agricultural purposes (inc. irrigation) as well. The use ratio is quite low in Slovakia: only 10 %. The development is limited by occurrence of technologically inappropriate substances in water (Mn, Fe) and sometimes also by groundwater pollution from surface waters, industry, agriculture and transport infrastructure (Strážske, Hencovce, Michalovce, Čierna nad Tisou).
	In Hungary the available groundwater resources of the two water bodies are quite different. In the northern part, which is in close relation to the Slovakian part, the water demand of the groundwater dependent aquatic and terrestrial ecosystems can be estimated at 5–8 Mm3/d, thus the available groundwater resources is in the range of 5–7 Mm3/year. The abstracted amount of groundwater is 3 Mm3/year, so the ratio is around 50 %, but the majority is concentrated to Ronyva/Roňava river valley. In the southern part, the lateral flow from the recharge zone of Nyírség (app. 30 Mm3/year) provides sufficient water for the minimum water demand of ecosystems (8-12 Mm3/year) and for 8 Mm3/year of abstraction.
	In Hungary 10 significant point sources of pollution have been registered. The shallow groundwater has usually high nitrate under the settlements, because of the inappropriate handling of manure and the totally or partially missing sewer systems. The agriculture contributes to the pollution as well, through use of chemicals. The estimated amunt of surplus Nitrogen is 15 kgN/ha/year originated from the use of 88 kgN/ha/year fertilizer and 13 kgN/year manure.
	The groundwater quality in Slovakia is monitored in 17 sampling sites, groundwater samples are taken from the first aquifer 2 times per year). The Hungarian water quality monitoring is concentrating in the surrounding of waterworks. The quality of the Ronyva/Roňava aquifer close to the waterworks of Sátoraljaújhely shows increasing tendency of Nitrate pollution: the average concentration is around 30 mg/l, and in one production well the Nitrate-concentration exceeds the limit value of 50 mg/l. Information on pollution in arable lands is practically missing in this region.
	The high vulnerability of groundwater and the expected future development in water demand requires high level of protection in the Slovakian part of the region mainly oriented to measures focused on industrial pollution sources. In Hungary the protection zones of the waterworks (5%) need special attention.
Description of	Chemical Status
status assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression,

sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status

Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.

The following parameters were investigated:

- a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
- b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
- c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
- *d)* Based on these tests, groundwater body was evaluated.

Quantitative Status

Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:

- <u>GW alteration (Drawdown) test</u>
- Water Balance test
- Surface Water Flow test
- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Slovakia: Assessment of groundwater quantitative status consists of 4 tests:

	 balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
	2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
	 assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
	4. assessment of the impact of groundwater quantity on surface water
Groundwater	Receptors considered
threshold	Slovakia: Drinking water, Surface water
value relationships	Hungary: Drinking water

	Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
	<i>Hungary:</i> EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Verbal description of the trend assessment methodology	 Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" (regression="" *="" 0.75="" 2="" 2.="" 2026="" 5%="" 50%.="" <loq="" a="" all="" also="" and="" applied="" are="" assessment="" at="" by="" calculated="" concentrations="" distribution,="" evaluated="" evaluation.="" for="" gwb="" higher="" identified="" if="" is="" last="" least="" less="" level="" level.="" level.<="" li="" linear="" loqmax="" mann-kendall="" measured="" median="" method="" model="" monitoring="" non-parametric="" nonparametric="" normal="" number="" of="" only="" or="" over="" parametric="" performed="" points="" pollutant="" predicted="" procedure)="" qs="" replaced="" sen's="" series="" showing="" significance="" significant="" squares="" statistical="" statistically="" sustained="" test="" tested="" than="" the="" time="" times="" to="" trend="" trends="" trends,="" tv="" tv.="" up="" upward="" upwards="" value="" values="" was="" were="" with="" years=""> The starting point for trend reversal was placed where the concentration of the pollutant reaches 75% of the QS/TV of the relevant pollutant. Hungary: To assess the trend of pollutant concentrations, chemical</loq>
	monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps used for trend assessment were:
	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.
	• The trend of groundwater body level aggregates of yearly annual data were assessed as well.
	Significant upward or downward trends were identified on 95% significance level using Mann- Kendall method with Sen's slope.

Verbal description of the trend reversal assessment methodology	Slovakia: Trend reversal assessment methodology consists in the use of GWstat software. Time series were included in the assessment, on the basis of which significant sustained upward trends at the level of monitoring sites in the previous RBMP were classified. The time series entering the evaluation were supplemented by data monitored in previous years so that the evaluation period was 14 years. The evaluation was performed by dynamically dividing the time series into two sections with different lengths and then evaluating the statistical significance of the trends separately for each allocated section. A reversal of the trend was indicated if the following conditions were met at the same time: the statistical significance of the trends so f all data forming the evaluated time series, the section representing the results of monitoring in the older period shows a statistically significant upward trend, which is followed by a statistically significant decreasing trend evaluated on the basis of the newer period				
	Hungary:				
Threshold val	ues per GWB				
	Pollutant / Indicator	TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]
HU	Nitrates	50 mg/l	1.2-12.8 mg/l	GWB	-
HU	Ammonium	2-5 mg/l	1.79-3.6 mg/l	GWB	Yes
HU	Conductivity	2500 µS/cm	1370-1483 µS/ст	GWB	-
HU	Sulfate	250 mg/l	42.2-191 mg/l	GWB	-
HU	Chloride	250 mg/l	135-214 mg/l	GWB	-
HU	Orthophosphate	1-2 mg/l	0.3-1.45 mg/l	GWB	
HU	Cadmium	$\frac{12 \text{ mg/l}}{5 \text{ µg/l}}$	0.03-1 μg/l	national	-
HU	Lead	10 µg/l	3.5-4.36µg/l	national	-
HU	Mercury	$1 \mu g/l$	0.1-0.19 μg/l	national	-
HU	Trichlorethylene	10 µg/l		national	-
HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0.1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.30 mg/l	0.09 mg/l	GWB	Yes
SK	Arsenic	6 µg/l	2 µg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	3.0 µg/l	1 μg/l	GWB	-
SK	Chloride	147.4 mg/l	44.7 mg/l	GWB	-
SK	Chromium	$27 \mu g/l$	4 μg/l	GWB	-
SK SK	Copper	1004 μg/l	$8 \mu g/l$	GWB GWB	-
SK SK	Iron total Lead	0.150 mg/l 9.0 μg/l	0.1 mg/l 8 μg/l	GWB GWB	-
SK	Manganese	0.030 mg/l	0.01 mg/l	GWB	-
SK	Mercury	0.050 mg/l 0.7 µg/l	$0.4 \mu g/l$	GWB	-
SK	Nitrates	50 mg/l	9.7 mg/l	GWB	-
SK	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
SK	Phosphates	0.22 mg/l	0.02 mg/l	GWB	Yes
SK	Sodium	111.0 mg/l	22 mg/l	GWB	-
SK	Sulphates	167.4 mg/l	84.7 mg/l	GWB	-
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK 7.5. for Tetral	Trichlorethylene	7.5* µg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-10: Slovensky kras / Aggtelek-hgs.

assessment methodology.	Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
	1. General quality assessment (GQA) test - years 2016-2017.
	2. Drinking water protected areas (DWPA) test - period 2008-2017.
	3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
	In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
	In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
	In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Quantitative Status:

	 Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used: <u>GW alteration (Drawdown) test</u> Water Balance test Surface Water Flow test Groundwater Dependent Terrestrial Ecosystems (GWDTE) Saline or other Intrusion test Slovakia: Assessment of groundwater quantitative status consists of 4 tests: balance assessment of groundwater bodies for the period 2013-2017 and evaluation of the long-term trend of development of balance levels of groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater 			
Groundwater	Receptors considered			
threshold value	Slovakia: Drinking water, Surface water			
relationships	Hungary: Drinking water			
-	<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards, surface water standards) in the TV establishment:</u>			
	Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.			
	An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.			
	For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).			
	For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.			
	Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.			
	In Hungary, more than 95% of drinking water ensured from subsurface waters, so the DWS is applicable. Exempt those cases, when the karstic and shallow GWBs are in direct relation to aquatic ecosystems (GWAAE), so here the EQS nitrate is applicable (25 mg/l) instead of 50 mg/l of DWS.			
	For other components the DWS is applicable.			
	For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.			
Verbal description of the trend	Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of			

assessmer methodole		the performance of comprising the regr abstraction are excl concentrations of pe of surveillance and frequency depends of LOQmax/2. Trend of 50%. Non-parametr evaluation. For time trend was also teste all times series with trend was evaluated was higher than 0.7 (regression model of was higher than QS were identified at the The starting point for reaches 75% of the Hungary: To assess	ression analysis. GW luded from assessm ollutants in groundw operational monito on the GWB type. In assessment is only p ric Mann-Kendall to e series showing a r ed by the parametric a statistically signifi d and identified if the 5 * QS/TV or the ca calculated by the lead VTV. The significan the level of monitorir or trend reversal wa QS/TV of the relevant s the trend of pollut	WBs with decreasing ent in the 3 rd RBMF water the evaluation ring were applied for the analysis the va- erformed if the num est with 5% significa- normal distribution, comethod (ANOVA) cant upwards trend act upwards trend the median of the val- alculated predicted ust squares method t sustained upward ng points and at the as placed where the ant pollutant.	g trends but with no P. For assessing tren a period was 2007– for the assessment. M alues <loq are="" rep<br="">aber of values <loq ance level was appl the statistical significance s, the statistically su with 5% significance s, the statistically su ues measured over to value of the linear to or Sen's nonparame trends of pollutant of GWB level. concentration of the chemical data of the</loq </loq>	evidence of ads in 2016. The results Monitoring laced by Q is less than ied for trend ficance of the re level. Than for ignificant upward the last 2 years trend up to 2026 tric procedure) concentrations e pollutant e surveillance	
		monitoring systems using Matlab progra for trend assessmen	am package of Man at were:	a-Kendall method w	ith fitted Sen slope.	The steps used	
		0	e assessment trend of all components for all monitoring objects were created ly average data and excluding time series with less than 4 datapoints.				
		• The trend of as well.	of groundwater body level aggregates of yearly annual data were assessed				
		Significant upward Man-Kendall metho		s were identified on	n 95 and 90% signifi	icance level using	
Verbal description of the trend reversal assessment methodology					ined upward The time series rs so that the y dividing the tistical the trend was significance of gnificance of the section significant		
Threshol	d valu	es per GWB					
Pollutant / Indicator		TV (or range) [unit]	NBL (or range) [unit]	Level of TV establishment (national, RBD, GWB)	Related to risk in this GWB [yes/-]		
HU			25 mg/l	8.6 mg/l	GWB	-	
	HU Ammonium HU Conductivity		0.5 mg/l 2500 μS/cm	0.26 mg/l 732 μS/cm	GWB GWB	-	
HU HU	HUConductivityHUSulfate		2500 µ5/cm 250 mg/l	123 mg/l	GWB GWB	-	
HU			250 mg/l	88 mg/l	GWB	-	
HU		ophophate	0.25 mg/l	0.1 mg/l	GWB		
HU	_	mium	5 μg/l	0.02 µg/l	national	-	
HU HU	Lead	d curv	10 μg/l 1 μg/l	0.7 μg/l 0.49 μg/l	national national	-	

0.49 µg/l

national

national

-

1 μg/l

10 µg/l

HU

HU

Mercury

Trichlorethylene

HU	Tetrachloro ethylene	10 µg/l		national	-
HU	Absorbed organic halogens AOX	20 µg/l		national	-
HU	Pesticides by components	0.1 µg/l		national	-
HU	Pesticides all	0.5 μg/l		national	-
SK	Ammonium	0.27 mg/l	0.03 mg/l	GWB	-
SK	Arsenic	5.5 μg/l	1 μg/l	GWB	-
SK	Benzene	0.8 µg/l	-	national	-
SK	Cadmium	2.7 μg/l	0.4 µg/l	GWB	-
SK	Chloride	131.8 mg/l	13.5 mg/l	GWB	-
SK	Chromium	25 μg/l	0.4 µg/l	GWB	-
SK	Copper	1001 μg/l	1 μg/l	GWB	-
SK	Iron total	0.105 mg/l	0.01 mg/l	GWB	-
SK	Lead	5.5 μg/l	1 μg/l	GWB	-
SK	Manganese	0.027 mg/l	0.003 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 μg/l	GWB	-
SK	Nitrates	50 mg/l	16.7 mg/l	GWB	-
SK	Nitrites	0.26 mg/l	0.01 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.07 mg/l	GWB	-
SK	Sodium	52.3 mg/l	4.6 mg/l	GWB	-
SK	Sulphates	167.6 mg/l	85.1 mg/l	GWB	-
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

GWB-11: Komarnanska Kryha / Dunántúli-khgs. északi r.

GWB-11		National share HU-11 SK-11			each national B?			
				Chemical (substance)	Quantity			
List of individua	l GW-bodies	HU	HU_AIQ558	Good	Good			
forming the whole national share		HU	HU_AIQ552	Good	Good			
0	cl. country code)	HU	HU_AIQ564	Good	Good			
	•	HU	HU_AIQ660	Good	Good			
		SK	SK300010FK	Good	Good			
		SK	SK300020FK	Good	Good			
Description/C haracterisation of the ICPDR GW-body	the Transdanubian of the largest karstic for the population of supplying springs a resources in both co General description The karstic formatio of Upper-Triassic a due to the dense fis the faults. The eleved of the covering lay thickness (in some	ng as important tran per-Triassic karstic Mountain (Hungary c aquifer systems in of the region in Hun of the deeper part ountries. n on of the northern pa lolomite and limesto sure-system, while i the open karstic zon er is several hundra places it reaches ev	asboundary GWB dolomite and limestone) and the Komarnansk Central Europe. It pro- ngary; it contributes t of the aquifer system art of the Transdanubic me. The considerable in the limestone large mes are separated by s ed meters. Above the sen 2,500 m) consistin stic formation with bro-	A Kryha (Slovakia wides good quality o the characterist is very importan an Mountains is co matrix porosity of fractures are char unken basins, whe thermal part it ex g of different type	a) belong to one of drinking water ic landscape by t thermal water omposed mainly the dolomite is cacteristic along ore the thickness ceeds 500 m of			

The Slovakian part (the Komarno block) extends between Komarno and Sturovo. It is fringed by the Danube River in the South and by the E-W Hurbanovo fault in the North. The southern limit along the Danube is tectonic as well and therefore the Komarno block is a sunken tract of the northern slope of the Gerecse and Pilis Mountains. The Komarno block consists largely of Triassic dolomites and limestones up to 1,000 m in thickness. The surface of the pre-Tertiary substratum plunges towards the north from a depth of approximately 100 m near the River Danube to as much as 3,000 m near the Hurbanovo fault.

The karstic aquifer is divided into six water bodies. In Hungary, where the recharge area appears, two water bodies bearing cold waters have been delineated according to the flow system. The thermal water bodies (in Hungary waters with temperature more than 30 °C is considered as thermal, while in Slovakia the limit is 25°C: HU_kt.1.2, HU_kt.1.4, SK_300010FK and SK_300020FK are in close hydraulic connection with the cold ones. To be noted, that the missing continuation of the cold water bodies in the Slovakian part is mainly due to the different consideration of the limit of temperature. Taking into account hydro-geothermal aspects, the deep Slovakian karstic aquifer is divided into the Komarno high block (SK 300010FK) and the Komarno marginal block (SK300020FK).

The Danube River is the regional erosion base of the water bodies. The water level fluctuation is in strong relation with the water level changes in the river. The water bodies are hydraulically connected. It is valid at the border of the countries as well, i.e. under the Danube and the Ipoly/Ipel Rivers, making the abstractions of water in both countries highly interrelated.

The recharge area is in the Hungarian side and the total recharge is estimated at 60 Mm^3/y . Without abstraction this amount of water is discharged by the springs and by the upward flow towards the covering layer, and some part is infiltrating to the deeper, thermal part.

The temperature of the water abstracted (captured) from the Hungarian thermal water bodies does not exceed 60 °C. Heat-flow densities suggest that the Komarno high block can be characterised by a fairly low (thermal spring at Sturovo and Patince are 39 and 26 °C warm) and the marginal block by a medium geothermal activity (40–68 °C). Heat flow given in mW/m^2 is 50-60 in Komárno high block and 60–70 mW/m^2 in Komárno marginal block, both considered as low values.

Coefficient of transmissivity in the high block varies from 13 to $100 \text{ m}^2/d$, while in the marginal block between 4 to $20 \text{ m}^2/d$. Prognostic recoverable amount of thermal water in the high block is estimated at 12,000 m³/d water of 20 to 40°C warm. In the marginal block the abstracted thermal water should be re-injected after use.

Major pressures and impacts

In Hungary the actual abstractions are apr. 30 M m^3 /y from the cold part and 2 M m^3 /y from the thermal part. In Slovakia the thermal water abstraction is 0.6 M m^3 /y mainly in area Komárno-Patince-Štúrovo. The cold karstic water is used for drinking water, the thermal water for balneology (in Hungary and in Slovakia) and for energy production (in Slovakia). Disposal of used geothermal water is solved in Slovakia by discharge into surface water (River Danube and Váh) after dilution with groundwater on acceptable qualitative parameters.

Due to the mining activities in the 20^{th} century, the actual water levels - especially in the cold water bodies in the Hungarian side - are significantly lower than the long-term natural averages and as a consequence all cold and lukewarm karstic springs dried out. In the Slovak side the regime of geothermal water (decreasing discharges of wells) was also affected by the extensive pumping of karstic water from coal mines in Tatabánya and Dorog (Hungary). After the mining was stopped (in 1993), the water levels have been showing increasing trend and the gradual reappearance of the springs is forecasted in the coming 5–15 years.

The abandoned cuts and fields of mine submerged by the rising karstic water represent a potential pollution source. Water quality monitoring has been installed, but data are not sufficient for estimating future impacts.

In extremely vulnerable open karstic area a few settlements should be considered as potential source of pollution. Relatively a high number of significant pollution exists in the area (40). The majority is lying above the not vulnerable covered part. The average amount of Nitrogen fertilizer is 86 kgN/ha/year, the use of manure is insignificant (3 kgN/ha/year). The surplus Nitrogen from agriculture is 17 kgN/ha/year, but in the majority of the area the thick covering layers provide natural protection. (Localities in real danger should be assessed at smaller scale, focusing on open karstic zones).

Description of status assessment methodology.	<u>Chemical Status</u> <i>Hungary:</i> Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC.
	The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate
	b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
	c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
	d) Based on these tests, groundwater body was evaluated.
	Slovakia: An important factor in assessing the chemical status of geothermal waters, especially in terms of their use, is the stability of their chemical composition. The stability of the chemical composition for individual sources will be evaluated in those indicators that characterize the chemical type of water (Mineralization, Ca, Mg, Na, Cl, HCO ₃ , SO ₄). Another method is the evaluation of the development trend of the mentioned indicators in individual sources of the geothermal unit. The interquartile range (IQR) method was chosen to evaluate the chemical stability of geothermal water.
	Good chemical status is if :
	 the main indicators of the chemical type of water are between the lower and upper dispersion limits,
	 the trend of development of components of the chemical type of water reaches the same course and individual deviations can be described from the source regime.
	Quantitative Status
	Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
	• <u>GW alteration (Drawdown) test</u>
	Water Balance test
	• Surface Water Flow test
	Groundwater Dependent Terrestrial Ecosystems (GWDTE)
	• Saline or other Intrusion test
	Solution of other minister test Slovakia: The assessment of the quantitative status of geothermal groundwater bodies consists of the balance assessment of individual bodies and the identification of sources for which a critical or emergency balance state occurred during the use of groundwater during the monitored period (2015-2017). For comparison, the state of balance in the period between the geothermal bodies, each will use the value of balance taking into account the state transformed usable amounts expressed in % (BST).
	Good quantitative status is, if:
	• the balance value of the BsT geothermal unit for the observed period may not exceed the value of 80%,

		• the trend of the	of development of B with signs,	sT values <70% is r	not marked, for BsT	> 70% we mark			
		• in case of occurrence of sources with critical or emergency balance state $Bs \le 1,18$ - definition of causes.							
Groundwa	ater	Receptors considered							
threshold		Hungary: Drinking	g water standards						
value relationshi	ips	Slovakia:							
		Consideration of N the TV establishme	IBL and EQS (envir nt:	onmental quality st	andards, drinking w	vater standards) in			
		<u>Hungary:</u> EQS for 201/2001. (X.25.) C decree in correspon	Gov. decree and the	6/2009. (IV.14.) Kv	VM-EüM-FVM con				
In Hungary, more than 95% of drinking water ensured from subsurface waters, so applicable. Exempt those cases, when the karstic and shallow GWBs are in direct aquatic ecosystems (GWAAE), so here the EQS nitrate is applicable (25 mg/l) inst mg/l of DWS.						irect relation to			
		For other compone	nts the DWS is appl	icable.					
For those GWBs where the NBL was higher the reasons, the TVs for ammonium, SO4 and EC v values, as described in Guidance Document N				ind EC were defined	•	0 0			
Slovakia: The criterion for evaluating the chemical status of geothermal GWB is the chemical composition as was described above.					B is the stability of				
Verbal description the trend assessmen		Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps used for trend assessment were:							
methodolo	ogy	• During the assessment trend of all components for all monitoring objects were created using yearly average data and excluding time series with less than 4 data points.							
		• The trend of groundwater body level aggregates of yearly annual data were assessed as well.							
		Significant upward Kendall method wit	rd or downward trends were identified on 95% significance level using Mann- vith Sen's slope.						
Verbal		Hungary:							
description	n of	Slovakia:							
the trend reversal									
assessmen	nt								
methodolo	ogy								
Threshold	d valu	es per GWB							
		TV (or range) [unit]	NBL (or range)	Level of TV establishment (national, RBD, CWP)	Related to risk in this GWB				
	Poll	utant / Indicator		[unit]	GWB)	[yes/-]			
		utant / Indicator		<108 mg/	CWP				
HU HU	Nitre	ates	50-no TV mg/l	<1-9.8 mg/l 0 26-16 7 mg/l	GWB GWB	-			
HU HU HU	Nitro Amn			<1-9.8 mg/l 0.26-16.7 mg/l 996-5097 μS/cm	GWB GWB GWB				
HU HU HU	Nitro Amn Con Sulfo	ates nonium ductivity nte	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/ст 124-266 mg/l	GWB GWB GWB				
HU HU HU HU	Nitro Amn Con Sulfe Chle	ates nonium ductivity ate pride	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/cm 124-266 mg/l 35-627 mg/l	GWB GWB GWB GWB	-			
HU HU HU HU HU	Nitro Amn Con Sulfa Chla Orth	ates nonium ductivity ate pride nophosphate	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l 0.25-no TV mg/l	0.26-16.7 mg/l 996-5097 μS/cm 124-266 mg/l 35-627 mg/l 0.1 mg/l	GWB GWB GWB GWB	- - -			
HU HU HU HU	Nitro Amn Con Sulfa Chla Orth	ates nonium ductivity ate pride nophosphate mium	50-no TV mg/l 0.5-no TV mg/l 2500-no TV μS/cm 250-no TV mg/l 250-no TV mg/l	0.26-16.7 mg/l 996-5097 µS/cm 124-266 mg/l 35-627 mg/l	GWB GWB GWB GWB	-			

HU	Trichlorethylene	10-no TV µg/l	national	-
HU	Tetrachloro ethylene	10-no TV µg/l	national	-
HU	Absorbed organic halogens AOX	20-no TV µg/l	national	-
HU	Pesticides by components	0.1-no TV µg/l	national	-
HU	Pesticides all	0.5-no TV µg/l	national	-

*: no TV for karst thermal GWB

GWB-12: Ipel /Ipoly

List of individual GW-bodies forming the whole national share (national code incl. country code) HU HUAIQ583 Good Good Description/C haracterisation of the ICPDR GW-body Delineation: SK SK1000800P Poor (NO3, SO4, PO4) Good Description/C haracterisation of the ICPDR GW-body Delineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km ² , the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left sidd the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakia border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpirati	tional
Institution of the stational share (national code incl. country code) SK SK 1000800P Poor (NO ₃ , Goo SO ₄ , PO ₄) Goo Description/C haracterisation of the ICPDR GW-body Delineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km ² , the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater a re important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwater	ıtity
forming the whole national share (national code incl. country code)SKSK 1000800PPoor (NO3, SO4, PO4)GoodDescription/C haracterisation of the ICPDR GW-bodyDelineation: The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly- has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-li river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl.Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater a are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate	bd
 haracterisation of the ICPDR GW-body The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly-has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-lit river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate 	od
 haracterisation of the ICPDR GW-body The Ipoly-valley is situated in the border of Slovakia and Hungary, east of Danube River. area is 145,8 km², the elevation varies between 290 m asl to 128 m asl. The middle Ipoly-has an east to west direction, while the lower Ipoly-valley is a north to south one. Left side the river belongs to Hungary. The middle-Ipoly valley formed by several young refilling trenches, on the south is separated by a defined morphological barrier showing terrace-lit river valley. Several river terraces forms the lower-Ipoly-valley between the Börzsöny and Helemba hills. Morphologically, it is a diverse pediment surface from the level of the river to 200 m asl. Reasons for selecting as important transboundary GWB: The surrounding area of this aquifer suffers from lack of water, while these groundwater to are important local drinking water resources in Slovakia and Hungary. Therefore, collaboration between SK and HU to delineate the HU and SK GWBs as common transboundary GWB is a key to maintain safe water supply in sufficient quantities. The all deposits of the Ipel/ Ipoly River extend on both sides of the Hungarian-Slovakian border. aquifer supplies drinking water to a population of approx. 170,000 inhabitants in Slovakia 50,000 inhabitants in Hungary. On the Hungarian side, due to the lowland character and upward flow system, the terrestrial ecosystems (NATURA 2000 site) require surplus transpiration from groundwater; 7% of the area of the water body is under nature conservation. The recharge zone is in Slovakia and Hungary thus the available groundwate 	
resource and the status of the terrestrial ecosystems depend on the lateral flow from the neighbouring countries. Both sides of the GWBs have issues with groundwater quality pro The Ipel'/Ipoly River had formed a 0-10 meters thick alluvial deposit, along the stretch of approximately 80km of the river, which forms a natural boundary between Slovakia and Hungary. More importantly, hydraulic connection between the SK1000800P – HUAIQ58 groundwater bodies is anticipated (<u>http://www.all-in.sk/enwat/ipel.html</u>).General description: The middle and the lower part of the Ipoly-valley significantly differ in geology. In the area upper-Ipoly-valley, the maximum 10 meters thick soil covers the alluvial sand, sandy grav sediments. Below the maximum few tenth meters thick Holocene-Pleistocene sequence, se hundred meters thick Oligocene schlier, sandstone, clay sequence (Szécsényi schlier, Pétervásárai sandstone, Kiscelli clay and Hárshegy sandstone) covers the schist and gnei basement. In the area of lower-Ipoly-valley below the few meters thick alluvial sand and g sediment few hundred meters thick Miocene marl, limestone sequence (Lajta limestone, Sz clayly marl) covers the magmatic tuffs (Nagyvölgyi Dacite tuffs) sediments. The lower boundary of the groundwater body is formed by the thick low permeability schl and sandstone formations, respectively thick clayly marl aquitard (Szilágyi clayly marl). I	valley le of ike d r up bodies luvial The a and t a and t uter oblems f 33 ea of vel vveral iss gravel zilágy lier

	river terraces the Pleistocene fluvio- eolian sand and loess is a good water bearing strata,
	however the main aquifer is the few meters thick (4 m in average) Holocene fluvial sand and
	gravel along the river. The recharge of the upper part of the river is in Slovakia, while the
	middle and lower part of it is recharged both side of the river.
	The area of interest is delimited by the extent of the youngest alluvium of the river Ipoly/Ipel' and partially also of some of its tributaries. The alluvium lies on the impermeable clayey sediments of the Neogene filling of the Juhoslovenská and Podunajská panva basins in the Slovakian side. In the groundwater body there are mainly alluvial and terrestrial gravel, sandy gravel, sand, stratigraphic classification of Pleistocene - Holocene as collector rocks. In hydrogeological collectors of the formation, the inter-grain permeability prevails. The average range of the thickness of the guardrails is <10 m, the value of the filtration coefficient here is in the range of 1.10-4 to 1.10-3 m.s-1. The general direction of groundwater flow in the alluvial floodplain of the quaternary formation SK1000800P is more or less parallel to the course of the main flow. Intergranular groundwater body of Quaternary sediments of the Ipel' river is in the Hron watershed area. The evaluated area (agricultural land including arable land, grassland, pastures and permanent crops plantations) shares 86.69 % of total groundwater body area, rest of groundwater body area land cover is represented by forests, semi-natural land, surface water tables and artificial surfaces. Within the groundwater body area, evaluated area creates large and compact patterns which regularly cover whole area. In general, groundwater body shows lowered potential of soil regarding possible negative influence of surface contamination to groundwater. The main aquifer is the alluvial sediments of the river Ipoly/Ipel' and the connecting terraces. Their thickness is about 4-10 m, or more. The gravels and sands are covered with 1.5-4 m of clayey flood sediments. The changing thickness sometimes causes the occurrence of the
	confined groundwater. The gravels and sands have high transmissivity. The width of the river flood plain is about 1-2 km, but at some places it is of only tens of meters. Groundwater recharge occurs by infiltration of precipitations and infiltration of surface water at high water levels. The changing (decreasing) surface water level of the river has negative impact of the water supply possibilities Strong variability of groundwater chemical composition and quality is characteristic for the Ipel' region. Ca-Mg-HCO3 dominates in groundwater as the result of dissolution of carbonates and hydrolytical decomposition of silicate minerals. Groundwater qualitative properties in the region reflect either the natural character of the area or the addition of compounds due to anthropogenic activities.
	Major pressures and impacts
	Anthropogenic contamination of groundwater is mostly originated by agricultural activities and production of waste waters. It is mainly contamination of the uppermost groundwater horizons that occurs in the area. Deteriorated groundwater quality is mainly characterized by high contents of nitrates, chlorides, ammonia ions, phosphates or specific organic parameters (PAH, COD) and occasionally pesticides. Locally high pesticide concentrations (> 0.5 mg/l) are found in both surface water and in groundwater along the Ipoly/Ipel' valley. Pesticides in unsaturated soils can be released by erosion, which can be increased by climate change. Nitrates have also a substantial impact on the shallow parts (0-20 m) of the groundwater systems. In general, detected pesticide concentrations suggest that water quality can be considered to be at risk until further investigations will be made and the additional measures as defined by WFD, will be taken. Furthermore, besides the anthropogenic pressures the locally important drinking water resource has high natural sulphate content and electric conductivity. The whole GWB is highly sensitive to climatic changes
Description of	Chemical Status:
status assessment methodology.	Hungary: Assessment of the chemical status of groundwater was conducted: Analysing of the chemical data of individual monitoring points within each of the GWBs; Identifying of the pressures - sources of pollution; The background levels were calculated and used to determine threshold value. Threshold values have been determined according to CIS Guidance No. 18. Contamination limits have been determined for all indicators listed in Annex II Part B of Directive 2006/118/EC and indicators of the report under Art. 5 of Directive 2006/118/EC. The following parameters were investigated:
	a) Natural Background Level was determined for the following components: nitrate, ammonium, specific conductivity, sulphate, chloride, arsenic, cadmium, lead, mercury, orthophosphate

b) For each monitoring point the median concentration of each parameters of the studied period was compared to the thresholds values (determined for each GWB) or standards values (in the case of nitrates, metals and pesticides).
c) Different tests were conducted to assess groundwater body status: Diffuse pollution test (nitrate, ammonium, orthophosphate), Drinking water supply tests for numerous elements or components in both drinking water wells and monitoring wells and trend analysis based on the data of the surveillance monitoring system. Studied components of these tests are: nitrate, ammonium, chloride, sulphate, specific conductivity, mercury, lead, cadmium, pesticides and organics, furthermore in the trend analysis pH and dissolved oxygen.
d) Based on these tests, groundwater body was evaluated.
Slovakia: The methodology for assessing chemical status followed the requirements of the Groundwater Directive (2006/118/EC) as well as the recommendations of the CIS Guidance Document no. 18 - Guidance on groundwater status and trend assessment. The assessment of the chemical status of GWB in the conditions of the Slovakia consisted of the following tests:
1. General quality assessment (GQA) test - years 2016-2017.
2. Drinking water protected areas (DWPA) test - period 2008-2017.
3. Test of significant diminution of associated surface water chemistry and ecology due to transfer of pollutant from the GWB - named as Surface water test - period 2013-2018.
In the GQA test and the Surface water test, the procedure was based on a comparison of the arithmetic means of the concentration of the individual component with quality standards (QS) or thresholds values (TV) for each monitoring point. If no exceedances of the QS/TV were recorded in all monitoring points, the whole GWB was evaluated in good chemical status. If exceedances of QS/TVs were recorded than the methodologies were as follows:
In the GQA test, data aggregation to whole GWB was performed. If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was evaluated in good status. If the exceedance more than 20% of the total area of the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical status.
In the Surface water test, each GWB (with the relevant groundwater monitoring point) associated with the surface water body was assessed individually, taking into account the hydrological criterion, the hydrogeological criterion, the groundwater and surface water concentration profile, dilution (if data available) and that the estimated load of pollutant from groundwater transferred to associated surface water could be more than 50%, the GWB was evaluated in poor chemical status.
In the DWPA test, the procedure was based on trend analysis (Mann-Kendal, linear regression, 10 years) of biological, chemical and radiological parameters of groundwater intended for human consumption before any level of treatment. If there was not a statistically significant and sustained upward trend in any drinking water abstraction points, the GWB was evaluated in good chemical status. If there was any significant and sustained upward trend in any parameter in any of drinking water abstraction point in the GWB, the methodology was as follows: the data aggregation to whole GWB was performed (kriging from 2 years mean). If the calculated total area of exceedance of the QS/TV was less than 20% of the total area of the GWB, the GWB was recorded and based on expert judgment, the GWB was evaluated in poor chemical
status
Quantitative Status:
Hungary: To determine the overall quantitative status for a GWB, a series of tests should be applied that considers the impacts of anthropogenically induced long-term alterations in groundwater level and/or flow. Each test will assess whether the GWB is meeting the relevant environmental objectives. The quantitative status has been assessed taking into account CIS Guidance No.18. The following criteria have been used:
<u>GW alteration (Drawdown) test</u>
Water Balance test
Surface Water Flow test

- Groundwater Dependent Terrestrial Ecosystems (GWDTE)
- Saline or other Intrusion test

Slovakia: Assessment of groundwater quantitative status consists of 4 fests
Slovakia: Assessment of groundwater quantitative status consists of 4 tests: 1. balance assessment of groundwater bodies for the period 2013-2017 and evaluation of
the long-term trend of development of balance levels of groundwater bodies for the period 2004-2018
2. evaluation of the existence of significant declining trends in the groundwater level and spring yield in groundwater bodies for the period 2007-2016 processed by aggregation of point results of groundwater quantity monitoring in the facilities of the state hydrological network of the SHMI
 assessment of the impact of groundwater quantity on the status of terrestrial ecosystems dependent on groundwater
4. assessment of the impact of groundwater quantity on surface water
Receptors considered
Slovakia: Drinking water, Surface water
Hungary: Drinking water
<u>Consideration of NBL and EQS (environmental quality standards, drinking water standards,</u> <u>surface water standards) in the TV establishment:</u>
Slovakia: The natural background level (NBL) was determined and used to derive the threshold value (TV). The TV were determined for all indicators listed in Part B of Annex II to Directive 2006/118/EC and in Directive 2014/80/EU. The TV for the inorganic substances were derived according to the formula: $TV = (NBL + DWS)/2$. The TV for organic compounds were derived using the formula: $TV = 0.75 * DWS$. These TV were used for GQA and DWPA tests.
An updated list of the TV established for each GWB was published in the amended Regulation of the Government of the Slovakia no. 282/2010 Coll.
For the Surface water test, the TV were derived as follows: $TV = CV = AF * EQS$ (surface water standard)/DF, where AF (Attenuation factor) and DF (Dilution factor) are equal to 1 (the worst case).
For that GWB where the NBL was higher than the TV due to natural hydro-geological reasons, the TV was set up as $TV = NBL$.
Hungary: EQS for herbicides and total pesticides, tri-, tetrachloroethylenes based on 201/2001. (X.25.) Gov. decree and the 6/2009. (IV.14.) KvVM-EüM-FVM common ministerial decree in correspondence to I. Annex of the 2006/118/EC directive.
In Hungary, more than 95% of drinking water ensured from subsurface waters, so for all other components the DWS is applicable.
For those GWBs where the NBL was higher than the DWS due to natural hydro-geological reasons, the TVs for ammonium, SO4 and EC were defined by taking into account these higher values, as described in Guidance Document No. 18.
Slovakia: Trend is assessed separately for groundwater quality and quantity at which for trends in quantity the procedure applies for all GW quantity monitoring sites. The assessment follows a stepwise procedure. Consisting of the evaluation of the data sets and the monitoring points (no gaps in time series are allowed and data from 2007–2016 were used), consisting of the performance of the non-parametric Mann-Kendall trend test (95% confidence level) and comprising the regression analysis. GWBs with decreasing trends but with no evidence of abstraction are excluded from assessment in the 3 rd RBMP. For assessing trends in concentrations of pollutants in groundwater the evaluation period was 2007–2016. The results of surveillance and operational monitoring were applied for the assessment. Monitoring frequency depends on the GWB type. In the analysis the values <loq (anova)="" *="" 0.75="" 2="" 2.="" 2026<="" 5%="" 50%.="" <loq="" a="" all="" also="" and="" applied="" are="" assessment="" by="" calculated="" distribution,="" evaluated="" evaluation.="" for="" higher="" identified="" if="" is="" last="" less="" level="" level.="" linear="" loqmax="" mann-kendall="" measured="" median="" method="" non-parametric="" normal="" number="" of="" only="" or="" over="" parametric="" performed="" predicted="" qs="" replaced="" series="" showing="" significance="" significant="" statistical="" statistically="" td="" test="" tested="" than="" the="" time="" times="" to="" trend="" trends,="" tv="" up="" upward="" upwards="" value="" values="" was="" with="" years=""></loq>

	was higher than QS/TV. The significant sustained upward trends of pollutant concentrations were identified at the level of monitoring points and at the GWB level.									
		The starting point f	for trend reversal w	or trend reversal was placed where the concentration of the pollutant						
		reaches 75% of the	QS/TV of the relev							
	Hungary : To assess the trend of pollutant concentrations, chemical data of the surveillance monitoring systems were used for the period of 2000 to 2012. The trend analysis was done using Matlab program package of Mann-Kendall method with fitted Sen slope. The steps us for trend assessment were:									
		• During the assessment trend of all components for all monitoring objects were creat using yearly average data and excluding time series with less than 4 data points.								
	 The trend of groundwater body level aggregates of yearly annual data were assess as well. 					ta were assessed				
Significant upward or downward trends were identified on 95% significance level using Ma										
	Kendall method with Sen's slope.									
description of the trend reversalseries were include trends at the level of entering the evaluat evaluation period w time series into two significance of the indicated if the foll the trends evaluated on representing the results			d in the assessment of monitoring sites i tion were suppleme vas 14 years. The ev o sections with differ trends separately for owing conditions we d within individual the basis of all data sults of monitoring of monitoring in the s the trend reversal	nethodology consist, on the basis of whi n the previous RBM nted by data monito valuation was perfo rent lengths and the or each allocated sec ere met at the same sections is higher the forming the evalua- in the older period. tatistically significa- e newer period.	ich significant susta IP were classified. If ored in previous yea rmed by dynamical n evaluating the sta ction. A reversal of time: the statistical oan the statistical si thed time series, the shows a statistically unt decreasing trend	tined upward The time series trs so that the by dividing the ttistical the trend was significance of gnificance of the section significant d evaluated on the				
			TV (or range)	NBL (or range)	(national, RBD,	in this GWB				
	Poll	utant / Indicator	[unit]	[unit]	GWB)	[yes/-]				
HU	Nitre	ates	50-no TV mg/l	9.5 mg/l	GWB	-				
HU	Amn	ıonium	2.0-no TV mg/l	1.1 mg/l	GWB	-				
HU	Con	ductivity	2,500-no TV µS/cm	1,570 µS/cm	GWB	-				
HU	Sulp	hate	500-no TV mg/l	284 mg/l	GWB	-				
HU		oride	250-no TV mg/l	119 mg/l	GWB	-				
HU	Orth	ophosphate	2.0 mg/l	0,91 mg/l	GWB					
HU		mium	5-no TV μg/l	0.07 μg/l	national	-				
HU	Lead		10-no TV µg/l	0.293 μg/l	national	-				
HU	Mer		1-no TV µg/l	0.005 µg/l	national	-				
HU		hlorethylene	10-no TV µg/l		national	-				
HU		achloro ethylene	10-no TV µg/l		national	-				
HU	Abso	orbed organic gens AOX	20-no TV µg/l		national	-				
HU	Pest	icides by ponents	0.1-no TV µg/l		national	-				
HU		icides all	0.5-no TV µg/l		national	-				
SK		ionium	0.9 mg/l	0.9 mg/l	GWB	-				
SK	Arse		6 μg/l	$\frac{2 \mu g/l}{2 \mu g/l}$	GWB	-				
SK	Benz		$0.8 \mu g/l$		national	_				
		,ene	$2.0 \mu g/l$	0.7 µg/l	GWB					

Cadmium

Chloride

SK

SK

2.9 µg/l

135.7 mg/l

GWB

GWB

-

-

 $0.7 \,\mu g/l$

21.3 mg/l

Danube River Basin Management Plan Update 2021

SK	Chromium	26 µg/l	2 µg/l	GWB	-
SK	Copper	1003 μg/l	6 µg/l	GWB	-
SK	Iron total	0.150 mg/l	0.1 mg/l	GWB	-
SK	Lead	7.0 μg/l	5 μg/l	GWB	-
SK	Manganese	0.100 mg/l	0.1 mg/l	GWB	-
SK	Mercury	0.6 µg/l	0.1 µg/l	GWB	-
SK	Nitrates	50 mg/l	1.5 mg/l	GWB	Yes
SK	Nitrites	0.26 mg/l	0.02 mg/l	GWB	-
SK	Phosphates	0.24 mg/l	0.08 mg/l	GWB	Yes
SK	Sodium	119.8 mg/l	39.6 mg/l	GWB	-
SK	Sulphates	140.8 mg/l	31.6 mg/l	GWB	Yes
SK	Tetrachloroethylen	7.5* μg/l	-	national	-
SK	Trichlorethylene	7.5* μg/l	-	national	-

* 7.5 for Tetrachloroethylene + Trichlorethylene

Significant pressures on the ICPDR GW-bodies

Code of ICPDR GW-body					GWB	-1		
National share of ICPDR GW-body (nationally aggregated part)					AT-1,	DE-1		
	Status			types	Ri	sk pres		Des
Significant Pressures for Groundwater	Chemic Yes/-		:	antity 'es/-		2019- mical es/-	>202 7 Qua Ƴe	-
	AT C	DE	AT	DE	AT	DE	AT	DE
Point sources	-					-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	-					•		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				•
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			•	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								

Mine water rebound				
Other major recharges (specify below)				
Other significant pressures	-	-	-	-
Saltwater intrusion				
Other intrusion (specify below)				
Description of other significant pressures than those selected above.				

Code of ICPDR GW-body					GWB-	-2		
National share of ICPDR GW-body (nationally aggregated part)			BG-2, RO-2					
	Sta		essure ty 021	pes	Risk pressure types 2019→2027			
Significant Pressures for Groundwater	Chemical Yes/-		Quantity Yes/-		Chemical Yes/-		Quantity Yes/-	
	BG	RO	BG	RO	BG	RO	BG	RC
Point sources		-				-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water								
to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-				-		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				-
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)			_					
Artificial recharge				-				-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other								
significant pressures than those selected above.								

Code of ICPDR GW-body						GWB-	.3		
National share of ICPDR GW-body (nationally aggregated part)			MD-3, RO-3						
	Status p		pressure types 2021		Ris	sure ty > 2027	ire types		
Significant Pressures for Groundwater	Chemical Yes/-			Quantity Yes/-		Chemical Yes/-		Quantity Yes/-	
	MD	RC)	MD	RO	MD	RO	MD	RO
Point sources		-					-		
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources		-					-		
due to agricultural activities									
due to non-sewered population									
Urban land use									••••••
Other significant diffuse pressures (specify below)									
Water abstractions							-		-
Abstractions for agriculture									
Abstractions for public water supply Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites Other major abstractions (specify below)									
Artificial recharge									-
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-		•			-		-
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than those selected above.									

Code of ICPDR GW-body					GWB	-4		
National share of ICPDR GW-body (nationally aggregated part)			BG-4, RO-4					
	Status pressure types 2021				Ri	sure types ➔2027		
Significant Pressures for Groundwater	Chemical Yes/-				Chemical Yes/-		Quantity Yes/-	
	BG	RO pool		RO	BG	RO risk	BG RO	
Point sources		-		<u>i</u>		-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	-	Yes	;		-	Yes		
due to agricultural activities		Х				X		
due to non-sewered population		Х				X		
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-			-	
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-			-	
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-	-	
Saltwater intrusion								
Other intrusion (specify below)								
Description of other significant pressures than those selected above.								

Code of ICPDR GW-body					GWB-	-5		
National share of ICPDR GW-body (nationally aggregated part))				HU-5,	RO-5		
	Stat		ssure t <u>y</u>)21	ypes	Ris	sk pres 2019-	sure ty > 2027	pes
Significant Pressures for Groundwater		mical es/-		ntity es/-		mical es/-	Qua	n tity es/-
	HU	RO	HU	RO	HU risk	RO risk	HU risk	RO
Point sources	poor	poor	poor		IISK	-	HSK	
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources	Yes	Yes			Yes	Yes		
due to agricultural activities	X	Х			X	X		
due to non-sewered population	Х	Х			X	X		
Urban land use	X				X			
Other significant diffuse pressures (specify below)								
Water abstractions			Yes	-			Yes	-
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-				-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-	ļļ	-		-
Saltwater intrusion					ļļ			
Other intrusion (specify below)								
Description of other HU: indirect water abstraction significant pressures than those selected above.	n: inland	d exces	s water	drainaç	ge			

Code of ICPDR GW-body					GWB-	-6		
National share of ICPDR GW-body (nationally aggregated part)					HU-6,	RO-6		
	Sta		ssure ty)21	/pes	Ris	k pres 2019-	sure ty ∋ 2027	pes
Significant Pressures for Groundwater		mical es/-	Qua	ntity s/-		mical es/-	Qua	antity es/-
	HU	RO	HU	RO	HU	RO	HU	RO
Point sources		-				-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water								
to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		-						
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				
Abstractions for agriculture								
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge				-				-
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other significant pressures than								
those selected above.								

Code of ICPDR GW-body							GWE	8-7				
National share of ICPDR GW-body (nationally aggregated p	art)						HU-7	7, RC)-7, F	rs-7		
	S	itatus	pres 202		ype	S	R			sure > 202		S
Significant Pressures for Groundwater		h emic Yes/-	al		uant Yes/-			emi Yes/			uant Yes/	
	HU	RO	RS	HU	RO	RS poor	HU risk	RO	RS	HU risk	RO	RS risk
Point sources	poor	-	-	poor		μουι	115K	-	-	TISK		TISK
Leakages from contaminated sites												
Leakages from waste disposal sites (landfill and agricultural waste disposal)												
Leakages associated with oil industry infrastructure												
Mine water discharges												
Discharges to ground such as disposal of contaminated water to soak ways												
Other relevant point sources (specify below)												
Diffuse Sources	Yes	-	-				Yes	-	•			
due to agricultural activities	Х						х					
due to non-sewered population	Х						х					
Urban land use	х						х					
Other significant diffuse pressures (specify below)												
Water abstractions				Yes	-	Yes				Yes	-	Yes
Abstractions for agriculture				х		Х				Х		X
Abstractions for public water supply				X		X				Х		X
Abstractions by industry						X						X
IPPC activities												
Non-IPPC activities												
Abstractions by quarries/open cast coal sites												
Other major abstractions (specify below)												
Artificial recharge					-						-	
Discharges to groundwater for artificial recharge purposes												
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)												
Mine water rebound												
Other major recharges (specify below)												
Other significant pressures		-						-			-	
Saltwater intrusion												
Other intrusion (specify below)				<u> </u>								
	1			1			I			1		
Description of other significant pressures than those selected above.												

Code of ICPDR GW-body						GWB	-8		
National share of ICPDR GW-body (nationally aggregated part)						HU-8,	SK-8		
			202	sure t <u>y</u> 1	ypes	Ri	sk press 2019−		
Significant Pressures for Groundwater		mical es/-	I		n tity es/-		mical es/-		lantity (es/-
	HU	SK	(HU	SK	HU	SK risk	HU	Sk
Point sources		-			1	•	Yes		
Leakages from contaminated sites							Х		
Leakages from waste disposal sites (landfill and agricultural waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water to soak ways									
Other relevant point sources (specify below)							Х		
Diffuse Sources		-					Yes		
due to agricultural activities							Х		
due to non-sewered population							Х		
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions					-				_
Abstractions for agriculture									-
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge					-				-
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted									
(e.g. for sand and gravel washing) Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		_			_		_		
Saltwater intrusion		-			-		-		-
Other intrusion (specify below)									
						1			
Description of other SK: discharges from wastewa significant pressures than those selected above.	ter trea	itment	t pla	ant (ind	direct p	ressure)		

	GWB	8-9		
	HU-9,	, SK-9		
e types	Ri		sure ty →2027	pes
uantity Yes/-		emical es/-	Quantity Yes/-	
J SK or	HU risk	SK risk	HU risk	SK
		-		
	Yes	Yes		
	х	X		
	х			
s -			Yes	-
-				-
			-	
-		-	1	-
			1	
	• •	(indirect pressure er drainage	(indirect pressure) er drainage	,

Code of ICPDR GW-body					GWB-	10		
National share of ICPDR GW-body (nationally aggregated part)					HU-10), SK-1(0	
	ļ	2	essure t			2019-	sure ty →2027	-
Significant Pressures for Groundwater		mical es/-		ntity es/-		nical s/-	:	ntity es/-
	HU	SK	HU	SK	HU risk	SK	HU	SK risk
Point sources		-		·	Yes	-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure						•		
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways						*		
Other relevant point sources (specify below)					X	•		
Diffuse Sources		-			•	•		
due to agricultural activities								
due to non-sewered population								
Urban land use								
Other significant diffuse pressures (specify below)								
Water abstractions				-				Yes
Abstractions for agriculture								X
Abstractions for public water supply								Х
Abstractions by industry								Х
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge								
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		•		-		•		-
Saltwater intrusion								
Other intrusion (specify below)								
Description of other HU: unknown pollution source	, monit	oring r	equired					
significant pressures than		v						
those selected above.								

Code of ICPDR GW-body						GWB-	-11		
National share of ICPDR GW-body (nationally aggregated part)						HU-11	1, SK-1 ⁻	1	
	Sta	tus		ssure t <u>:</u>)21	ypes	Ris	k pres 2019-	sure ty∣ > 2027	pes
Significant Pressures for Groundwater		e mic es/-	al	;	i ntity es/-		m ical es/-		n tity es/-
	HU	S	SK	HU	SK	HU	SK	HU	SK
Point sources		-					-		
Leakages from contaminated sites									
Leakages from waste disposal sites (landfill and agricultural									
waste disposal)									
Leakages associated with oil industry infrastructure									
Mine water discharges									
Discharges to ground such as disposal of contaminated water									
to soak ways									
Other relevant point sources (specify below)									
Diffuse Sources		-					-		
due to agricultural activities									
due to non-sewered population									
Urban land use									
Other significant diffuse pressures (specify below)									
Water abstractions					-				-
Abstractions for agriculture									
Abstractions for public water supply									
Abstractions by industry									
IPPC activities									
Non-IPPC activities									
Abstractions by quarries/open cast coal sites									
Other major abstractions (specify below)									
Artificial recharge					-				-
Discharges to groundwater for artificial recharge purposes									
Returns of groundwater to GWB from which it was abstracted (e.g. for sand and gravel washing)									
Mine water rebound									
Other major recharges (specify below)									
Other significant pressures		-			-		-		-
Saltwater intrusion									
Other intrusion (specify below)									
Description of other significant pressures than									
those selected above.									

Code of ICPDR GW-body					GWB	-12		
National share of ICPDR GW-body (nationally aggregated part)					HU-12	2, SK-12	2	
	Sta		ssure t 021	ypes	Ris	sk press 2019-	sure tyµ ∋ 2027	oes
Significant Pressures for Groundwater		mical əs/-		antity es/-		mical es/-		ntity s/-
	HU	SK poor	HU	SK	HU	SK risk	HU	SK
Point sources		-		1		-		
Leakages from contaminated sites								
Leakages from waste disposal sites (landfill and agricultural waste disposal)								
Leakages associated with oil industry infrastructure								
Mine water discharges								
Discharges to ground such as disposal of contaminated water to soak ways								
Other relevant point sources (specify below)								
Diffuse Sources		Yes				Yes		
due to agricultural activities		Х				Х		
due to non-sewered population		X						
Urban land use								
Other significant diffuse pressures (specify below)		Х						
Water abstractions								-
Abstractions for agriculture				•				
Abstractions for public water supply								
Abstractions by industry								
IPPC activities								
Non-IPPC activities								
Abstractions by quarries/open cast coal sites								
Other major abstractions (specify below)								
Artificial recharge								
Discharges to groundwater for artificial recharge purposes								
Returns of groundwater to GWB from which it was abstracted								
(e.g. for sand and gravel washing)								
Mine water rebound								
Other major recharges (specify below)								
Other significant pressures		-		-		-		•
Saltwater intrusion								
Other intrusion (specify below)			1					
Description of otherSK: other anthropogenic presssignificant pressures thanthose selected above.	sure - u	inknow	n					

Groundwater measures

The overview table indicates the status of implementation of all key measures in the following way:

MC	Measure implementation Completed by end of 2020
	Implementation of measure is estimated to be completed by the end of 2020
МО	Measure implementation On-going after the end of 2020
	(Involving administrative acts, diffuse pollution, advisory services, research etc.)
РО	Construction Planning On-going after the end of 2020
	Planning of construction measure is on-going.
	(Involving construction or building works)
СО	Construction On-going after the end of 2020
	Construction of measure is on-going.
	(Involving construction or building works)
MP	Measure implementation Not Started by the end of 2020
	Implementation of measure is planned
MN	Measure implementation Not Started by the end of 2020

The detailed tables provide more details on particular measures in each relevant GWB:

- description of the measure,
- responsible authority,
- quantitative information by appropriate indicators (number of measures/projects and costs).

GWBs at poor status in 2021 or at risk in 2027 and the implemented measures

DRBD-GWI	В	GWB-4		GWB-5			GWB-7		GWB-8	GW	/B-9	GW	/B-10	GWB- 12
National pa	art	RO-4	RO-5	HU	J-5	H	J-7	RS-7	SK-8	HU-9	SK-9	HU-10	SK-10	SK-12
Poor status	s (Chem or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	-	Quant	Chem		-	Chem
Risk (Chen	n or Quant)	Chem	Chem	Chem	Quant	Chem	Quant	Quant	Chem	Chem Quant	Chem	Chem	Quant	Chem
Basic Meas	sures (BM) – Article 11(3)(a)													
BM-01	BathingWater													
BM-02	Birds													
BM-03	DrinkingWater	MO	MO						MO					
BM-04	Seveso													
BM-05	EnvironmentalImpact													
BM-06	SewageSludge													
BM-07	UrbanWasteWater	CO	CO	MO		MO			CO	MO	CO			
BM-08	PlantProtectionProducts			MO		MO			MO		MN			MO
BM-09	Nitrates	MO	MO	MO		MO			MO	MO	MN			MO
BM-10	Habitats													
BM-11	IPPC													
Other Basi	c Measures (OBM) – Article 11(3)(b-l)													
OBM-20	CostRecoveryWaterServices													
OBM-21	EfficientWaterUse													
OBM-22	ProtectionWaterAbstractions			MP		MP						MN		
OBM-23	ControlsWaterAbstraction				MP		MP			MP			MN	
OBM-24	RechargeAugmentationGroundwater													
OBM-25	PointSourceDischarge													
OBM-26	PollutantsDiffuse			MP		MP								
OBM-27	AdverseImpact													
OBM-28	PollutantDirectGroundwater													
OBM-29	SurfacePrioritySubstances													
OBM-30	AccidentalPollution													
Suppleme 11(4)&(5)	ntary Measures (SM) – Article	МО	МО	MP	MP	MP	MP		МО	MP	MN	MN		МО

MC...Measure implementation completed by end of 2020, MO...Measure implementation on-going after the end of 2020, PO...Construction planning on-going after the end of 2020, MN...Measure implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020, MP...Measure implementation not started by end 2020, implementation not started by end 2020,

Detailed description of measures

[**BM** = basic measures, **OBM** = other basic measures, **SM** = supplementary measures].

GWB-4: Sarmatian

	G .	Press	ures	Status	s/Risk	Mea	isures	
GWB Code	Size [km²]	Chemical	Quantit y	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-4 BG-RO	5,412	DS	-	Poor, Risk (RO)	Good	BM, SM	-	2027
MC - Measu	re imple	ementation c	completed	by the end o	of 2020			
MO - Measu RO – Chemi		ementation of	on-going a	fter the end	of 2020			
BM-03 Ensu		e protection	areas for	the drinking	g groundwa	ter abstracti	on (MO)	
according Order 127 water cont	to the wa 8/2011); aminatio	ater legislatic banning me n risk/	on in force asures for	(Water Law some activit	107/1996 m ies and restr	odified and o	completed, GI	e protected are 0 930/2005 an to prevent th
 responsible 		-						
drinking g	roundwa		ons are esta					30/2005, for a order to prever
BM-09 Appl (MO)	ying the	Action Prog	grams (wł	nole territor	y approach)	in accordaı	nce to the Nit	rates Directiv
	2.06.201	3 of the Inte	r-ministeri	ial Commissi	ion for the ir	nplementatio	on of the Actio	g with Decisio on Programs fo
		measure – pof the agricult			applied for	the agricultu	re diffuse sou	rces in order t
• responsib	le autho	rity: county	agriculture	e authorities,	local author	ities and farr	ners	
		mation by a nistration term		e indicators	: This meas	ure is applie	d in whole D	obrogea-Litora
SM - Resear transfer/deg				type and qua	antity of pol	lutants in so	il and ground	lwater and th
	migratio	n – the supp						l and tempora indwater statu
		rity : Ministr Institute for H				ests, Nationa	l Administrat	ion "Romania
• quantitati	ve infori	mation by aj	ppropriate	e indicators:	research stu	dy		
PO - Constru	uction m	ieasure plan	ning on-g	oing after th	e end of 202	20		
CO - Constr		f measure of	n-going af	ter the end	of 2020			
<u>RO – Chemi</u>		o						
BM – 07 Col						_		
description	n of the	measure – e	xecution o	t the new sev	wage networ	KS		

• responsible authority: local authority

- **quantitative information** construction of collecting systems and improvement of the waste water treatment plant performance
- MN Measure implementation not started by the end of 2020

GWB-5: Mures/Maros

	Size	Press	ures	Statu	s/Risk	Меа	sures	Evenentions
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-5 HU-RO	7,216	DS	WA	Poor, Risk (RO, HU)	Poor, Risk (HU)	BM, OBM, SM	OBM, SM	2027+ (HU) 2027 (RO)
MC - Measure	impleme	entation comp	pleted by th	e end of 202	0			I
MO - Measure	1 A A A A A A A A A A A A A A A A A A A	entation on-g	oing after tl	he end of 202	20			
<u>RO – Chemica</u> BM-03 Ensuri		rotection are	as for the d	rinkina arow	ndwater abst	raction (MO)		
• description to the water	n of the m r legislation	easure: estat	olishment of /ater Law 1	safeguard zo 07/1996 modi	nes and buffe ified and com	r zones ensur pleted, GD 93		d area accordin rder 1278/2011) ation risk/
 responsible 	e authorit	ty: water auth	orities, local	authorities;				
	r abstracti							, for all drinking water resource
~~	06 2012							
of waters agair	nst pollution of the m	on caused by leasure – prog	nitrates from	mmission for t agricultural s	the implement sources.	ation of the Ad	tion Programs	for the protectio
 of waters again description effects of the 	nst pollution of the m e agricultu	on caused by leasure – prog	nitrates from gramme of r	mmission for t agricultural s neasures app	the implement sources. lied for the ag	ation of the A	tion Programs	for the protectio
 of waters again description effects of the responsible 	nst pollution of the m e agricultu le authori e informa	on caused by easure – prog ure activities ity: county ag ition by appro-	nitrates from gramme of r riculture autl	mmission for t a agricultural s neasures app norities, local a	the implement sources. lied for the ag authorities an	ation of the Ad riculture diffus d farmers	tion Programs	g with Decision for the protectio der to reduce th oral Water Basi
of waters agair • description effects of the • responsibl • quantitative Administration SM - Researce	nst pollution of the m e agricultu le authori e informa on territor ch study	on caused by easure – prog ure activities ity: county agu tion by approve y. for evaluati	nitrates from gramme of r riculture auth opriate indi on of the	mmission for t agricultural s neasures app norities, local a cators: This	the implement sources. lied for the ag authorities an measure is ap	ation of the Ad riculture diffus d farmers oplied in whole	ction Programs e sources in or e Dobrogea-Litt	for the protectio der to reduce th
of waters agair • description effects of the • responsibl • quantitative Administrative SM - Researd transfer/degra • description	nst pollution of the m e agricultu le authori e informa on territor ch study adation m of the i	on caused by leasure – proq ure activities ity: county aguition by appro- y. for evaluati nechanisms (imeasure: dev	nitrates from gramme of r riculture auti opriate indi on of the MO) velopment c	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t	the implement sources. lied for the ag authorities an measure is ap antity of po ools for the o	ation of the Ad riculture diffus d farmers oplied in whole Ilutants in s e evaluation of	ction Programs te sources in or e Dobrogea-Litt bil and groun spatial and ter	for the protectio der to reduce th oral Water Basi
of waters agair • description effects of the • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration - 1 • responsible	nst pollution of the m e agricultu le authori e informa on territor ch study adation m of the n the suppo e authori	on caused by easure – prog ure activities ity: county agu tion by appro- y. for evaluati techanisms (measure: dev rt tool for final	nitrates from gramme of r riculture auth opriate indi opriate indi on of the MO) velopment of ising the eva of Environm	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a	the implement sources. lied for the ag authorities an measure is an nantity of po ools for the o odology of the	ation of the Ad riculture diffus d farmers oplied in whole llutants in s e evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectio der to reduce th oral Water Basi dwater and th nporal pollutant
of waters agair • description effects of the • responsibl • quantitative Administrati SM - Researd transfer/degra • description migration - 1 • responsible	nst pollution of the m e agricultu le authori e informa on territor ch study adation m n of the n the suppo e authori titute for h	on caused by the casure – program activities ity: county again tion by approgram. The chanisms (in the chani	nitrates from gramme of r riculture auth opriate indi on of the MO) velopment c ising the eva of Environm Water Man	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ad riculture diffus d farmers oplied in whole llutants in s e evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectio der to reduce th oral Water Basi dwater and th pporal pollutant
of waters agair • description effects of the • responsibl • quantitative Administrative SM - Researd transfer/degra • description migration – 1 • responsible National Ins • quantitative <u>HU – Chemica</u>	nst pollution of the m e agricultu le authori e informa on territor ch study adation m n of the n the suppo e authori titute for h e informa	on caused by the casure – program activities ity: county again tion by approgram. The chanisms (in the chani	nitrates from gramme of r riculture auth opriate indi on of the MO) velopment c ising the eva of Environm Water Man	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ad riculture diffus d farmers oplied in whole llutants in s e evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectio der to reduce th oral Water Basi dwater and th pporal pollutant
of waters agair • description effects of the • responsibl • quantitative Administrative SM - Researd transfer/degra • description migration – f • responsible National Ins • quantitative <u>HU – Chemica</u> BM-07	nst pollution of the m e agricultu le authori e informa on territor ch study adation m n of the n the suppo e authori titute for h e informa al:	on caused by the easure – progure activities ity: county against tion by appropriation by appropriation by appropriation by appropriation for final ity: Ministry of Hydrology and tion by appropriation by appropriding by appropriation by appropriation by appropriation by appropr	nitrates from gramme of r riculture auth opriate indi on of the MO) velopment of ising the eva of Environm Water Man opriate india	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ad riculture diffus d farmers oplied in whole llutants in s e evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectic der to reduce th oral Water Bas dwater and th pporal pollutant
of waters agair • description effects of the • responsibl • quantitative Administration SM - Researd transfer/degra • description migration – 1 • responsible National Ins • quantitative	nst pollution of the m e agricultu le authori e informa on territor ch study adation m n of the n the suppo e authori titute for h e informa al: n of the m	easure – prog ure activities ity: county aguition by appro- y. for evaluati measure: dev rt tool for finali ty: Ministry of lydrology and tion by appro- easure: BM0	nitrates from gramme of r riculture auth opriate indi opriate indi opriate indi velopment of ising the eva of Environm Water Man opriate indi opriate indi	mmission for t a agricultural s neasures app norities, local a cators: This type and qu of modelling t iluation metho ent, Waters a agement.	the implement sources. lied for the ag authorities an measure is ap cantity of po ools for the o odology of the and Forests,	ation of the Ad riculture diffus d farmers oplied in whole llutants in s e evaluation of groundwater s	ction Programs te sources in ord e Dobrogea-Litt bil and groun d spatial and ter status and of the	for the protectic der to reduce th oral Water Basi dwater and th pporal pollutant

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

RO – Quantity:

OBM-23

- description of the measure In Romania, the measures (basic and other basic measures) are taken for all groundwater bodies (even if they are in good status), to prevent deterioration of groundwater bodies status but also taking into consideration the precautionary principle.
- responsible authority: water authorities, local authorities
- quantitative information by appropriate indicators: according with the Water Law 107/1996, Annex 3 (C) as amended, the groundwater abstraction shall be authorized and controlled, and the water abstraction register is regularly update.

HU - Quantity:

SM: measure for the inland excess water retention

OBM-23: development of water information system concerning the electronic-authorisation; New regulation on water management elaborated to take action against the installation and use of illegal agricultural water wells.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

RO – Chemical:

BM-07 Construction of collecting system (CO)

- description of the measure execution of the new sewage networks
- responsible authority: local authority
- quantitative information construction of collecting systems and improvement of the waste water treatment plant performance
- •

MN - Measure implementation not started by the end of 2020

HU - Chemical:

OBM-22

- description of the measure: OBM22 protection of water abstractions
- responsible authority: authorities for water protection and water management

• quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development kiegészítő intézkedés
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

GWB Code	Size	Press	ures	Status	s/Risk	Меа	sures	Exampliana
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-7 HU-RO-RS	28,959	DS	WA	Poor, Risk (HU)	Poor, Risk (HU, RS*)	BM, OBM, SM	OBM, SM	2027+ (HU) YYYY (RS*)
<u>HU - Quantity</u> SM: measures		CAP in order t	to protect the	e groundwate	r resources (C	AP planning i	s ongoing)	
OBM-23: deve management e	•				•		ation; New regi water wells.	ulation on wate

GWB-7: Upper Pannonian – Lower Pleistocene / Vojvodina / Duna-Tisza köze deli r.

HU – Chemistry

BM-07

- description of the measure: BM07
- responsible authority: local governments
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the Urban Waste Water Directive by Gov. decree 25/2002. (II. 27.) on the National Wastewater Collection and Treatment program. The implementation of UWWD is ongoing. In the South Great Plain Region the rate of the settlements connected to the sewage system was 71,9 % in 2019.

BM-08

- description of the measure: BM08
- responsible authority: plant protection authority
- quantitative information by appropriate indicators (number of measures/projects and costs):

Implementation of EU the plant protection action program required by Sustainable Use of Pesticides Directive in the territory of the whole country with special regard to sensitive areas like drinking water protection zones, buffer strips of surface waters, etc. with additional voluntary measures planned under CAP 2021-27.

BM-09

- description of the measure: BM09
- · responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

HU transposed the ND by the Gov. Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. Designation of nitrate vulnerable zones was revised in 2013 (NVZ; ~69% of Hungary). The Code of Good Agricultural Practice (GAP) is obligatory on NVZ's. Outside the NVZ's, the agri environmental measures assist the implementation of GAP on a voluntary basis.

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

MN - Measure implementation not started by the end of 2020

HU – Chemistry

OBM-22

- description of the measure: OBM22 protection of water abstractions
- · responsible authority: authorities for water protection and water management
- quantitative information by appropriate indicators (number of measures/projects and costs):

The protection of drinking water abstraction sites is regulated by 123/1997. (VII. 18.) Gov. Decree, acc. to which protection zones of sensitive abstraction sites have to be revised every 10 years. Revision includes i. a. the review of potential pollution sources and activities in the protection zones and their impacts on water quality and taking restrictive measures or additional monitoring if necessary. In addition to the implementation of the risk-based approach in the protection zones of drinking water abstraction acc. to the new Drinking Water Directive, other basic measures to support water protective agricultural practices, e. g. forestation, special practices for areas prone to erosion, excess water or droughts, will be introduced and subsidised by CAP 2021-27.

OBM-26

- description of the measure: OBM26 poll. diffuse
- responsible authority: authorities for soil protection and for water protection
- quantitative information by appropriate indicators (number of measures/projects and costs):

New compulsory and voluntary measures to reduce erosion and prevent nutrient (esp. phosphorus) inputs into waters in CAP 2021-27 are under elaboration.

SM - Supplementary Measures

- description of the measure: SM education
- responsible authority: Ministry of Agriculture, farmers' advisors
- quantitative information by appropriate indicators (number of measures/projects and costs):

Expand farmers' advisory system and introduce consultation for farmers on water protecting agricultural practices in the fields of sustainable nutrient and pesticide management, water saving cultivation practices, irrigation, natural water retention, erosion to assist to a successful application and use of CAP subsidies, both compulsory and voluntary.

- description of the measure: SM research, development
- responsible authority: Ministry of Interior, Ministry of Agriculture
- quantitative information by appropriate indicators (number of measures/projects and costs):

The request "Strengthening water monitoring in Hungary" (21HU07) for support under the first round of the Technical Support Instrument (TSI 2021) has been preliminarily accepted for funding by DG Reform. The project aims at ensuring high-quality monitoring and processing of water related information, integration of monitoring activity of the aquatic environment (soil, ecosystem, water, air) between sectors and organizations and closing the gap between research to practical application. (Planned budget: 650 000€, expected end: 2022)

Note

* The National Plan for the Republic of Serbia is still in progress (available as draft), therefore, the year for exemptions as well as information on measures for the national part of GWB 7 which is in quantitative risk cannot be provided before the deadline of data collection of this overview. The information will be provided, when the Plan is officially adopted.

SWB-8: Podur	najska B	asin, Zitny (Dstrov / Sz	igetköz, Ha	nság-Rábca	1		
	Size	Press	ures	Status	s/Risk	Меа	sures	Fromations
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-8 HU-SK	3,338	PS, DS		Risk (SK)	Good	BM, SM		
MC - Measure	impleme	ntation comp	oleted by th	e end of 2020)			
MO - Measure	impleme	ntation on-g	oing after tl	ne end of 202	.0			
<u>SK – Chemica</u>	<u>ıl</u>							
BM-03 Drinkin	ng water p	protected are	as (DWPA)					
		easure: Reco water source:		afeguard zone	and restrictio	ns in the DWF	PA, if they are su	ifficient to protect
• responsible Republic	e authorit	t y: Slovak En	vironmental	Inspection, M	linistry of Agri	iculture and R	ural Developme	ent of the Slovak
• quantitative	e informa	tion by appro	opriate indi	cators: DWPA	A Žitný ostrov	(area 1200 kn	n²)	
BM-08 Plant p		•						
and Council of this Direc apply measu	Directive tive into n ure conce	2009/128/EC national Law a	concerning and National ing of plant (the reduction action progra	of pesticides	pollution from	agriculture and e use of pestici	pean Parliament d implementation des. Continue to n No. 1107/2009
 responsible of the Slova 			ntrol and Te	sting Institute i	in Agriculture,	Ministry of Ag	riculture and Ru	iral Development

quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1694 km²) according to Government Regulation no. 174/2017 Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022–2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014–2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

PO - Construction measure planning on-going after the end of 2020

CO - Construction of measure on-going after the end of 2020

SK – Chemical

BM-07 Measures to reduce pollution from urban areas

- description of the measure: Construction or upgrades of sewerage systems and wastewater treatment plants according
 to Plan of Public Sewerage System Development for years 2021 2027. Measures for sewerage systems (collecting
 systems for urban waste water) to comply article 3 of Council Directive 91/271/EEC and measures for urban waste water
 treatment to comply with article 4 and article 5 of Council Directive 91/271/EEC in ground water bodies.
- responsible authority: Ministry of Environment of the Slovak Republic
- quantitative information by appropriate indicators: measures for agglomerations >2000 PE: sewerage systems in 5 agglomerations and 3 WWTP need to be (re)constructed or upgraded; measures in DWPA Žitný ostrov for agglomerations <2000 PE: 41 agglomerations sewerage systems and 5 agglomerations sewerage systems and WWTP.

GWB-9: Bodrog

	Size	Press	ures	Statu	s/Risk	Меа	sures	F ormations
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-9 HU-SK	2,220	DS		Poor (SK), Risk (HU, SK)	Poor, Risk (HU)	BM, SM	SM, OBM	2027+
MC - Measure	impleme	ntation comp	oleted by th	e end of 202	0			
and Treatment BM-09 • description • responsible • quantitative HU transposed nitrates of agric Code of Good assist the imple <u>HU – Quantity</u> SM: measure f	d of the m e authorit e informa the Urba program. of the m e authorit e informa the ND b cultural so Agricultur ementatio	easure: BM03 y: local gover tion by appro- an Waste Wat The impleme easure: BM03 y: authorities tion by appro- by the Gov. De- surces. Design al Practice (G n of GAP on a and excess wa of water inform	7 nments opriate india er Directive ntation of U opriate india priate india cree No. 27 nation of nitra AP) is obliga voluntary b ter retention	cators (numb by Gov. decr WWD is ongo ection and for cators (numb 7/2006. (II.7.) of ate vulnerable atory on NVZ': basis.	per of measur ee 25/2002. (ing. water protecti per of measur on the protecti e zones was re s. Outside the the electronic	II. 27.) on the on res/projects a on of waters a evised in 2013 NVZ's, the ag -authorisation;	National Waste and costs): against pollution 6 (NVZ; ~69% of gri environmenta	f Hungary) . The al measures
PO - Construc	ction mea	sure plannin	g on-going	after the end	l of 2020			
CO - Construct SK – Chemica BM-07 Measure	<u>ll</u>	-			20			
to Plan of F systems for	Public Sev urban wa comply w	werage Syste ste water) to c vith article 4 ar	m Developr comply articl nd article 5 o	ment for years e 3 of Council of Council Dire	s 2021–2027 Directive 91/2 Directive 91/271/	Measures fo 271/EEC and	or sewerage sys	plants according stems (collecting ban waste water
• quantitative	e informa		priate indi		•	in 2 agglomer	rations (>2000 F	PE) and 1 WWTP
	l <u>l</u> rotection of the m	products easure: Conti	nue to meet	the requireme	ents arising fro			opean Parliament d implementation

of this Directive into national Law and National action programme to achieve sustainable use of pesticides. Continue to apply measure concerning the placing of plant protection products on the market according to Regulation No. 1107/2009 of the EU Parliament and of the Council.

- **responsible authority:** Central Control and Testing Institute in Agriculture, Ministry of Agriculture and Rural Development of the Slovak Republic
- quantitative information by appropriate indicators:

BM-09 Nitrates Directive

- description of the measure: Continuing in application of requirements of the Council Directive 91/676/EEC concerning
 the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive). The Nitrates
 Directive requires the fulfilment of the task of the Action Programme, which is established in the SR by Act no. 136/2000
 Coll. on fertilizers.
- **responsible authority:** Ministry of Agriculture and Rural Development of the Slovak Republic, Central Control and Testing Institute in Agriculture
- quantitative information by appropriate indicators: This measure is applied in groundwater body's vulnerable areas (1293 km²) according to Government Regulation no. 174/2017Coll. (will be revised in 2021/2022).

SM - Supplementary Measures

- Remediation of contaminated sites continuing in remediation and monitoring of environmental burdens at priority sites listed in the Informational System of Environmental Burdens according to the State Remediation Programme of Environmental Burdens (2022 - 2027).
- Continuing in application of measures according to Rural Development Programme for SR (2014 -2020) extended to 2022, when the new Common Agricultural Policy (CAP) enters into force. The measures include the advisory services for agriculture, support for organic farming, managed agricultural and forestry activities in NATURA 2000 areas, etc.
- Research, improvement of knowledge base reducing uncertainty support of research project, support of purpose monitoring to increase information about groundwater contamination and sources of contamination.
- Strengthening control activities (personnel ad financial) including increasing the number of controls.
- Education and training in the field of water protection for the professional and public (including school).

GWB-10: Slovensky kras /Aggtelek-hsg

	Size	Press	ures	Statu	s/Risk	Меа	sures	Even the
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-10 HU-SK	1,091	PS	WA	Risk (HU)	Risk (SK)	OBM, SM	OBM	-
MC - Measure	impleme	entation comp	oleted by th	e end of 202	0			
MO - Measure	impleme	entation on-g	oing after t	he end of 202	20			
PO - Construe	ction mea	sure plannin	q on-qoinq	after the end	l of 2020			
			0 0 0					
CO - Constru	ction of n	neasure on-g	oing after t	he end of 202	20			
MN – Measure	e implem	entation not s	started by t	he end of 202	20			
<u>HU - Chemica</u> OBM-22	<u>ll</u>							
 description 	of the m	easure: OBM	l22 – protec	tion of water a	bstractions			
 responsible 	e authorit	t y: authorities	for water pr	otection and v	vater manage	ment		
• quantitative	e informa	tion by appro	opriate indi	cators (numb	er of measu	res/projects a	nd costs):	
sources and a monitoring if ne abstraction acc	ctivities in ecessary. c. to the ne	the protection In addition to t ew Drinking W	zones and he impleme ater Directiv	their impacts of ntation of the r ve, other basic	on water quali risk-based app measures to	ty and taking r proach in the p support water	estrictive measi rotection zones protective agric	potential pollutic ures or addition of drinking wat cultural practice and subsidised b
SM								
 description 	of the m	easure: SM -	- research, c	development				
 responsible 	e authorit	t y: Ministry of	Interior, Min	istry of Agricu	Ilture			
 quantitative 			-	•			•	
Instrument (TS monitoring and	8I 2021) h d processi ater, air) b	as been prelin ing of water re petween secto	ninarily acce elated inforr rs and orga	epted for fundi nation, integra	ng by DG Ref ation of monit	form. The proj oring activity o	ect aims at ensi of the aquatic e	echnical Suppo uring high-quali environment (so ctical application
<u>SK – Quantity</u>	-							
OBM-3 Contro								
		neasure: Cor 2004 Coll. on v		eriodically rev	iewed abstra	ctions of grou	ndwater in acc	ordance with th
		ty: State wate ction, and loca			s - Ministry o	f Environment	of the Slovak	Republic, Slova
		e		cators: water				

quantitative information by appropriate indicators: water law permits

GWB-12: Ipel / Ipoly

	Size	Press	ures	Status	s/Risk	Меа	sures	Exercities .
GWB Code	[km²]	Chemical	Quantity	Chemical	Quantity	Chemical	Quantity	Exemptions
GWB-12 HU-SK	344	DS	WA	Poor, Risk (SK)	Good	BM, SM		2027+
MC - Measure	e impleme	entation comp	oleted by th	e end of 2020)			1
MO - Measure	impleme	entation on-o	oing after t	he end of 202	0			
SK – Chemica		jinanon on g	onig altor a		•			
BM-08 Plant p	protection	n products						
and Counci of this Direct apply meas	I Directive ctive into r ure conce	2009/128/EC national Law a	concerning and National ing of plant	the reduction action progra	of pesticides mme to achie	pollution from	agriculture and e use of pestici	opean Parliamen d implementatio ides. Continue to on No. 1107/2009
				stina Institute i	n Aariculture	Ministry of Ag	riculture and Ru	ural Developmer
of the Slova					in , ignocatoro,	initial y or y ig		
 quantitativ 	e informa	tion by appro	opriate indi	cators:				
BM-09 Nitrate	-							
Coll. on fert	ilizers. e authorit	y: Ministry of		·			d in the SR by . blic, Central Cc	Act no. 136/200
(173 km²) a	e informatic cording t	ition by appr o o Governmen				oplied in grour revised in 202	idwater body's	ontrol and Testin
(173 km²) a SM - Supplen	e informa ccording t nentary M	i tion by appr o o Governmen easures	t Regulation	no. 174/2017	Coll. (will be	revised in 202	idwater body's 1/2022).	vulnerable area
(173 km²) a SM - Supplen • Continuing when the n	e informa ccording t nentary M in applicat iew Comn	tion by appro o Governmen easures ion of measure non Agricultur	t Regulation es according ral Policy (C	no. 174/2017 to Rural Deve CAP) enters in	Coll. (will be elopment Prog to force. The	revised in 202 gramme for SR measures in	idwater body's 1/2022). : (2014–2020) e	vulnerable area extended to 2022 sory services fo
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, 	e informa ccording t nentary M in applicat ew Comn support fo improvem	tion by appro o Governmen leasures ion of measure non Agricultur or organic farm ent of knowle	t Regulation es according ral Policy (C ning, manag adge base r	no. 174/2017 g to Rural Deve CAP) enters ir ed agricultural reducing unce	Coll. (will be elopment Prog to force. The and forestry rtainty - sup	revised in 202 gramme for SR measures in activities in N	dwater body's 1/2022). 2 (2014–2020) e clude the advis ATURA 2000 ar ch project, sup	vulnerable area extended to 2022 sory services for reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring the second second	e informa ccording t nentary M in applicat ew Comn support fo improvem to increase	tion by appro o Governmen easures ion of measure non Agricultur or organic farm ent of knowle e information a	t Regulation es according ral Policy (C ning, manag adge base r about ground	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan	Coll. (will be elopment Prog to force. The and forestry ertainty - sup nination and s	revised in 202 gramme for SR measures in activities in N/ port of resear	dwater body's 1/2022). (2014–2020) e clude the advis ATURA 2000 ar ch project, sup amination.	vulnerable area extended to 2022 sory services fo reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring to Strengtheni 	e informa ccording t nentary M in applicat iew Comn support fo improvem to increase ng control	tion by appro o Governmen leasures ion of measure non Agricultur or organic farm ent of knowle e information a l activities (per	t Regulation es according ral Policy (C ning, manag edge base r about ground rsonnel ad fi	no. 174/2017 to Rural Deve CAP) enters ir ed agricultural reducing unce dwater contan nancial) includ	Coll. (will be elopment Prog to force. The and forestry ortainty - sup nination and s ding increasin	gramme for SR measures in activities in N/ port of resear	dwater body's 1/2022). (2014–2020) e clude the advis ATURA 2000 ar ch project, sup amination. of controls.	vulnerable area extended to 2022 sory services fo reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring to Strengtheni Education a 	e informa ccording t nentary M in applicat ew Comn support fo improvem to increase ng control and trainin	tion by appro o Governmen easures ion of measure non Agricultur or organic farm ent of knowle e information a l activities (per g in the field o	t Regulation ral Policy (C ning, manag adge base r about ground rsonnel ad fi f water prote	no. 174/2017 to Rural Deve CAP) enters ir ed agricultural reducing unce dwater contan nancial) includ	Coll. (will be elopment Prog to force. The and forestry ortainty - sup nination and s ding increasin professional a	gramme for SR measures in activities in N/ port of resear ources of cont g the number	dwater body's 1/2022). (2014–2020) e clude the advis ATURA 2000 ar ch project, sup amination. of controls.	vulnerable area extended to 2022 sory services fo reas, etc.
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring to Strengtheni Education a PO - Constru 	e informa ccording t nentary M in applicat ew Comm support fo improvem to increase ng control and training ction mea	tion by approved a constraint of the second	t Regulation ral Policy (C ning, manag edge base r about ground rsonnel ad fi f water prote g on-going	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan nancial) incluce ection for the p	Coll. (will be elopment Prog to force. The and forestry entainty - sup nination and s ding increasin professional a of 2020	gramme for SR measures in activities in N/ port of resear ources of cont g the number	dwater body's 1/2022). (2014–2020) e clude the advis ATURA 2000 ar ch project, sup amination. of controls.	vulnerable area extended to 2022 sory services fo
 (173 km²) a SM - Supplen Continuing when the n agriculture, Research, monitoring f Strengtheni Education a PO - Constru CO - Constru 	e informa ccording t nentary M in applicat ew Comm support fo improvem to increase ng control and training ction mea	tion by approved a constraint of the second	t Regulation es according ral Policy (C ning, manag edge base r about ground rsonnel ad fi f water prote g on-going oing after th	no. 174/2017 to Rural Deve CAP) enters in ed agricultural reducing unce dwater contan nancial) incluc ection for the p after the end he end of 202	Coll. (will be elopment Prog to force. The and forestry entainty - sup nination and s ding increasin professional a of 2020	gramme for SR measures in activities in N/ port of resear ources of cont g the number	dwater body's 1/2022). (2014–2020) e clude the advis ATURA 2000 ar ch project, sup amination. of controls.	vulnerable area extended to 2022 sory services fo reas, etc.

DETAILED RESULTS OF CLASSIFICATION OF ALL ASSESSED SURFACE WATER BODIES ACCORDING TO PARTICULAR BIOLOGICAL, HYDROMORPHOLOGICAL AND CHEMICAL QUALITY ELEMENTS

ANNEX 9

Lal	oels in the tables	Description	Possible values
	Water body code	Water body code (including country code)	
	River	Name of river	
	Water body name	Name of water body	
	from river-km	Lower river km of the water body (on Danube River)	
	to river-km	Higher river km of the water body (on Danube River)	
	Water body type	Type of water body	N = natural, A = artificial H = heavily modified P = provisionally identified as heavily modified
	Fish	Status class for the water body	
	Benthic invertebrates	Status class for the water body	
	Phytobenthos and Macrophytes	Status class for the river or lake water body	
Biological	Angiosperms	Status class for the coastal or transitional water body	1 = high 2 = good 3 = moderate
Quality Elements	Macroalgae	Status class for the coastal or transitional water body	$\begin{array}{l} 4 = poor \\ 5 = bad \end{array}$
	Phytoplankton	Status class for the water body	- = not applicable
	Overall Biological Status	Status class for the water body = worst case of the status classes of all biological quality elements (acc. to one-out-all-out principle)	
	Hydromorphology - High Status	Only if biological quality elements are in high status, hydromorphology must also be in high status	Y = yes N = no
	General Phys. and Chem. conditions	Status class for the water body for general physical and chemical conditions supportive to the Ecological Status	1 = high 2 = good 3 = moderate 4 = poor 5 = bad
	River Basin Specific Pollutants	Status class for the water body for specific pollutants based on national quality standards; relevant for the assessment of Ecological Status. Specific pollutants are those pollutants that are regulated at the national level (and not included in the List	G = good F = failing
	OVERALL ECOLOGICAL STATUS/POTENTIAL	Worst case of the Biological Quality Class and Specific pollutants Status Class. For High Ecological Status/Potential additionally the General Physical and Chemical Parameters and the Hydromorphology have to be in high status.	1 = high 2 = good 3 = moderate 4 = poor 5 = bad
	Related confidence class	Confidence level of assessment (agreed by the MA EG)	H = high M = medium L = low

	in water	Chemical status class for priority substances in water, regulated by the EU	G = good F = failing
	Related confidence class	Confidence level of the assessment of priority substances in water (agreed by the MA EG)	
CHEMICAL	in water w/o ubiquitous	Chemical status class for priority substances in water, regulated by the EU, without ubiquitous substances according to Directive 2013/39/EU: (i.e., without brominated diphenylethers, polyaromatic hydrocarbons, tributyltin compounds, perfluorooctane sulfonic acid and its derivatives, dioxins and dioxin-like compounds, hexabromocyclododecanes, heptachlor and heptachlor epoxide, mercury)	G = good F = failing
STATUS for priority substances (and confidence)	Related confidence class	Confidence level of the assessment of priority substances in water without ubiquitous substances (agreed by the MA EG)	H = high M = medium L = low
	in biota	Chemical status class for priority substances in biota, regulated by the EU	G = good F = failing
	Related confidence class	Confidence level of the assessment of priority substances in biota (agreed by the MA EG)	
	in biota w/o ubiquitous	Chemical status class for priority substances in biota, regulated by the EU without <i>brominated diphenylethers and</i> <i>mercury</i>	G = good F = failing
	Related confidence class	Confidence level of the assessment of priority substances in biota, regulated by the EU without <i>brominated diphenylethers</i> <i>and mercury</i> (agreed by the MA EG)	H = high M = medium L = low
	OVERALL CHEMICAL STATUS	Chemical status class for priority substances in water and biota, regulated by the EU	$\begin{array}{l} G = good \\ F = failing \end{array}$
	Related confidence Class	Confidence level of the assessment of priority substances in water and biota (agreed by the MA EG)	H = high M = medium L = low
Exemptions	Exemption Art. 4(4)	Usage of exemption according to EU WFD Art. 4(4)	Y = yes N = no - = not applicable
Exemptions	Exemption Art. 4(5)	Usage of exemption according to EU WFD Art. 4(5)	Y = yes N = no - = not applicable

Status assessment of the Danube river

							Biolog E	gical Q lemen		,	IS	suo	S	TIAL		fo				L STA			e)	NS			
Water body code	River	Water body name	from river-km	to river-km	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
DERW_DEBW_ 6-01	Donau	Donau oberh. Beuroner Tal (TBG 60)	2717	2780	Ν	3	2	2	2	3	N	3	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBW_ 6-02	Donau	Donau ab Beuroner Tal oberh. Lauchert (TBG 61)	2676	2717	N	3	2	2	2	3	N	3	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBW_ 6-03	Donau	Donau ab Lauchert oberh. Zwiefalter Ach (TBG 62)	2640	2676	Ν	3	2	2	2	3	N	3	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBW_ 6-04	Donau	Donau ab Zwiefalter Ach oberh. Riß (TBG 63)	2603	2640	Ν	3	2	2	2	3	N	3	G	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBW_ 6-05	Donau	Donau ab Riß oberh. Iller (TBG 64)	2588	2603	Н	3	2	3	2	3	N	3	G	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_ 1_F030_BW	Donau	Donau von Einmündung Iller bis Einmündung Landgraben bei Offingen	2551	2583	Н	2	2	2	2	2			G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_ 1_F062	Donau	Donau von Einmündung Landgraben bei Offingen bis Staustufe Donauwörth	2507	2551	Н	2	2	2	2	2			G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_ 1_F074	Donau	Donau von Donauwörth bis Einmündung Lech	2491	2507	Ν	2	2	2	2	2			G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_ 1_F163	Donau	Donau von Einmündung Lech bis Einmündung Paar	2438	2491	Н	2	2	2	2	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_ 1_F204	Donau	Donau von Einmündung Paar bis Staubing (Fkm 165)	2418	2438	N	2	3	2	2	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_ 1_F205	Donau	Donau von Staubing bis Einmündung Main- Donau-Kanal	2406	2418	N	2	3	3	2	3			G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν

							c	gical Q lemen	Quality ts	,	IS	suo	8	TIAL		fo	or prio		MICA ıbstan		ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	from river-km	to river-km	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
DERW_DEBY_ 1_F223	Donau	Donau von Einmündung Main-Donau-Kanal bis Einmündung Naab	2380	2406	Н	3	3	3	2	3			G	3	н	G	н	G	н	F	н	F	н	F	н	Y	N
DERW_DEBY_ 1_F348	Donau	Donau von Einmündung Naab bis Einmündung Große Laber	0	2380	Н	3	3	3	2	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_ 1_F361	Donau	Donau von Einmündung Große Laber bis Einmündung Isar	2282	2324	N	2	2	3	2	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_ 1_F477	Donau	Donau von Einmündung Isar bis Einmündung Vils	2249	2282	N	2	2	3	2	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_ 1_F478	Donau	Donau von Einmündung Vils bis Einmündung Inn	2225	2249	Н	2	2	3	2	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_ 1_F633	Donau	Donau von Passau bis Staatsgrenze	2202	2225	Н	3	2	3	2	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ATOK30307000 0	Donau	Donau	2202	2223	Н	5	3	2		5	N	3	G	3	Н	G	Н	G	Н	F	Н	G	М	F	Н	Y	Ν
ATOK41036000 3	Donau	Donau-Aschach	2162	2202	Н	5	2	2		5	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK41036000 5	Donau	Donau- Ottensheim_Wilhering	2146	2162	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK41036000 7	Donau	Donau_10, KW Ottensheim_Wilhering bis KW Abwinden_Asten, EP groß	2120	2146	Н	4	2	2		4	N	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK41036000 9	Donau	Donau_09 KW Abwinden_Asten bis KW Wallsee_Mitterkirchen, EP groß	2094	2120	Н	4	2	3		4	N	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N

								gical Q lemen	uality ts	r	IS	ons	2	FIAL		fo					ATUS nd con		e)	US			
Water body code	River	Water body name	from river-km	to river-km	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK41036001 2	Donau	Donau_08, KW Wallsee_Mitterkirchen bis KW Ybbs_Persenbeug, EP groß	2060	2094	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK41036000 2	Donau	Donau_07, KW Ybbs Persenbeug bis KW Melk, EP groß	2038	2060	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK41035000 0	Donau	Donau_06, KW Melk bis Mautern, EP groß	2005	2038	N	4	2	2		4	Ν	2	G	4	Н	G	Н	G	Н	F	L	G	М	F	L	Y	Ν
ATOK40904001 2	Donau	Donau_05, Mautern bis KW Altenwörth, EP groß	1980	2005	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK40904001 1	Donau	Donau_04, KW Altenwörth bis KW Greifenstein, EP groß	1950	1980	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK40904001 3	Donau	Donau_03, KW Greifenstein bis KW Freudenau, EP groß	1921	1950	Н	4	2	2		4	N	2	G	3	Н	F	Н	G	М	F	L	G	М	F	Н	Y	N
ATOK40904000 8	Donau	Donau_02, KW Freudenau bis Devin, EP groß	1880	1921	N	2	2	2		2	N	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK41134000 0	Donau	Donau_01, unterhalb Devin, EP groß	1873	1880	N	2	2	2		2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
SKD0016	Dunaj	Dunaj	1869	1880	N	3	2	3	2	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKD0017	Dunaj	Dunaj	1790	1869	Н	3	3	2	2	3	Ν	2	G	3	М	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
HUAEP443	Duna	Duna Szigetköznél	1785	1850	Н	1	3	2	1	3	N	1	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
SKD0018	Dunaj	Dunaj	1708	1790	Ν	3	3	3	2	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
HUAEP446	Duna	Duna Gönyü-Szob között	1708	1785	Ν	1	3	2	1	3	Ν	2	F	3	Н	G	Н	G	Η	F	Н	F	Η	F	Н	Y	

								gical (lemen)uality its	7	SI	suo	s	TIAL		fo	or prio		MICA 1bstan		ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	from river-km	to river-km	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAOC756	Duna, Szentendre i-Duna	Duna Szob–Budapest között	1660	1708	N	2	3	2	2	3	N	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAOC752	Duna, Szentendre i-Duna	Duna-Budapest	1633	1660	Н	2	2	2	2	2	N	2	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAOC753	Duna	Duna Budapest– Dunaföldvár között	1561	1633	Н	2	2	2	2	2	Ν	2	G	2	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	
HUAOC754	Duna	Duna Dunaföldvár–Sió torkolat között	1497	1561	Н	2	3	2	2	3	Ν	2	G	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	
HUAOC755	Duna	Duna Sió torkolat– országhatár között	1433	1497	Н	2	3	2	2	3	Ν	2	G	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	
HRCDRI0001_0 02	Dunav	Dunav	1383	1433	N		3	2	1	3	N	2	G	4	Н	G	Н	G						G	Н	Y	Y
RSD_10	Dunav	Dunav od ušća Drave do državne granice sa Mađarskom	1382	1433	N	4	3	2	3	4		3	F	3	М	G	М	G						G	М	-	-
HRCDRI0001_0 01	Dunav	Dunav	1295	1383	N			2	2	2	Ν	2	G	5	Н	G	Н	G						G	Н		Y
RSD_09	Dunav	Dunav od državne granice sa Republikom Hrvatskom kod Bačke Palanke do ušća Drave	1296	1382	N	4	3	2	3	4		3	F	3	М	G	М	G						G	М	-	-
RSD_08	Dunav	Dunav od DTD kanal Novi Sad-Savino Selo do Državne granice sa Republikom Hrvatskom kod Bačke Palanke	1253	1296	N	3	3	2	3	3		2	F	3	М	G	М	G						G	М	-	-
RSD_07	Dunav	Dunav od ušća Tise do ušća DTD kanal Novi Sad-Savino Selo	1214	1261	N	4	3	2	3	4		2	F	3	М	G	М	G						G	М	-	-

								gical (lemen	Quality Its	7	S	SUO		TAL		fo			MICA 1bstan		ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	from river-km	to river-km	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW14-1_B1	Dunarea	Dunarea PF I	1038	1261	Н	3	-		2	3	N	2	F	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW14-1_B2	Dunarea	Dunarea PF II	1021	1223	Н	3	-		2	3	Ν	2	F	3	Н	G	Н	G	Н					G	Н	Y	Ν
RSD_06	Dunav	Dunav od ušća Save do ušća Tise	1170	1214	N	3	3	3	3	3		3	F	3	М	F	М							F	М	-	-
RSD_05	Dunav	Akumulacija HE Đerdap 1 od ušća Velike Morave do ušća Save	1104	1170	Р	4	3	3	2	4		3	F	3	М	F	М							F	М	-	-
RSD_04	Dunav	Akumulacija HE Đerdap 1 od ušća Nere do ušća Velike Morave	1076	1104	Р	5	3	2	2	5		2	F	3	М	G	М	G						G	М	-	-
RSD_03	Dunav	Akumulacija HE Đerdap 1 od brane do ušća Nere	943	1076	Р	5	4	2	2	5		2	F	4	М	G	М	G						G	М	-	-
RORW14-1_B3	Dunarea	Dunarea PF II - Chiciu	445	1021	Н	3	2	1	1	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RSD_02	Dunav	Akumulacija HE Đerdap 2	863	943	Р	5	4	2	2	5		2	F	4	М	G	М	G						G	М	-	-
RSD_01	Dunav	Dunav nizvodno od HE Đerdap 2 do ušća Timoka	846	863	N	5	4	3	2	5		3	F	4	М	G	М	G						G	М	-	-
BG1DU000R001	Dunav	DUNAV RWB01	374	846	Н					-		2	G	3	Н	F	М	F	М					F	М	Y	Ν
RORW14-1_B4	Dunarea	Dunarea Chiciu-Isaccea	124	446	Н	3	2	1	1	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
UADB_UA_01	Danube	Danube	178	194	Ν		1	1		-																-	-
UADB_UA_02	Danube	Danube	119	178	Ν					-																-	-
RORW14-1_B6	Dunarea	Dunarea Chilia	0	133	Ν		2	2	2	2	Ν	2	G	2	Н	G	Н	G	Н			G		G	Н	Ν	Ν
RORW14-1_B5	Dunarea	Dunarea Isaccea-Sulina	0	124	Н		2	1	1	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
UADB_UA_03	Danube	Danube	22	119	Ν					-																-	-
RORW14-1_B7	Dunarea	Dunarea Sf. Gheorghe	0	88	Ν		2	2	2	2	Ν	2	G	2	Η	G	Н	G	Н	F	Η	G	Η	F	Н	Y	Ν

Status assessment of the tributaries

						gical (Clemer)uality 1ts	7	S	ons		IIAL		fo					ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
DERW_DEBY_1_ F509	Inn	Inn von Innstau Passau-Ingling bis Mündung in die Donau	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F509	Inn	Inn von Innstau Passau-Ingling bis Mündung in die Donau	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F556	Inn	Inn von Einmündung Innwerkkanal bis Einmündung Alz	Н	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F557	Inn	Inn von Ausleitung Innwerkkanal bis Einmündung Innwerkkanal	N	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F558	Inn	Inn von Einmündung der Mangfall bis Jettenbach	Н	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F583	Inn	Inn von Einmündung Alz bis Einmündung der Salzach	Н	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F654	Inn	Inn von Einmündung Salzach bis unterhalb Stau Neuhaus	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_1_ F655	Inn	Inn von unterhalb Stau Neuhaus bis Innstau Passau-Ingling	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_1_ F656	Inn	Inn von unterhalb Kufstein bis unterhalb Erl	Н	4	2	2	-	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F657	Inn	Inn von unterhalb Erl bis Einmündung der Mangfall; Moosbach; Altwasser; Husarenbach	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F373	Isar	Isar von Staatsgrenze bis zum Krüner Wehr	N	2	1	1	-	2			G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_1_ F374	Isar	Isar vom Krüner Wehr bis Sylvensteinspeicher	Ν	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F375	Isar	Isar vom Sylvensteinspeicher bis Bad Tölz (Fkm 202,8)	Ν	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν

						gical (lemer	Quality Its	7	SI	ons	s	TIAL		fo				L STA	ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
DERW_DEBY_1_ F376	Isar	Isar von Fkm 202,8 bis Fkm 195 (Bad Tölz)	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	н	F	Н	Y	N
DERW_DEBY_1_ F377	Isar	Isar von Fkm 195 bis Einmündung der Loisach	Ν	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F402	Isar	Isar von Einmündung der Loisach bis Corneliuswehr	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F403	Isar	Isar von Corneliuswehr bis Oberföhringer Wehr	Ν	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F404	Isar	Isar von Anfang Mittlere-Isar-Kanal bis Moosburg	N	2	2	2	-	2			G	2	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Ν
DERW_DEBY_1_ F405	Isar	Isar von Einmündung der Amper bis Einmündung des Mittlere-Isar- Kanals	N	3	3	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F406	Isar	Isar von Moosburg bis Einmündung der Amper	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F429	Isar	Isar von Einmündung des Mittlere- Isar-Kanals bis Stützkraftstufe Pielweichs bei Plattling; Kleine Isar in Landshut	Н	4	4	3	-	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F430	Isar	Isar von Plattling bis Mündung in die Donau	Ν	2	3	2	-	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_1_ S022	Isar	Isar vom Krüner Wehr bis Sylvensteinspeicher	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F121	Lech	Lech mit Lechfall von Staatsgrenze bis Theresienbrücke Füssen (Fkm 168,5 - 166,3)	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F122	Lech	Lech von Einmündung Lechkanal Meitingen bis Mündung in die Donau	Н	3	-	-	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F124	Lech	Lech Mutterbett von Einmündung Wertach bis Einmündung Lechkanal bei Ostendorf	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N

					Biolog E	gical Q lemen		7	IS	ions	s	TIAL		fo				L STA	ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
DERW_DEBY_1_ F125	Lech	Lech von Fkm 139 bis Fkm 133 (Litzauer Schleife)	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F126	Lech	Lech Mutterbett vom Hochablass Augsburg bis Einmündung Wertach	N	2	3	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F127	Lech	Lech von Staustufe 23 bis zum Hochablass Augsburg	Ν	2	3	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F128	Lech	Lech von Staustufe 1 bis Staustufe 4 (Kraftwerk Roßhaupten bis Fkm 139)	Н	4	2	2	-	4			G	4	Н	G	Н	G	Н	F	н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F129	Lech	Lech von Theresienbrücke Füssen bis Staustufe 1 (Kraftwerk Roßhaupten)	Н	-	2	2	-	2			G	2	Н	G	Н	G	Н	F	н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F130	Lech	Lech von Staustufe 15 bis Eisenbahnbrücke in Kaufering	N	2	2	2	-	2			G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F131	Lech	Lech von Eisenbahnbrücke in Kaufering bis Staustufe 23	Н	2	3	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F132	Lech	Lech von Mündung in Schongauer Lechsee bis Staustufe 15	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F226	Main-Donau- Kanal	Main-Donau-Kanal (Altmühl) von Dietfurt bis Mündung in die Donau	Н	2	5	2	2	5			G	5	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F243	Main-Donau- Kanal	Main-Donau-Kanal von Pierheim bis Dietfurt	А	-	2	3	4	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F251	Naab	Tirschenreuther Waldnaab unterhalb Tirschenreuth (Fkm 168,8), Waldnaab bis Zusammenfluss mit der Haidenaab; Flutkanal (Stadt Weiden i.d.OPf.)	N	4	2	2	-	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
DERW_DEBY_1_ F252	Naab	Tirschenreuther Waldnaab oh. WSP Liebenstein; Heiligenbach	N	4	2	2	-	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F253	Naab	Tir. Waldnaab ab Einmündung in Liebensteinspeicher bis	N	4	2	2	-	4			G	4	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν

					•	gical (lemer	uality ts		SI	ions	s	TIAL		fo	or prio		MICA 1bstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
		Tirschenreuth (Fkm 168,8); Geisbach von Kriegerbühl bis Mündung																							
DERW_DEBY_1_ F273	Naab	Naab von Zusammenfluss Haidenaab und Waldnaab bis Mündung in die Donau	N	2	2	3	3	3			G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
DERW_DEBY_1_ F640	Salzach	Salzach von Einmündung Alzkanal bis Mündung in den Inn	Н	3	2	2	-	3			G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
DERW_DEBY_1_ F641	Salzach	Salzach von Einmündung Saalach bis Einmündung Alzkanal	N	3	2	2	-	3			G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ATOK900470001	Drau	Drau	Ν	4	2	2		4	Ν	2	G	4	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470021	Drau	DRAU(150)	Ν	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470022	Drau	DRAU(140)	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470056	Drau	DRAU(90)	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470061	Drau	DRAU(130)	Н	4	1	1		4	Ν	1	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470062	Drau	DRAU(20)	Н	4	2	2		4	Ν	2	G	2	Н	G	Н	G	Н	F	Н	G	М	F	Н	Y	Ν
ATOK900470064	Drau	DRAU(30)	Н	4	2	2		4	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470065	Drau	DRAU(40)	Н	4	2	2		4	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470068	Drau	DRAU(50)	Н	4	2	2		4	Ν	2	G	2	Н	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470069	Drau	DRAU(60)	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	Μ	F	L	Y	Ν
ATOK900470071	Drau	DRAU(70)	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	Μ	F	L	Y	Ν
ATOK900470072	Drau	DRAU(80)	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK900470075	Drau	DRAU(100)	Н	4	2	2		4	Ν	2	G	3	М	G	Μ	G	Μ	F	L	G	Μ	F	L	Y	Ν
ATOK900470076	Drau	DRAU(110)	Н	3	1	1		3	Ν	1	G	2	Н	G	М	G	М	F	L	G	Μ	F	L	Y	Ν
ATOK900470077	Drau	DRAU(120)	Н	4	1	1		4	Ν	1	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK903540001	Drau	Drau	Н	3	2	2		3	Ν	2	G	3	Μ	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν

					•	gical (lemer	Quality Its	,	SI	ions	s	TIAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK903540002	Drau	Drau_1	Ν	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK903540003	Drau	Drau_2	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK903770000	Drau	DRAU(10)	Н	4	2	2		4	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240027	Enns	Gewässer: Enns, Abschnitt: Landesgrenze bis Radstadt	Ν	5	3	2		5	Ν	3	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240089	Enns	Enns	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240090	Enns	Enns	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240092	Enns	Enns	Ν	3	2	2		3	Ν	2	G	3	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240103	Enns	Gewässer: Enns, Abschnitt: Ende Fischlebensraum bis Labgeggbach	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240104	Enns	Gewässer: Enns, Abschnitt: Langeggbach bis Ursprung	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240105	Enns	Gewässer: Enns, Abschnitt: Radstadt bis Altenmarkt	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240106	Enns	Altenmarkt bis Flachau	Ν	3	2	2		3	Ν	2	G	3	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400240163	Enns	Oberhalb Flachau bis Grenze Fischlebensraum	Ν	4	2	2		4	N	2	G	4	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK409970000	Enns	Enns	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250006	Enns	Enns_Hafen Donaurückstau	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250008	Enns	Enns	Н	5	2	2		5	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250009	Enns	Enns Gesäuse	Ν	2	2	2		2	Ν	2	G	2	М	G	Н	G	Η	F	Н	G	М	F	Н	Y	Ν
ATOK411250010	Enns	Enns	Ν	5	2	2		5	Ν	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250012	Enns	Enns, Enns-Seitenarm	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250014	Enns	Enns_Thurnsdorf-Stau	Н	5	2	2		5	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250016	Enns	Enns_Mühlrading-Stau	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν

					•	gical Q lemen	•		SI	ions	s	TIAL		fo				L STA	ATUS nd con	fidenc	e)	NS			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK411250018	Enns	Enns_Staning	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250020	Enns	Enns_Steyr-Fließstrecke	Н	4	2	2		4	Ν	2	G	3	Н	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250021	Enns	Enns_Garsten	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250023	Enns	Enns_Rosenau	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250025	Enns	Enns_Ternberg	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250027	Enns	Enns_Losenstein	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250029	Enns	Enns_Großraming	Н	4	2	2		4	Ν	2	G	3	Н	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250031	Enns	Enns_Weyer	Н	4	2	2		4	Ν	2	G	3	Н	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250035	Enns	Enns_Altennmarkt_1	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411250036	Enns	Enns_Hilfswehr-Enns	Н	4	2	2		4	Ν	2	G	3	М	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK411250037	Enns	Enns_Thurnsdorf RWStrecke	Н	4	2	2		4	Ν	2	G	3	Н	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK304980003	Inn	Inn	Н	3	2	2		3	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304980005	Inn	Inn_1	Н	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304980006	Inn	Inn_2	Н	3	2	2		3	Ν	2	G	3	Н	F	Н	G	М	F	L	G	М	F	Н	Y	Ν
ATOK304980007	Inn	Inn_1	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304980008	Inn	Inn_2	Н	3	2	2		3	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304980009	Inn	Inn_3	Н	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304980010	Inn	Inn_4	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305340005	Inn	Inn_Schärding_Neuhaus	Н	5	3	2		5	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305340007	Inn	Inn_Egglfing_Obernberg	Н	4	3	2		4	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305340009	Inn	Inn_Ering_Frauenstein	Н	4	3	2		4	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305340010	Inn	Inn_Braunau_Simbach	Н	4	3	2		4	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν

						gical Q lemen	uality ts		SI	ions	s	TIAL		fo	r prio			L STA ces (ai		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK305340011	Inn	Inn_Ingling Unterwasser- Fließstrecke	N	2	2	2		2	N	2	G	2	Н	G	Н	G	Н	F	L	G	М	F	L	Y	N
ATOK305340012	Inn	Inn_Ingling Stauraum	Н	5	2	3		5	Ν	3	G	3	Н	G	Н	G	Н	F	L	G	М	F	L	Y	Ν
ATOK305850006	Inn	Inn_1	Н	3	2	2		3	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305850010	Inn	Inn_6	Н	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK305850011	Inn	Inn_5	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK307030000	Inn	Inn	Н	3	2	2		3	Ν	2	G	2	М	F	Н	G	Н	F	Н	G	М	F	Н	Y	Ν
ATOK307210001	Inn	Inn_1	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK307210002	Inn	Inn_2	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301860008	Isar	Isar_11	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301860009	Isar	Isar_10_1	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301860010	Isar	Isar_10_2	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302340001	Isar	Isar_1	Ν	2	2	2		2	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302340002	Isar	Isar_2	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301500002	Lech	Lech, Formarinbach	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301500003	Lech	Lech_1_obh Zug	Ν	1	1	1		1	Y	1	G	1	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK301500004	Lech	Lech_2_Ort	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370006	Lech	Lech	Ν	2	2	2		2	Ν	2	G	2	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370007	Lech	Lech	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370009	Lech	Lech_1	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370010	Lech	Lech_2	Н	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370011	Lech	Lech_1	Ν	2	2	2		2	Ν	2	G	2	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK302370013	Lech	Lech_2_1	Ν	2	2	2		2	Ν	2	G	2	L	G	М	G	М	F	L	G	М	F	L	Y	Ν

						gical (Elemer	Quality Its		S	ons		TAL		fo	or prio			L STA	ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK302370014	Lech	Lech_2_2	Ν	1	2	2		2	Y	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK307080000	Lech	Lech	Ν	2	2	2		2	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK500020001	March	March, MP	Ν	2	3	3		3	Ν	3	G	3	Н	G	Н	G	Н	F	L	G	М	F	L	Y	Ν
ATOK801180001	Mur	Gewässer: Mur, Abschnitt: Landesgrenze bis Kendlbruck; 8011802	N	2	2	2		2	N	2	G	2	Н	G	Н	G	Н	F	Н	G	М	F	Н	Y	N
ATOK801180002	Mur	Gewässer: Mur, Abschnitt: Kendlbruck bis Madling/Thomertalerbach Taurachmündung; 8011801	N	2	2	2		2	N	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180003	Mur	Gewässer: Mur, Abschnitt: Madling/Thomertalerbach bis Taurachmündung	N	3	2	2		3	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180004	Mur	Gewässer: Mur, Abschnitt: Taurachmündung bis Zederhausbachmündung; 8011805	N	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180005	Mur	Gewässer: Mur, Abschnitt: Zederhausbach bis Untere Au; 8011806	N	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180006	Mur	Gewässer: Mur, Abschnitt: Untere Au bis Murfall	Ν	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180007	Mur	Gewässer: Mur, Abschnitt: Murfall bis Rotgüldenbach	Н	4	2	2		4	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180008	Mur	Gewässer: Mur, Abschnitt: Rotgüldenbach bis Dreischuppen; 8011807	Н	3	2	2		3	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180009	Mur	Gewässer: Mur, Abschnitt: Drei Schuppen bis Nähe Zalußenalm	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK801180028	Mur	Mur, Mur-Seitenarm St. Georgen	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν

						gical (lemer	Quality Its		SI	ions	s	TIAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK801180029	Mur	Mur	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK801180055	Mur	Mur	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802710002	Mur	Mur	Н	3	2	2		3	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ATOK802710008	Mur	Mur	Н	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802710009	Mur	Mur	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802710010	Mur	Mur	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802710012	Mur	Mur Graz	Н	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802710014	Mur	Mur	Н	4	2	2		4	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	М	F	Н	Y	Ν
ATOK802710015	Mur	Mur	Н	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720001	Mur	Mur	Н	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720002	Mur	Mur	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720003	Mur	Mur	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720004	Mur	Mur	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720005	Mur	Mur	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK802720006	Mur	Mur	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK803280000	Mur	Gewässer: Mur, Abschnitt: Nähe Zalußenalm bis Sticklerhütte	N	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK803280001	Mur	Gewässer: Mur, Abschnitt: Sticklerhütte bis Ursprung	N	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK804000000	Mur	Mur (Mura)	Ν	2	2	2		2	Ν	2	G	2	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1000960015	Raab	Raab	Ν	5	2	2		5	Ν	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1000960017	Raab	Raab	Ν	2	2	2		2	Ν	2	G	2	Μ	G	М	G	Μ	F	L	G	Μ	F	L	Y	Ν
ATOK1000960019	Raab	Raab	Ν	4	2	2		4	Ν	2	G	4	Н	G	М	G	Μ	F	L	G	Μ	F	L	Y	Ν

						gical Q Elemen	•		SI	ions	s	TIAL		fo	or prio			L STA ices (a		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK1000960020	Raab	Raab	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040041	Raab	Raab_Neumarkt	Ν	2	3	3		3	N	3	G	3	Н	G	Н	G	Η	F	Н	G	М	F	Н	Y	Ν
ATOK1001040042	Raab	Raab_St. Martin	Ν	3	3	2		3	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040102	Raab	Raab	Ν	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040105	Raab	Raab	Η	4	2	2		4	N	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040108	Raab	Raab	Ν	4	2	2		4	Ν	2	G	4	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040109	Raab	Raab	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040121	Raab	Raab Feldbach	Ν	3	2	2		3	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001040122	Raab	Raab	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1002140000	Raab	Raab_Grenzstrecke	Ν	1	2	2		2	Y	2	G	2	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1002160000	Raab	Raab	Ν	4	2	2		4	Ν	2	G	4	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001790012	Rabnitz	Rabnitz_Piringsdorf	Ν	4	2	2		4	Ν	2	G	4	Н	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001790013	Rabnitz	Rabnitz_Oberrabnitz	Ν	2	2	2		2	Ν	2	G	2	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001790035	Rabnitz	Rabnitz_Unterloisdorf	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1001790039	Rabnitz	Rabnitz_Frankenau	Ν	3	3	2		3	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK1002370000	Rabnitz	Rabnitz_01, MR	Ν	2	2	2		2	Ν	2	G	2	Μ	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK304690001	Salzach	Gewässer: Salzach, Abschnitt: Gasteinerachenmündung bis KW Ausleitung in Högmoos	N	5	2	2		5	N	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK304690004	Salzach	Gewässer: Salzach, Abschnitt: Mündung Felber Ache bis Trattenbachmündung	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK304690005	Salzach	Gewässer: Salzach, Abschnitt: Trattenbachmündung bis Mündung Krimmlerache	N	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N

						gical (lemen)uality its	,	S	ons		TAL		fo	or prio		MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK304690006	Salzach	Gewässer: Salzach, Abschnitt: Ende Fischlebensraum bis Überleitung Durlassboden	н	4	2	2		4	N	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK304690007	Salzach	Gewässer: Salzach, Abschnitt: Überleitung Durlassboden bis Nähe Salzachjochütte	N	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK304690078	Salzach	Gewässer: Salzach, Abschnitt: Krimmlerachenmündung bis Ende Fischlebensraum	N	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK304690261	Salzach	Gewässer: Salzach, Abschnitt: Ende Stau KW Gries bis Mündung Felber Ache, prior Sanierungsr. I, prior Sanierungsr. II_2	N	5	2	2		5	N	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK304690262	Salzach	Gewässer: Salzach, Abschnitt: KW Ausleitung in Högmoos bis Ende Stau KW Gries	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305000000	Salzach	Gewässer: Salzach, Abschnitt: Nähe Salzachjochhütte bis Ursprung	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305350001	Salzach	Gewässer: Salzach, Abschnitt: Blühnbachmündung bis Mündung Kleinarlerache	Н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305350002	Salzach	Gewässer: Salzach, Abschnitt: Tauglmündung bis Blühnbachmündung	N	5	2	2		5	N	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305350003	Salzach	Gewässer: Salzach, Abschnitt: Mündung der Oberalm bis zur Tauglmündung	Н	4	2	2		4	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305350004	Salzach	Gewässer: Salzach, Abschnitt: von der Saalachmündung bis KW Urstein	Н	4	2	2		4	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305350006	Salzach	Gewässer: Salzach, Abschnitt: KW Urstein bis Mündung der Oberalm	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N

					•	gical (lemen	Quality Its		IS	ions	s	TIAL		fo	or prio		MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK305360001	Salzach	Gewässer: Salzach, Abschnitt: Stauraum KW Wallnerau bis zur Mündung Gasteinerache	N	2	2	2		2	N	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK305360002	Salzach	Gewässer: Salzach, Abschnitt: Kleinarlerachenmündung bis zum Stauraum KW Wallerau	н	5	2	2		5	N	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	N
ATOK307200001	Salzach	Salzach_Mündung	Н	5	2	2		5	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK307200002	Salzach	Salzach	Ν	5	2	2		5	Ν	2	G	5	Н	G	М	G	М	F	L	G	Μ	F	L	Y	Ν
ATOK307200003	Salzach	Gewässer: Salzach, Abschnitt: Landesgrenze bis Saalachmündung	Ν	3	2	2		3	Ν	2	G	3	L	G	Н	G	Н	F	L	G	М	F	L	Y	Ν
ATOK1001760000	Spratzbach	Spratzbach_02 [Rabnitz] (WB, NK)	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	Μ	F	L	G	Μ	F	L	Y	Ν
ATOK1002370003	Spratzbach	Spratzbach_01	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	Μ	F	L	G	Μ	F	L	Y	Ν
ATOK500010030	Thaya	Thaya_07, EP mittel	Н	4	3	3		4	Ν	3	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500010031	Thaya	Thaya_08, EP klein	Н	4	3	3		4	Ν	3	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500010036	Thaya	Thaya_06, EP mittel	Н	3	3	3		3	Ν	3	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500010038	Thaya	Thaya_09, EP klein	Ν	2	2	3		3	Ν	3	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500010043	Thaya	Thaya_07, EP mittel	Н	3	3	3		3	Ν	3	G	3	Н	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500040002	Thaya	Thaya_10, MR	Ν	3	3	3		3	Ν	3	G	3	Η	G	М	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK500040003	Thaya	Thaya_11, ER	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK501710003	Thaya	Thaya_04, EP mittel 2	Ν	2	3	3		3	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK501790000	Thaya	Thaya_01, MP	Ν	2	3	3		3	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK501870001	Thaya	Thaya_05, EP mittel	Н	4	3	2		4	Ν	3	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK501930000	Thaya	Thaya_03, EP mittel 2	Ν	3	2	3		3	Y	3	G	3	Η	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK501940000	Thaya	Thaya_02, MP	Ν	2	2	3		3	Ν	3	G	3	Η	G	Н	G	Н	F	Н	F	Η	F	Н	Y	Ν

						gical (lemer)uality its	7	SI	ions	s	TIAL		fo	r prio			L STA		ifidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK400780000	Traun	Toplitzbach	Ν	1	1	1		1	Y	1	G	1	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK400780002	Traun	Traun-Ursprung	Ν	1	1	1		1	Y	1	G	1	М	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK401220004	Traun	Traun	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK401220014	Traun	Traun_Obertaun	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK401220015	Traun	Traun_Koppenschlucht_HMSG	Ν	1	2	2		2	Y	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK401220016	Traun	Traun_HMWB_KW_Bad Goisern	Н	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK401220017	Traun	Traun_Ausrinn_Hallstättersee	Ν	4	2	2		4	Ν	2	G	4	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK409920002	Traun	Traun_HMWB_Bad Ischl	Н	4	2	2		4	Ν	2	G	3	М	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK409920004	Traun	Traun_Engleithen	Ν	4	2	2		4	Ν	2	G	4	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK409920005	Traun	Traun_HMWB_Lauffen bis Bad Goisern	Н	4	2	2		4	N	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411130036	Traun	Traun_HMWB_Ebensee	Н	5	2	2		5	Ν	2	G	3	Н	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK411130038	Traun	Traun_Ebensee bis Ischl	Ν	5	2	2		5	Ν	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411130039	Traun	Traun_uh Ischl	Η	4	2	2		4	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411970000	Traun	Grundlseer-Traun, Traun, Vereinigte Traun	Ν	5	2	2		5	Ν	2	G	5	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK411980001	Traun	Grundlseer-Traun, Vereinigte Traun	Ν	4	2	2		4	Ν	2	G	4	М	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK411980002	Traun	Grundlseer-Traun	Ν	5	2	2		5	Ν	2	G	5	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090005	Traun	Traun	Ν	1	2	2		2	Y	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090013	Traun	Traun_Traun	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090014	Traun	Traun_Pucking	Н	5	2	2		5	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090016	Traun	Traun_Marchtrenk	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090018	Traun	Traun_Wels	Ν	3	2	2		3	Ν	2	G	3	L	G	М	G	М	F	L	G	М	F	L	Y	Ν

						gical (Elemer	Quality ts		SI	ions	s	TIAL		fo				L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK412090020	Traun	Traun_Welser_Wehr	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090024	Traun	Traun_Saag	Ν	3	3	3		3	Ν	3	G	3	Н	G	Μ	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090027	Traun	Traun_Ebelsberg-Rückstau Donau	Н	4	4	4		4	Ν	3	G	3	М	G	Μ	G	Μ	F	L	G	М	F	L	Y	Ν
ATOK412090028	Traun	Traun_Ebelsberg-RWStrecke	Ν	3	3	3		3	Ν	3	G	3	Н	F	Н	G	Н	F	L	G	Μ	F	Н	Y	Ν
ATOK412090030	Traun	Traun_Stadl	Н	4	2	2		4	Ν	2	G	3	Μ	G	М	G	Μ	F	L	G	Μ	F	L	Y	Ν
ATOK412090031	Traun	Traun_Lambach	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090032	Traun	Traun_Kemating	Н	4	2	2		4	Ν	2	G	3	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090036	Traun	Traun	Ν	3	2	2		3	Ν	2	G	3	L	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090040	Traun	Traun_HMSG_Fischerinsel	Ν	1	2	2		2	Y	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090042	Traun	Traun_Laakirchen	Н	4	2	2		4	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090043	Traun	Traun_Auholz_HMSG	Ν	1	2	2		2	Y	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090045	Traun	Traun_Roitham	Ν	2	2	2		2	Ν	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412090046	Traun	Traun_Fallpoint_HMSG	Ν	1	2	2		2	Y	2	G	2	М	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412100001	Traun	Traun_UW_Gmunden	Ν	3	2	2		3	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
ATOK412100002	Traun	Traun_KW_Gmunden	Н	5	2	2		5	Ν	2	G	3	Н	G	М	G	М	F	L	G	М	F	L	Y	Ν
CZDYJ_0100	Dyje	Dyje od státní hranice po vzdutí nádrže Vranov, včetně toku Křeslický potok	N	4	3	3		4		3	F	4	Н	F	Н	F	Н	F	Н	F	Н	F	н	Y	N
CZDYJ_0155_J	Dyje	Nádrž Vranov na toku Dyje	Н				2	2		3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0160	Dyje	Dyje od hráze nádrže Vranov po státní hranici	Н		2	2		2		3	G	3	Н	G	Н	G	Н					G	Н	Y	N
CZDYJ_0170	Dyje	Dyje od státní hranice po vzdutí nádrže Znojmo	Н		2	2		2		3	G	3	Н	F	Н	G	Н					F	Н	Y	N
CZDYJ_0180	Dyje	Dyje od vzdutí nádrže Znojmo po státní hranici	Ν	4	3	2		4		3	G	4	Н	F	Н	F	Н					F	Н	Y	Ν

						gical Q lemen	Quality Its		S	ons		TAL		fo				L STA		fidenc	e)	NS			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
CZDYJ_0190	Dyje	Dyje od státní hranice po státní hranici	N		3	3		3		3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0200	Dyje	Dyje od státní hranice po vzdutí nádrže Nové Mlýny I. – horní	Н	4	2	3		4		3	F	4	Н	G	Н	G	Н	F	Н			F	Н	Y	Ν
CZDYJ_0295_J	Dyje	Nádrž Nové Mlýny I horní na toku Dvie	Н				2	2		3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_1195_J	Dyje	Nádrž Nové Mlýny II střední na toku Dyje	Н				4	4		3	G	4	Н	G	Н	G	Н					G	Н	Y	N
CZDYJ_1205_J	Dyje	Nádrž Nové Mlýny III dolní na toku Dyje	Н				5	5		3	F	5	Н	G	Н	G	Н					G	Н	Y	N
CZDYJ_1240	Dyje	Dyje od hráze nádrže Nové Mlýny III dolní po tok Odlehčovací rameno Dyje, Poštorná	Н	4	3	2	3	4		3	G	4	Н	F	Н	G	Н					F	Н	Y	N
CZDYJ_1260	Dyje	Dyje od toku Odlehčovací rameno Dyje, Poštorná po tok Kyjovka (Stupava)	N	4	3	3	3	4		3	F	4	Н	F	Н	F	Н	F	Н			F	Н	Y	N
CZDYJ_1300	Dyje	Dyje od toku Kyjovka (Stupava) po tok Morava	N	4	3	3	3	4		3	F	4	Н	F	М	F	М	F	Н			F	Н	Y	N
CZMOV_0010	Morava	Morava od pramene po tok Krupá	Ν		1	1		1		2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
CZMOV_0080	Morava	Morava od toku Krupá po tok Desná	Ν		2			2		2	F	3	Н	F	Н	F	Н					F	Н	Y	Ν
CZMOV_0180	Morava	Morava od toku Desná po soutok s tokem Moravská Sázava	N		1	2		2		2	F	3	Н	F	Н	F	Н					F	Н	Y	N
CZMOV_0310	Morava	Morava od toku Moravská Sázava po tok Třebůvka	N	3	2	2		3		3	G	3	Н	F	Н	F	Н					F	Н	Y	N
CZMOV_0530	Morava	Morava od toku Třebůvka po tok Bečva	N	5	4	3	3	5		3	F	5	Н	F	Н	F	Н	F	Н			F	Н	Y	N
CZMOV_0950	Morava	Morava od toku Bečva po tok Haná	Ν	4	3		2	4		3	G	4	Н	F	Н	F	Н					F	Н	Y	Ν
CZMOV_1170	Morava	Morava od toku Haná po tok Dřevnice	Н	4	3	2	2	4		3	F	4	Н	F	Н	F	Н					F	Н	Y	Ν

					Biolog E	gical (lemer		7	IS	ions	s	TIAL		fo			MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
CZMOV_1290	Morava	Morava od toku Dřevnice po tok Olšava	Н	5	4	3	2	5		3	F	5	Н	G	Н	G	Н					G	Н	Y	N
CZMOV_1390	Morava	Morava od toku Olšava po tok Radějovka	N	5	3	2	2	5		3	G	5	Н	F	Н	G	Н					F	Н	Y	Ν
CZMOV_1430	Morava	Morava od toku Radějovka po státní hranici	Н	3	2	3	4	4		3	F	4	Н	F	Н	F	Н	F	Н			F	Н	Y	Ν
CZDYJ_0300	Svratka	Svratka od pramene po Bílý potok	Ν		2	3		3		3	F	3	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0330	Svratka	Svratka od toku Bílý potok po vzdutí nádrže Vír I.	Ν		2	3		3		3	G	3	Н	F	Н	F	Н					F	Н	Y	Ν
CZDYJ_0345_J	Svratka	Nádrž Vír I na toku Svratka	Н				5	5		3	G	5	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0380	Svratka	Svratka od hráze nádrže Vír I. po tok Bobrůvka (Loučka)	Н	3	2	3		3		3	G	3	Н	G	Н	G	Н					G	Н	Y	N
CZDYJ_0450	Svratka	Svratka od toku Bobrůvka (Loučka) po vzdutí nádrže Brno	Ν	4	2	2		4		3	F	4	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0485_J	Svratka	Nádrž Brno na toku Svratka	Н				5	5		3	G	5	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0490	Svratka	Svratka od hráze nádrže Brno po tok Svitava	Н	3	2	2		3		3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
CZDYJ_0670	Svratka	Svratka od toku Svitava po tok Litava (Cézava)	Ν		3	3	3	3		3	F	3	Н	F	Н	F	Н					F	Н	Y	Ν
CZDYJ_0800	Svratka	Svratka od toku Litava (Cézava) po vzdutí nádrže Nové Mlýny II střední	N	5	3	3	2	5		3	F	5	Н	F	Н	F	Н					F	Н	Y	N
SKB0001	Bodrog	Bodrog	Ν	3		2	-	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
SKV0003	Čierny Váh	Čierny Váh	Ν	1		2	-	2				2	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKV0004	Čierny Váh	Čierny Váh	Ν		2	1	-	2			G	2	Н	F	М	G	М					F	М	Y	Ν
SKH0001	Hornád	Hornád	Ν		2	2	-	2	Ν	2	F	3	Н	G	М	G	М					G	М	Y	Ν
SKH0002	Hornád	Hornád	Ν		2	2	-	2	Y	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
SKH0003	Hornád	Hornád	Ν		2	3	-	3	Ν	3	F	3	Н	G	М	G	М					G	М	Y	Ν

					Biolog F	gical (Elemer	•	7	SI	ions	s	TIAL		fo	or prio		MICA ıbstan			fidenc	e)	NS			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
SKH0004	Hornád	Hornád	Ν	3	2	2	-	3	N	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKH1001	Hornád	Hornád (VN Ružín, VN Malá Lodina)	Н		3	1	2	3		2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0001	Hron	Hron	Ν	2	1	2	-	2	Y	2	G	2	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0002	Hron	Hron	Ν	1	2	1	-	2		2		2	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0003	Hron	Hron	Ν	2	2	2	-	2		2	G	2	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0004	Hron	Hron	Ν	1	2	3	-	3	Ν	2	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0005	Hron	Hron	Ν	1	2	3	3	3	Ν	2	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
SKR0222	Hron	Hron	Н		3		-	3		2	G	3	М	F	М	F	М					F	М	Y	Ν
SKR0223	Hron	Hron	Н					-				3	L	F	L	G	L					F	L	Y	Ν
SKI0001	Ipeľ	Ipeľ	Ν	3	1	2	-	3	Y	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKI0003	Ipeľ	Ipeľ	Ν	2			-	2		2	G	2	М	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
SKI0004	Ipeľ	Ipeľ	Ν	2	3	3	2	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKI0136	Ipeľ	Ipeľ	Ν			3		3				3	L	G	L	G	L					G	L	Y	Ν
SKI1001	Ipeľ	Ipeľ (VN Málinec)	Н		2	2	1	2		3	G	2	Н	F	М	F	М					F	М	Y	Ν
SKB0141	Laborec	Laborec	Ν				-	-				3	L	G	L	G	L					G	L	Y	Ν
SKB0142	Laborec	Laborec	Ν	1	3	2	-	3	Ν	2	F	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKB0144	Laborec	Laborec	Ν	4	3	3	2	4	Ν	3	G	4	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKB0264	Laborec	Laborec	Н				-	-				2	L	G	L	G	L					G	L	Y	Ν
SKB0140	Latorica	Latorica	Ν	3	3	2	-	3	Ν	2	G	3	Н	F	М	G	М					F	М	Y	Ν
SKM0001	Morava	Morava	Н	2	3	3	3	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
SKM0002	Morava	Morava	Ν	3	4	2	3	4	Ν	3	G	4	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
SKN0001	Nitra	Nitra	Ν	1	2	2	-	2		2	G	2	Н	G	Μ	G	Μ					G	М	Ν	Ν

						gical (lemer	Quality ts	7	SI	ions	s	TIAL		fo			MICA 1bstan		ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
SKN0002	Nitra	Nitra	Ν	3	2	2	-	3		2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKN0003	Nitra	Nitra	Ν			3	-	3		3	F	3	М	F	М	F	М					F	М	Y	Ν
SKN0004	Nitra	Nitra	Н	4	3	-	3	4	Ν	3	F	4	М	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKD0015	Prívodný kanál (VN Gabčíkovo) - Odpadový kanál	Prívodný kanál (VN Gabčíkovo) - Odpadový kanál	A	-	-	-	2	2	N	2	G	2	Н	G	М	G	М					G	М	И	N
SKS0001	Slaná	Slaná	Ν	2	2	3	-	3		2		3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKS0002	Slaná	Slaná	Ν		2	2	-	2		2	G	2	Н	G	М	G	М					G	М	Ν	Ν
SKS0003	Slaná	Slaná	Ν	2	3	3	-	3		3	G	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
SKT0001	Tisa	Tisa	Ν	3	3	2	3	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKV0005	Váh	Váh	Ν		2	2	-	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
SKV0006	Váh	Váh	Н	3	3	1	-	3		2	G	3	М	G	М	G	М					G	М	Y	Ν
SKV0007	Váh	Váh	Н	4	4		-	4		2		4	М	F	М	G	М	F	Н	G	Н	F	Н	Y	Ν
SKV0008	Váh	Váh	Н		3		2	3	Ν	2	G	3	М	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKV0019	Váh	Váh	Ν	3	3		3	3	Ν	2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKV0027	Váh	Váh	Н	4	3	2	2	4	Ν	2	G	4	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
SKV0472	Váh	Váh	Ν		2	2	-	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
SKV0473	Váh	Váh	Н	3	2		-	3	Ν	2	G	3	М	F	М	G	М					F	М	Y	Ν
SKV0474	Váh	Váh	Η	2	2		-	2		2	G	2	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SKV1001	Váh	Váh (VN Liptovská Mara, VN Bešeňová)	Н		3	3	3	3		3	G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	N
SKV1002	Váh	Váh (VN Slňava)	Н			3	1	3		2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν

						gical (lemer)uality 1ts	7	SI	ions	s	TIAL		fo			MICA ıbstan		ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
SKV1003	Váh	Váh (VN Kráľová)	Н			-	1	1		2	G	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
HUAEP322	Berettyó	Berettyó	Н	3	2	2	3	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Y
HUAEP334	Bodrog	Bodrog	Ν	3	2	2	2	3	Ν	2	F	3	Н	F	Н	G	Н	F	Н	G	Η	F	Н	Y	Y
HUAEP438	Dráva	Dráva alsó	Ν	3	2	1	3	3	Ν	1	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP439	Dráva	Dráva felső	Н	3	3	2	2	3	Ν	1	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP471	Fehér-Körös	Fehér-Körös	А	3	3	3	2	3	Ν	1	F	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Y
HUAEP475	Fekete-Körös	Fekete-Körös	Н	3	2	2	2	3	Ν	1	F	3	Н	F	Н	F	Н	F	Н	G	Η	F	Н	Y	Y
HUAOC778	Hármas-Körös	Hármas-Körös alsó	Н	3	2	2	1	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	G	Η	F	Н	Y	Y
HUAOC779	Hármas-Körös	Hármas-Körös felső	Н	3	2	2	2	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	
HUAEP579	Hernád	Hernád alsó	Н	2	3	3	3	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Y
HUAEP580	Hernád	Hernád felső	Н	2	2	3	3	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP594	Hortobágy- Berettyó	Hortobágy-Berettyó	Н	3	3	2	3	3	N	2	F	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Y
HUAOC785	Hortobágy- főcsatorna	Hortobágy-főcsatorna	Н	2	3	3	3	3	Ν	3	F	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	
HUAEP614	Ipoly	Ipoly	Ν	3	3	3	3	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP668	Kettős-Körös	Kettős-Körös	Н	2	3	2	1	3	Ν	1	F	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	
HUAEP783	Maros	Maros torkolat	Н	3	2	2	2	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	F	Η	F	Н	Y	Y
HUAEP784	Maros	Maros kelet	Н	2	2	2	2	2	Ν	2	F	3	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	Y
HUAEP810	Mosoni-Duna	Mosoni-Duna alsó	Н	3	3	2	1	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	
HUAEP811	Mosoni-Duna	Mosoni-Duna felső	Н	3	3		1	3	Ν	1	G	3	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	
HUAEP812	Mosoni-Duna	Mosoni-Duna középső	Ν	3	2	2	1	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	
HUAEP816	Mura	Mura	Н	2	2	2	2	2	Ν	1	G	2	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	

						gical (lemer)uality nts	7	IS	ons	8	TIAL		fo				L STA ces (a		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAEP898	Rába	Rába (Kis-Rábától)	Н	3	2	3	3	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP899	Rába	Rába (Csörnöc-Herpenyőtől)	Н	3	2	3	3	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP900	Rába	Rába (Lapincstól)	Н	2	2	3	3	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP901	Rába	Rába (ÉDÁSZ-üzemvízcsatornától)	Ν	2	3	3	2	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP902	Rába	Rába torkolati szakasz	Н	3	1	2	3	3	Ν	3	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP903	Rába	Rába (határtól)	Н	3	1	3	3	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Y
HUAEP904	Rábca	Rábca	Н	3	2	2	2	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP919	Répce	Répce felső	Н	1	2	2		2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Y
HUAEP920	Répce	Répce alsó	Н		2	3		3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEP921	Répce	Répce középső	Ν	3	3	2		3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Ν	
HUAEP931	Sajó	Sajó felső	Ν	2	2	3	2	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEP932	Sajó	Sajó alsó	Н	1	4	3	3	4	Ν	2	F	4	Н	F	Н	F	Н	F	М	F	Μ	F	Н	Y	
HUAEP953	Sebes-Körös	Sebes-Körös felső	Н	2	2	2	2	2	Ν	1	G	2	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	
HUAEP954	Sebes-Körös	Sebes-Körös alsó	Н	2	2	2	1	2	Ν	1	F	3	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Y
HUAEP958	Sió	Sió felső	А		3	3		3	Ν	3	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Ν	
HUAEP959	Sió	Sió alsó	А	3		3		3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	
HUAEP971	Szamos	Szamos	Ν	2	3	2	3	3	Ν	2	F	3	Н	F	Н	F	Н	F	Н	F	Η	F	Н	Y	Y
HUAEQ054	Tisza	Tisza Túrtól Szipa-főcsatornáig	Ν	2	2	1	1	2	Ν	1	F	3	Н	F	Н	G	Н	F	Н	G	Н	F	Н	Y	Y
HUAEQ055	Tisza	Tisza országhatártól Túrig	Ν	3	3	1	1	3	Ν	1	F	3	Н	F	Н	F	Н	F	Н	G	Η	F	Н	Y	Y
HUAEQ056	Tisza	Tisza Hármas-Köröstől déli országhatárig	Н	3	2	2	2	3	N	2	F	3	Н	F	Н	F	Н	F	Н	F	Η	F	Н	Y	Y
HUAEQ057	Tisza	Tisza Szipa-főcsatornától Belfő- csatornáig	Ν	2	2	2	3	3	Ν	1	F	3	Н	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Y

						gical Q lemen)uality its	7	S	ons		IIAL		fo				L STA ices (a	ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HUAEQ058	Tisza	Tisza Belfő-csatornától Keleti- főcsatornáig	Ν	3	3	2	3	3	N	1	F	3	Н	F	н	F	Н	F	н	G	Н	F	Н	Y	Y
HUAEQ059	Tisza	Tisza Keleti-főcsatornától Tiszabábolnáig	Н	2	2	2	2	2	N	2	F	3	Н	F	Н	F	Н	F	М	F	М	F	Н	Y	
HUAEQ060	Tisza	Tisza Kiskörétől Hármas-Körösig	Н	3	3	2	2	3	Ν	2	F	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Y
HUAIW389	Tisza	Tisza Tiszabábolnától Kisköréig	Н	2	3	2	2	3	Ν	1	F	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAEQ139	Zagyva	Zagyva felső	Н	3	3	2	4	4	Ν	3	G	4	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEQ140	Zagyva	Zagyva alsó	Ν	2	3	2	3	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEQ137	Zagyva-patak	Zagyva-patak-alsó	Н	2	3	3		3	Ν	3	G	3	Н	F	Н	G	Н	F	Н	F	Н	F	Н	Y	Y
HUAEQ138	Zagyva-patak	Zagyva-patak felső és Bárna-patak	Ν		4			4	Ν	3	G	4	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEQ144	Zala	Zala forrásvidék	Ν	2	3	1		3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Ν	
HUAEQ146	Zala	Zala (Széplaki-patakig)	Ν	2	3	3	2	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUAEQ147	Zala	Zala (Bárándi-patakig)	Н		2	2	2	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
SI3VT197	Drava	MPVT Drava mejni odsek z Avstrijo	Н		4	1	-	4		1	G	3	М	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI3VT359	Drava	MPVT Drava Dravograd - Maribor	Н		3	2	-	3		1	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI3VT5171	Drava	VT Drava Maribor - Ptuj	Ν		2	1	-	2		1	G	2	Н	G	М	G	М	F	Н	G	Н	F	Н	Y	Ν
SI3VT5172	Drava	MPVT zadrževalnik Ptujsko jezero	Н		4	2	-	4		2	G	3	М	G	М	G	М	F	L	G	L	F	L	Y	Ν
SI3VT930	Drava	VT Drava Ptuj - Ormož	Ν		2	2	-	2		2	G	2	Н	G	М	G	М	F	Н	G	Н	F	Н	Y	Ν
SI3VT950	Drava	MPVT zadrževalnik Ormoško jezero	Н		4	2	-	4		1	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI3VT970	Drava	VT Drava zadrževalnik Ormoško jezero - Središče ob Dravi	N		2	1	-	2		1	G	2	Н	G	Н	G	Н	F	L	G	L	F	L	Y	N
SI378VT	Kanal Hidroelektrarne Formin	UVT Kanal HE Formin	А				-	-		2	G	2	L	G	М	G	М	F	L	G	L	F	L	Y	Ν

					Biolog E	gical (lemer	•	7	S	ons		LIAL		fo	or prio		MICA 1bstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
SI35172VT	Kanal Hidroelektrarne Zlatoli_je	UVT Kanal HE Zlatoličje	А				-	-		2	G	2	L	G	М	G	М	F	L	G	L	F	L	Y	N
SI21VT13	Kolpa	VT Kolpa Osilnica - Petrina	Ν		1	1	-	1		1	G	1	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI21VT50	Kolpa	VT Kolpa Petrina - Primostek	Ν		2	1	-	2		1	G	2	М	G	Н	G	Н	F	L	G	L	F	L	Y	Ν
SI21VT70	Kolpa	VT Kolpa Primostek - Kamanje	Ν		2	2	-	2		1	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI43VT10	Mura	VT Mura Ceršak - Petanjci	Ν		2	2	-	2		2	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
SI43VT30	Mura	VT Kučnica Mura Petanjci - Gibina	Ν		2	2	-	2		2	G	2	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	Ν
SI43VT50	Mura	VT Mura Gibina - Podturen	Ν		2	2	-	2		2	G	2	Н	G	М	G	М	F	L	G	L	F	L	Y	Ν
SI111VT5	Sava	VT Sava izvir - Hrušica	Ν	3	1	2	-	3		1	G	3	Н	G	Н	G	Н	F	Н	G	L	F	Н	Y	Ν
SI111VT7	Sava	MPVT zadrževalnik HE Moste	Н		4	3	-	4		1	G	3	Н	G	Н	G	Н	F	Н	G	L	F	Н	Y	Ν
SI1VT137	Sava	VT Sava HE Moste - Podbrezje	Ν		3	1	-	3		1	G	3	Μ	G	Н	G	Н	F	L	G	L	F	L	Y	Ν
SI1VT150	Sava	VT Sava Podbrezje - Kranj	Ν		2	1	-	2		1	G	2	М	G	Н	G	Н	F	L	G	L	F	L	Y	Ν
SI1VT170	Sava	MPVT Sava Mavčiče - Medvode	Н		4	1	-	4		1	G	3	Н	G	Μ	G	М	F	Н	G	Η	F	Н	Y	Ν
SI1VT310	Sava	VT Sava Medvode - Podgrad	Ν		2	2	-	2		1	G	2	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	Ν
SI1VT519	Sava	VT Sava Podgrad - Litija	Ν		2	1	-	2		2	G	2	Н	G	Н	G	Н	F	L	G	L	F	L	Y	Ν
SI1VT557	Sava	VT Sava Litija - Zidani Most	Ν		2	1	-	2		2	G	2	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	Ν
SI1VT713	Sava	MPVT Sava Vrhovo - Boštanj	Η		4	2	-	4		2	G	4	М	G	Μ	G	Μ	F	Н	G	L	F	Н	Y	Ν
SI1VT739	Sava	VT Sava Boštanj - Krško	Ν		3	2	-	3		2	G	3	Н	G	М	G	Н	F	L	G	L	F	L	Y	Ν
SI1VT913	Sava	VT Sava Krško - Vrbina	Ν		2	1	-	2		2	G	2	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	Ν
SI1VT930	Sava	VT Sava mejni odsek	Ν		2	1	-	2		1	G	2	Н	G	Н	G	Н	F	Н	G	Η	F	Н	Y	Ν
HRCSRN0010_00 1	Česma	Česma	Н		5	4		5	Ν	3	G	5	Н	F	Н							F	Н	Y	Y

						gical (lemen	Quality Its	7	IS	ions	s	TIAL		fo	or prio			L STA		fidenc	e)	US			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HRCSRN0010_00 2	Česma	Česma	Н		4	4		4	N	3	G	5	Н	G	Н	G						G	Н	Y	Y
HRCSRN0010_00 3	Česma	Česma	Н					-	N	3	G	5	М	G	М	G						G	М		Y
HRCSRN0010_00	Česma	Česma	Н		4	4		4	N	3	G	5	Н	G	Н	G						G	Н	Y	Y
HRCSRN0010_00	Česma	Česma	Н					-	N	3	G	4	М	G	М	G						G	М		Y
HRCSRN0010_00 6	Česma	Česma	N					-	N	3	G	4	М	G	М	G						G	М		Y
HRCSRN0010_00	Česma	Česma	N					-	N	3	G	4	L	G	L	G						G	L		Y
HRCSRN0010_00	Česma	Grđevica	N					-	Y	2	G	2	L	G	L	G						G	L	-	-
HRCDRI0002_004	Drava	Drava	N		2	2	2	2	Ν	2	G	4	Н	G	Н	G						G	Н		Y
 HRCDRI0002_005	Drava	Drava	Н					-	Ν	2	G	4	М	G	М	G						G	М		Y
HRCDRI0002_006	Drava	Drava	Н					-	Ν	2	G	4	М	G	М	G						G	М		Y
HRCDRI0002_007	Drava	Drava	Н					-	Ν	2	G	4	М	G	М	G						G	М		Y
HRCDRI0002_008	Drava	Drava	Н					-	Ν	2	G	4	М	G	М	G						G	М		Y
HRCDRI0002_009	Drava	Drava	Н		4	4	2	4	Ν	2	G	5	Н	G	Н	G						G	Н	Y	Y
HRCDRI0002_010	Drava	Drava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCDRI0002_012	Drava	Drava	Ν		3	2	1	3	Y	2	G	3	Н	G	Н	G						G	Н		
HRCDRI0002_019	Drava	Drava	Ν					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCDRI0002_020	Drava	Drava	Н		4	2		4	Ν	1	G	5	Н	G	Н	G						G	Н	Y	Y
HRCDRI0002_021	Drava	Drava	Ν					-	Y	2	G	2	М	G	М	G						G	М	-	-
HRCDRI0002_022	Drava	Drava	А					-	Y	2	G	2	М	G	М	G						G	М		

						gical Q lemen	uality ts		IS	ions	s	TIAL		fo		CHE city su			ATUS nd con	fidence	e)	US			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HRCDRN0002_00 1	Drava	Drava	Н		3	2	3	3	N	2	G	4	Н	G	Н	G						G	Н	Y	Y
HRCDRN0002_00	Drava	Drava	Н					-	Ν	2	G	4	М	G	М	G						G	М		Y
HRCDRN0002_00	Drava	Drava	N		2	2		2	Ν	2	G	5	Н	G	Н	G						G	Н		Y
HRCDRN0002_01	Drava	Drava	Н					-	N	2	G	4	М	G	М	G						G	М		Y
HRCDRN0002_01	Drava	Drava	N		3	2		3	N	1	G	3	Н	G	Н	G						G	Н		
3 HRCDRN0002_01	Drava	Drava	N		5			5	N	2	G	5	M	G	М	G						G	M		Y
4 HRCDRN0002_01								-														-			
5	Drava	Drava	Н					-	N	1	G	5	М	G	М	G						G	М		Y
HRCDRN0002_01 6	Drava	Drava	Ν					-	Ν	2	G	5	L	G	L	G						G	L		Y
HRCDRN0002_01	Drava	Drava	Н		4	3		4	N	1	G	5	L	G	L	G						G	L	Y	Y
HRCDRN0002_01	Drava	Drava	N					-	N	3	G	5	М	F	М							F	М	Y	Y
HRCSRN0007_00	Kanal Lonja- Strug, Lonja	Lonja Trebež	N					-	N	3	G	4	М	G	М	G						G	М		Y
HRCSRI0004_012	Kupa	Kupa	N		2	2		2	Y	2	G	2	Н	G	Н	G						G	Н	-	-
HRCSRI0004_013	Kupa	Kupa	N					-	Y	2	G	2	М	G	М	G						G	М	-	-
HRCSRI0004_014	Kupa	Kupa	Ν		3	1		3	Ν	1	G	3	Н	G	М	G						G	М	Y	Y
HRCSRI0004_015	Kupa	Кира	Ν					-	Ν	1	G	3	М	G	М	G						G	М		Y
HRCSRI0004_016	Kupa	Kupa	Ν		2	2		2	Y	1	G	2	Н	G	М	G						G	М	-	-
HRCSRI0004_017	Kupa	Kupa	Ν		2	2		2	Ν	1	G	2	Н	G	Η	G						G	Η	-	-

						gical (lemer	Quality Its	7	SI	ions	s	TIAL		fo				L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HRCSRN0004_00 1	Kupa	Kupa	N		5	2		5	N	2	G	5	Н	G	Н	G						G	Н		
HRCSRN0004_00 2	Kupa	Kupa	Ν		4	4		4	Y	2	G	4	М	G	Н	G						G	Н		
HRCSRN0004_00 3	Kupa	Kupa	Ν		4	2		4	Y	2	G	4	Н	G	М	G						G	М		
HRCSRN0004_00 4	Kupa	Kupa	Ν		5	2		5	Y	2	G	5	Н	G	М	G						G	М		
HRCSRN0004_00 5	Kupa	Кира	Ν					-	Ν	2	G	2	М	G	М	G						G	М	-	-
HRCSRN0004_00	Kupa	Кира	Ν		3	2		3	Y	2	G	3	М	G	Н	G						G	Н		
HRCSRN0004_00 7	Kupa	Kupa	N		3	2		3	N	2	G	3	Н	G	Н	G						G	Н		
HRCSRN0004_00	Kupa	Kupa	N		3	2		3	Y	1	G	3	Н	G	М	G						G	М		
HRCSRN0004_00	Kupa	Kupa	N					-	Y	2	G	2	М	G	М	G						G	М	-	-
HRCSRN0004_01	Kupa	Kupa	Н					-	N	2	G	3	М	G	М	G						G	М		Y
HRCSRN0004_01	Kupa	Кира	N		2	2		2	Y	2	G	2	М	G	М	G						G	М	-	-
HRCSRN0004_01	Kupa	Кира	N		2	2		2	N	1	G	2	Н	G	Н	G						G	Н	-	-
8 HRCSRN0007_00	Lonja	Lonja Trebež	N					-	N	3	F	4	М	F	Н							F	Н		Y
HRCSRN0007_00	Lonja	Lonja Trebež	N					-	N	3	G	4	М	F	М							F	М		Y
2 HRCDRI0003_001	Mura	Mura	Н					-	N	2	G	3	М	G	М	G						G	М		Y
HRCDRI0003_002	Mura	Mura	Н		3	2	1	3	Ν	2	G	3	Н	G	Н	G						G	Н	Y	Y

						gical Q lemen	uality ts		SI	suo	8	IIAL		fo	or prio			L STA		fidenc	e)	US			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HRCDRI0003_003	Mura	Mura	Ν					-	Ν	2	G	2	М	G	М	G						G	М	-	-
HRCSRI0001_001	Sava	Sava	Н		3	3		3	Ν	2	G	4	Н	G	Н	G						G	Н	Y	Y
HRCSRI0001_002	Sava	Sava	Ν		2	2	2	2	Ν	2	G	5	Н	G	Н	G						G	Н		Y
HRCSRI0001_003	Sava	Sava	Ν		2	2		2	Ν	2	G	5	Н	G	Н	G						G	Н		Y
HRCSRI0001_004	Sava	Sava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCSRI0001_005	Sava	Sava	Ν		2	2		2	Ν	2	G	4	Н	G	Н	G						G	Н		Y
HRCSRI0001_006	Sava	Sava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCSRI0001_007	Sava	Sava	Ν		2	2		2	Ν	2	G	5	Н	G	Н	G						G	Н		Y
HRCSRI0001_008	Sava	Sava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCSRI0001_009	Sava	Sava	Н		3	3		3	Ν	2	G	4	Н	G	М	G						G	М	Y	Y
HRCSRI0001_010	Sava	Sava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y
HRCSRI0001_011	Sava	Sava	Н		3	2	2	3	Ν	2	G	4	Н	G	М	G						G	М	Y	Y
HRCSRI0001_021	Sava	Sava	Ν		2	2		2	Y	2	G	2	Н	G	Н	G						G	Н	-	-
HRCSRN0001_01 2	Sava	Sava	Ν		2	2	2	2	Ν	2	G	4	Н	G	Н	G						G	Н		Y
HRCSRN0001_01 3	Sava	Sava	Н					-	Ν	2	G	5	М	F	М							F	М		Y
HRCSRN0001_01 4	Sava	Sava	Н		2	3		3	Ν	2	G	4	Н	G	Н	G						G	Н	Y	Y
HRCSRN0001_01 5	Sava	Sava	Н		3	3		3	Ν	2	G	5	Н	G	Н	G						G	Н	Y	Y
HRCSRN0001_01 6	Sava	Sava	Н					-	N	2	G	5	М	G	М	G						G	М		Y
HRCSRN0001_01 7	Sava	Sava	Н					-	Ν	2	G	5	М	G	М	G						G	М		Y

						gical Q lemen	Quality Its	7	SI	ons	s	TIAL		fo	or prio			L STA ces (a		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
HRCSRN0001_01 8	Sava	Sava	Н		4	2		4	N	2	G	4	Н	G	Н	G						G	Н	Y	Y
HRCSRN0001_01	Sava	Sava	N		2	3		3	N	2	G	3	Н	G	Н	G						G	Н		
HRCSRN0001_02	Sava	Sava	N					-	N	2	G	2	М	G	М	G						G	М	-	-
HRCSRI0005_001	Una	Una	Ν		3	2		3	Ν	2	G	3	Н	G	Н	G						G	Н	Y	Y
HRCSRI0005_002	Una	Una	Ν		3	2		3	Y	2	G	3	Н	G	М	G						G	М		
HRCSRI0005_003	Una	Una	Ν		4	2		4	Y	2	G	4	Н	G	М	G						G	М		
HRCSRI0005_004	Una	Una	Ν					-	Y	2	G	2	М	G	L	G						G	L	-	-
HRCSRI0005_005	Una	Una	Ν					-	Y	1	G	1	L	G	L	G						G	L	-	-
HRCSRI0005_006	Una	Una	Ν					-	Y	1	G	2	М	G	М	G						G	М	-	-
HRCSRN0005_00 7	Una	Una	N		2	2		2	Y	1	G	2	Н	G	Н	G						G	Н	-	-
BABOS_1B	Bosna	BA_BOS_1B	Ν					-	Ν	1														-	-
BABOS_2B	Bosna	BA_BOS_2B	Ν					-	Ν	5		3		F								F		-	-
BABOS_3	Bosna	BA_BOS_3	Ν					-	Ν	5		3		F								F		-	-
BABOS_4	Bosna	BA_BOS_4	Ν					I	Ν	5		4		F								F		-	-
BABOS_5	Bosna	BA_BOS_5	Ν					-	Ν	4		4		G		G						G		-	-
BABOS_6	Bosna	BA_BOS_6	Ν					-	Ν	5		5		F								F		-	-
BABOS_7	Bosna	BA_BOS_7	Ν					-	Ν	5		2		F								F		-	-
BA_RS_BOS_1A	Bosna	BA_RS_BOS_1A	Ν		3	2	2	3		3	G	3	М	F	М							F	М	-	-
BA_RS_BOS_1C	Bosna	BA_RS_BOS_1C	Ν		3	2	2	3		3	G	3	М	F	М							F	М	-	-
BA_RS_BOS_2A	Bosna	BA_RS_BOS_2A	Ν		2	2	2	2		3	G	3	М	F	М							F	М	-	-

					Biolog E	gical Q lemen		,	SI	ions	s	TIAL		fo				L STA ces (ar		fidenc	e)	US			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
BADR_5B	Drina	BA_DR_5B	Р					-	Ν	5				G		G						G		-	-
BADR_6	Drina	BA_DR_6	Ν					-	Ν	5		2		F								F		-	-
BA_RS_DR_1	Drina	BA_RS_DR_1	Р		2	2	2	2		3	G			F	М							F	М	-	-
BA_RS_DR_2	Drina	BA_RS_DR_2	Н					-																-	-
BA_RS_DR_3A	Drina	BA_RS_DR_3A	Ν					-																-	-
BA_RS_DR_3B	Drina	BA_RS_DR_3B	N					-																-	-
BA_RS_DR_4A	Drina	BA_RS_DR_4A	Н					-																-	-
BA_RS_DR_4B	Drina	BA_RS_DR_4B	Η			-	-	-			-		-											-	-
BA_RS_DR_5A	Drina	BA_RS_DR_5A	Н		2	2	2	2			G													-	-
BA_RS_DR_7	Drina	BA_RS_DR_7	Р		2	2	2	2		3	G			F	М							F	М	-	-
BA_RS_DR_8	Drina	BA_RS_DR_8	N			-	-	-			-		-											-	-
BA_RS_Dr_LIM_ 1	Lim	BA_RS_Dr_LIM_1	Н		2	2	2	2		3	G			F	М							F	М	-	-
BA_RS_Dr_LIM_ 2	Lim	BA_RS_Dr_LIM_2	Н					-																-	-
BA_RS_Dr_LIM_ 3	Lim	BA_RS_Dr_LIM_3	N					-																-	-
BA_RS_Dr_LIM_ 4	Lim	BA_RS_Dr_LIM_4	N					-																-	-
BA_RS_Una_SAN _1	Sana	BA_RS_Una_SAN_1	Ν		2	2	2	2		3	G	3	М	F	М							F	М	-	-
BA_RS_Una_SAN _2A	Sana	BA_RS_Una_SAN_2A	Ν					-																-	-
BA_RS_Una_SAN _2B	Sana	BA_RS_Una_SAN_2B	Ν					-																-	-
BA_RS_Una_SAN _4B	Sana	BA_RS_Una_SAN_4B	Ν					-																-	-

						gical (lemer	Quality Its	7	IS	ions	s	TIAL		fo				L STA	ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
BA_RS_Una_SAN _4C	Sana	BA_RS_Una_SAN_4C	Ν		2	2	2	2		3	G	2	М	G	М	G						G	М	-	-
BA_RS_Una_SAN 5	Sana	BA_RS_Una_SAN_5	Ν					-																-	-
BAUNA_SAN_2C	Sana	BA_UNA_SAN_2C	Ν					-	Ν	2		2		G		G						G		-	-
BAUNA_SAN_3	Sana	BA_UNA_SAN_3	Ν					-	Y	2		2		G		G						G		-	-
BAUNA_SAN_4A	Sana	BA_UNA_SAN_4A	Ν					-	Ν	2		2		G		G						G		-	-
BA_BD_SA_1B	Sava	BA_BD_SA_1B	Р		3	2	3	3		3	G													-	-
BA_RS_SA_1A	Sava	BA_RS_SA_1A	Р		2	2	2	2		3	G			F	М							F	М	-	-
BA_RS_SA_1D	Sava	BA_RS_SA_1D	Р					-																-	-
BA_RS_SA_2B	Sava	BA_RS_SA_2B	Р		2	2	2	2		3	G													-	-
BA_RS_SA_3	Sava	BA_RS_SA_3	Р		2	2	2	2		3	G			F	М							F	М	-	-
BASA_1C	Sava	BA_SA_1C	Р					-	Ν	5				F								F		-	-
BASA_2A	Sava	BA_SA_2A	Н					-	Ν	5				G		G						G		-	-
BA_RS_UNA_1	Una	BA_RS_UNA_1	Ν		2	2	2	2		3	G	3	М	F	М							F	М	-	-
BA_RS_UNA_2A	Una	BA_RS_UNA_2A	Ν					-		3	G	3	М	G	М	G						G	М	-	-
BA_RS_UNA_2B	Una	BA_RS_UNA_2B	Ν					-																-	-
BAUNA_2C	Una	BA_UNA_2C	Ν					-	Ν	2		2		G		G						G		-	-
BAUNA_3	Una	BA_UNA_3	Р					-	Ν	3				G		G						G		-	-
BAUNA_4	Una	BA_UNA_4	Ν					-	Y	2		2		G		G						G		-	-
BA_RS_VRB_1	Vrbas	BA_RS_VRB_1	Р		3	2	2	3		3	G			F	М							F	М	-	-
BA_RS_VRB_2	Vrbas	BA_RS_VRB_2	Р		2	2	2	2		2	G			G	М	G						G	М	-	
BA_RS_VRB_3	Vrbas	BA_RS_VRB_3	Р					-																-	-

						gical Q lemen	Quality ts	,	IS	ions	s	TIAL		fo				L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
BA_RS_VRB_4A	Vrbas	BA_RS_VRB_4A	Н		2	2	2	2		3	G			G	М	G						G	М	-	-
BAVRB_4B	Vrbas	BA_VRB_4B	Н					-	Ν	5				G		G						G	\vdash	-	-
BAVRB_5	Vrbas	BA_VRB_5	Н					-	Ν	5				F								F		-	-
BAVRB_6	Vrbas	BA_VRB_6	Ν					-	Ν	5		2		F								F		-	-
BAVRB_7	Vrbas	BA_VRB_7	Ν					-	Ν	5		2		F								F		-	-
BAVRB_8	Vrbas	BA_VRB_8	Ν					-	Ν	4		4		G		G						G		-	-
MEIBAR_1	Ibar	Ibar	Ν					-	Y	4		4	L	F	L							F	L	-	-
MEIBAR_2	Ibar	Ibar	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
MELIM_1	Lim	Lim	Ν					-	Y	3		3	L	F	L							F	L	-	-
MELIM_2	Lim	Lim	Ν					-	Y	2		3	L	F	L							F	L	-	-
MELIM_3	Lim	Lim	Ν					-	Y	2		2	L	F	L							F	L	-	-
MEPIV_1	Piva	Piva	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
MEPIV_2	Piva	Piva	Р					-	Ν	2		2	L	G	L	G						G	L	-	-
METAR_1	Tara	Tara	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
METAR_2	Tara	Tara	Р					-				2	L	G	L	G						G	L	-	-
METAR_3	Tara	Tara	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
METAR_4	Tara	Tara	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
METAR_5	Tara	Tara	Ν					-	Y	2		2	L	G	L	G						G	L	-	-
RSBEG	Begej	Begej od DTD Banatska Palanka- Novi Bečej do Tise	Р		5	3		5		5	F	3	М	G	М	G						G	М	-	-
RSDR_1_A	Drina	Drina od ušća u Savu do ušća Lešnice	Р	2	3	2		3		2	F	3	М	G	М	G						G	М	-	-
RSDR_1_B	Drina	Drina od ušća Lešnice do ušća reke Radalj	Р		3	3		3		2	G	3	М											-	-

38

						gical (lemer)uality its		IS	ions	s	TIAL		fo				L STA		fidenc	e)	NS			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSDR_1_C	Drina	Drina od ušća reke Radalj do brane HE Zvornik	Р		4	3		4		2	G	4	М											-	-
RSDR_2	Drina	Akumulacija Zvornik	Р		4	4	3	4		2	G	4	М											-	-
RSDR_3_A	Drina	Drina od akumulacije Zvornik do ušća Ljuboviđe	Ν		2	2		2		2	G	2	М											-	-
RSDR_3_B	Drina	Drina od ušća Ljuboviđe do ušća Rogačice	Ν		2	2		2		2	G	2	М											-	-
RSDR_3_C	Drina	Drina od ušća Rogačice do brane HE Bajina Bašta	Р		4	2		4		2	F	4	М	G	М	G						G	М	-	-
RSDR_4	Drina	Akumulacija Bajina Bašta do državne granice	Р		4	4	3	4		2	G	4	М											-	-
RSCAN_BP- KAR_1	DTD kanal Bački Petrovac- Karavukovo	DTD kanal Bački Petrovac- Karavukovo od triangla Bački Petrovac do uliva kanala Drže	А		4	3		4		2	G	4	L											-	-
RSCAN_BP- KAR_2	DTD kanal Bački Petrovac- Karavukovo	DTD kanal Bački Petrovac- Karavukovo od kanala Drža do triangla Karavukovo	А		4	3		4		4	F	4	М	G	М	G						G	М	-	-
RSCAN_BP-NB_1	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od ušća u Dunav do Karaša	А		2	2	3	3		3	F	3	М	G	М	G						G	М	-	-
RSCAN_BP-NB_2	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od Karaša do Moravice	A		5			5		3	F	5	L	G	М	G						G	М	-	-
RSCAN_BP-NB_3	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od Moravice do Brzave	А		5			5		4	F	5	L											-	-
RSCAN_BP-NB_4	DTD kanal Banatska	DTD kanal Banatska Palanka-Novi Bečej od Brzave do hidročvora Botoš	А		5			5		4	F	5	L											-	-

						gical (lemer)uality its	7	SI	suo		IIAL		fo			MICA 1bstan		ATUS	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
	Palanka-Novi Bečei																								
RSCAN_BP-NB_5	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od hidročvora Botoš do triangla Zrenjanin	А		5			5		2	G	5	L											-	-
RSCAN_BP-NB_6	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od triangla Zrenjanin do triangla Jankov most	А		3	3		3		5	F	3	М											-	-
RSCAN_BP-NB_7	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od triangla Jankov Most do triangla sa DTD Kikindskim kanalom	А		3	5		5		2	F	3	М	G	М	G						G	М	-	-
RSCAN_BP-NB_8	DTD kanal Banatska Palanka-Novi Bečej	DTD kanal Banatska Palanka-Novi Bečej od triangla sa DTD Kikindskim kanalom do hidročvora Novi Bečej	А		4	4		4		3	F	4	М											-	-
RSCAN_BEC- BOG 1	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo Kanal od hidročvora Bečej do ušća Krivaje	А		4	4		4		4	F	4	L	G	М	G						G	М	-	-
RSCAN_BEC- BOG_2	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od ušća Krivaje do triangla Vrbas	А		4	4		4		2	G	4	М											-	-
RSCAN_BEC- BOG_3	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od triangla Vrbas do triangla Savino Selo	А		4	4		4		2	G	4	L											-	-
RSCAN_BEC- BOG_4	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od triangla Savino Selo do triangla Kosančić	А		4	4		4		5	F	4	L											-	-
RSCAN_BEC- BOG_5	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od triangla Kosančić do triangla Odžaci	А		3	3		3		2	F	3	М	G	М	G						G	М	-	-

						gical (Elemer	Quality nts	7	SI	suo	~	IIAL		fo	or prio		MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSCAN_BEC- BOG_6	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od triangla Odžaci do triangla Karavukovo	А		4	4		4		4	F	4	м											-	-
RSCAN_BEC- BOG_7	DTD kanal Bečej-Bogojevo	DTD kanal Bečej-Bogojevo od triangla Karavukovo do brodske prevodnce Bogojevo	А		4	4		4		3	F	4	М											-	-
RSCAN_BEZ-BAJ	DTD kanal Bezdan-Baja	DTD kanal Bezdan-Baja od ustave Šbešfok do državne granice sa Mađarskom	А	4	2	2	3	4		3	G	3	М	G	М	G						G	М	-	-
RSCAN_KOS- MS_1	DTD kanal Kosančić-Mali Stapar	DTD kanal Kosančić-Mali Stapar_1	А		4	2	3	4		4	F	4	М	G	М	G						G	М	-	-
RSCAN_KOS- MS_2	DTD kanal Kosančić-Mali Stapar	DTD kanal Kosančić-Mali Stapar_2	А		4			4		4	F	4	L											-	-
RSCAN_NS-SS_1	DTD kanal Novi Sad- Savino Selo	DTD kanal Novi Sad-Savino Selo od hidročvora Novi Sad do DTD kanal Bački Petrovac-Karavukovo	А		5	3	4	5		5	F	5	М											-	-
RSCAN_NS-SS_2	DTD kanal Novi Sad- Savino Selo	DTD kanal Novi Sad-Savino Selo od DTD kanal Bački Petrovac- Karavukovo do trangla Savino Selo	А		4			4		3	F	4	М	G	М	G						G	М	-	-
RSCAN_ODZ- SO_1	DTD kanal Odžaci-Sombor	DTD kanal Odžaci-Sombor od triangla Odžaci do triangla Prigrevica	А		5	2	3	5		2	F	5	М	G	М	G						G	М	-	-
RSCAN_ODZ- SO_2	DTD kanal Odžaci-Sombor	DTD kanal Odžaci-Sombor od triangla Prigrevica do uliva Mostonge	А		5	3		5		2	G	5	М											-	-
RSCAN_PR-BEZ	DTD kanal Prigrevica- Bezdan	DTD kanal Prigrevica-Bezdan	А		5	3		5		2	G	5	М											-	-
RSCAN_VR- BEZ_1	DTD kanal Vrbas-Bezdan	DTD kanal Vrbas-Bezdan od triangla Vrbas do hidročvora Vrbas	А		5	3	4	5		5	F	5	М	G	М	G						G	М	-	-

						gical (lemer)uality its	7	S	suo		IIAL		fo				L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSCAN_VR- BEZ_2	DTD kanal Vrbas-Bezdan	DTD kanal Vrbas-Bezdan od hidročvora Vrbas do triangla Mali Stapar	А		5	3		5		2	G	5	М											-	-
RSCAN_VR- BEZ_3	DTD kanal Vrbas-Bezdan	DTD kanal Vrbas-Bezdan od triangla Mall Stapar do uliva Glavni kanal 221	А		5	3		5		4	F	5	L											-	-
RSCAN_VR- BEZ_4	DTD kanal Vrbas-Bezdan	DTD kanal Vrbas-Bezdan od uliva Glavni Kanal 221 do triangla Sombor	А		5	3		5		2	G	5	L											-	-
RSCAN_VR- BEZ_5	DTD kanal Vrbas-Bezdan	DTD kanal Vrbas-Bezdan od triangla Sombor do brodske prevodnice Bezdan	А	4	5	3	2	5		3	G	5	М	G	М	G						G	М	-	-
RSCAN_KIK_1	DTD Kikindski kanal	DTD Kikindski kanal od triangla Kanal Banatska Palanka-Novi Bečej do uliva Šećeranskog kanala	А		3			3		4	F	3	L											-	-
RSCAN_KIK_2	DTD Kikindski kanal	DTD Kikindski kanal od uliva Šećeranskog kanala do Zlatice	А		3	3	2	3		4	F	3	М	G	М	G						G	М	-	-
RSIB_1	Ibar	Ibar od ušća u Zapadnu Moravu do Mataruga (ušće Petreva	Ν	3	3	3		3		3	F	3	М	G	М	G						G	М	-	-
RSIB_2	Ibar	Ibar od Mataruga do ušća Jošanice	Ν		2	3		3		3	F	3	М	G	М	G						G	М	-	-
RSIB_3_A	Ibar	Ibar od ušća Jošanice do ušća Bervenice	Ν		3			3		5	F	3	М											-	-
RSIB_3_B	Ibar	Ibar od ušća Bervenice do ušća Kaznovske	N		3	3		3		4	F	3	L	F	М							F	М	-	-
RSIB_3_C	Ibar	Ibar od ušća Kaznovske do ušća Sitnice	Ν		3			3		5	F	3	L											-	-
RSIB_4	Ibar	Ibar od ušća Sitnice do brane Pridvorica	Ν		3			3		2	G	4	L											-	-
RSIB_5_A	Ibar	Akumulacije Pridvorica	Р		3			3		2	G	3	L											-	-
RSIB_5_B	Ibar	Akumulacije Gazivode	Р		3			3		4	G	3	L											-	-

						gical (lemer)uality 1ts	7	SI	ions	S	TIAL		fo				L STA			e)	SU'			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSIB_6	Ibar	Ibar uzvodno od akumulacije Gazivode do državne granice	Ν		1	2		2		3	F	2	М	G	М	G						G	М	-	-
RSJMOR_1	Južna Morava	Južna Morava od sastava sa Z. Moravom do ušća Ribarske reke	Ν		4	3		4		3	F	4	М	F	М							F	М	-	-
RSJMOR_2_A1	Južna Morava	Južna Morava od ušća Ribarske reke do ušća Moravice	Ν		4			4		4	F	4	М											-	-
RSJMOR_2_A2	Južna Morava	Južna Morava od ušća Moravice do ušća Katunske reke	Ν		2	4		4		4	F	4	М	G	М	G						G	М	-	-
RSJMOR_2_B	Južna Morava	Južna Morava od ušća Katunske reke do ušća Nišave	Ν		4			4		5	F	4	М											-	-
RSJMOR_3_A	Južna Morava	Južna Morava od ušća Nišave do ušća Krajkovačke reke	Ν		3			3		2	G	3	М											-	-
RSJMOR_3_B	Južna Morava	Južna Morava od ušća Krajkovačke reke do ušća Toplice	Ν		3	3		3		3	F	3	М	G	М	G						G	М	-	-
RSJMOR_4_A	Južna Morava	Južna Morava od ušća Toplice do ušća Jablanice	Ν		2	3		3		3	F	3	М	G	М	G						G	М	-	-
RSJMOR_4_B	Južna Morava	Južna Morava od ušća Jablanice do ušća Vlasine	N		4			4		5	F	4	М											-	-
RSJMOR_4_C	Južna Morava	Južna Morava od ušća Vlasine do ušća Kopašničke reke	Ν		4			4		5	F	4	М											-	-
RSJMOR_5	Južna Morava	Južna Morava od ušća Kopašničke reke do ušća Vrle	Р		4	5		5		3	F	4	М	G	М	G						G	М	-	-
RSJMOR_6_A	Južna Morava	Južna Morava od ušća Vrle do ušća Korbevačke reke	Р		4			4		2	G	4	М											-	-
RSJMOR_6_B	Južna Morava	Južna Morava od ušća Korbevačke do ušća Trebešinjske	N		4			4		2	G	4	М											-	-
RSJMOR_6_C	Južna Morava	Južna Morava od ušća Trebešinjske do sastava Binačke Morave i Moravice	N		4	4		4		4	F	4	М	F	М							F	М	-	-
RSLIM_1	Lim	Lim od državne granice sa BiH do ušća Uvca	Ν		4	2		4		2	G	4	М											-	-

						gical (lemer)uality its		s	ons		TAL		fo	or prio		MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSLIM_2	Lim	Lim od ušća Uvca do brane HE Potpeć	Р		4	3	2	4		2	G	4	М											-	-
RSLIM_3	Lim	Akumulacija Potpeć	Р		4	2		4		2	G	4	М											-	-
RSLIM_4_A	Lim	Lim od akumulacije Potpeć do ušća Mileševke	Ν		3	2		3		2	G	3	М											-	-
RSLIM_4_B	Lim	Lim od ušća Mileševke do ušća Zebuđe	Ν		2	2		2		2	F	2	М	G	М	G						G	М	-	_
RSLIM_4_C	Lim	Lim od ušća Zebuđe do ušća Slatinske reke	Ν		2	2		2		2	G	2	М											-	-
RSLIM_4_D	Lim	Lim od ušća Slatinske reke do državne granice sa Crnom Gorom	N		3	2		3		2	G	3	М											-	-
RSNIS_1_A	Nišava	Nišava od ušća u Južnu Moravu do ušća Rujničke reke	Ν	3	4	5		5		4	F	5	М	G	М	G						G	М	-	-
RSNIS_1_B	Nišava	Nišava od ušća Rujničke reke do ušća Kutinske reke	Р		4	4		4		3	F	4	М	G	М	G						G	М	-	-
RSNIS_1_C	Nišava	Nišava od ušća Kutinske reke do ušća Studene	Ν		4	3		4		5	F	4	М											-	-
RSNIS_2	Nišava	Nišava kroz Sićevačku klisuru, od ušća Studene do ušća Crvene reke	Р		3	2		3		3	G	3	М	G	М	G						G	М	-	-
RSNIS_3_A	Nišava	Nišava od ušća Crvene reke do ušća Koritničke reke	Ν		3	2		3		5	F	3	М											-	-
RSNIS_3_B	Nišava	Nišava od ušća Koritničke reke do ušća Temštice	Ν		2	2		2		5	F	2	М											-	-
RSNIS_3_C	Nišava	Nišava od ušća Temštice do ušća Jerme	Ν		3	2		3		2	G	3	М											-	-
RSNIS_3_D	Nišava	Nišava od ušća Jerme do ušća Gaberske reke	Ν		3	2		3		2	G	3	М											-	-
RSNIS_3_E	Nišava	Nišava od ušća Gaberske reke do državne granice sa Bugarskom	Ν		3	3		3		2	F	3	М	G	М	G						G	М	-	-

						gical (Elemei	Quality nts	7	IS	suo	8	TIAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSCAN_PLBEG	Plovni Begej	DTD Plovni Begej od hidročvora Klek do državne granice sa Rumunijom	A	4	3	1	3	4		5	F	3	М	G	М	G						G	М	-	-
RSSA_1	Sava	Sava od ušća u Dunav do ušća Kolubare	Р	5	3	3	4	5		4	F	4	М	F	М							F	М	-	-
RSSA_2	Sava	Sava od ušća Kolubare do STAC Km 74+000	Ν		2	2	3	3		2	G	3	М											-	-
RSSA_3	Sava	Sava od STAC 74000 do Cerskog obodnog kanala	Ν		3	2	3	3		2	G	3	М											-	-
RSSA_4	Sava	Sava od ušća Cerskog obodnog kanala do ušća potoka Kamičak	Ν	5	3	2	3	5		2	F	3	М	G	М	G						G	М	-	-
RSSA_5	Sava	Sava od ušća potoka Kamičak do ušća kanala Manđelos	Ν		3	3	3	3		2	G	3	М											-	-
RSSA_6	Sava	Sava od ušća kanala Manđelos do ušća Drine	Ν		3	3		3		2	G	3	М											-	-
RSSA_7	Sava	Sava od ušća Drine do državne granice sa Republikom Hrvatskom	Ν	5	2	2	3	5		3	F	3	М	G	М	G						G	М	-	-
RSTAM_1	Tamiš	Tamiš od ustave Pančevo do ustave Opovo	Р	3	3	3		3		3	F	3	М	G	М	G						G	М	-	-
RSTAM_2	Tamiš	Tamiš od ustave Opovo do ustave Tomaševac	Р		3	3		3		2	G	3	М											-	-
RSTAM_3	Tamiš	Tamiš od od ustave Tomaševac do ušća Glavnog kanala (Oređ-Bele Bare-Sutjeska)	Р		4	3		4		4	F	3	М											-	-
RSTAM_4	Tamiš	Tamiš od ušća Glavnog kanala (Oređ-Bele Bare-Sutjeska) do ušća glavnog kanala Lanka	Р		4	3		4		3	F	3	М											-	-
RSTAM_5	Tamiš	Tamiš od ušća glavnog kanala Lanka do Državne granice sa Rumunijom	Р	4	4	3		4		3	F	3	М	G	М	G						G	М	-	-
RSTIM_1	Timok	Timok od ušća u Dunav do Bregova (duž državne granice)	Р	5	4	4		5		3	F	4	М	F	М							F	М	-	-

						gical (Elemer	Quality Its	7	SI	ions	s	TIAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSTIM_2	Timok	Timok od Bregova do ušća Tabakovačkog potoka	Ν		3			3		2	G	3	М										i İ	-	-
RSTIM_3	Timok	Tabakovačka klisura do ušća Borske reke	Р		3	4		4		4	F	4	М	F	М							F	М	-	-
RSTIM_4	Timok	Timok od ušća Borske reke do sastava Belog i Crnog Timo	Ν		4	4		4		5	F	4	М	G	М	G						G	М	-	-
RSTIS_1	Tisa	Tisa od ušća u Dunav do ušća Jegričke	N	4	3	3	3	4		3	F	3	М	G	М	G						G	М	-	-
RSTIS_2	Tisa	Tisa od ušća Jegričke do brane Novi Bečej	Ν		3	3	3	3		2	G	3	М											-	-
RSTIS_3	Tisa	Tisa od brane Novi Bečej do ušća Šika	Р	3	3	3	3	3		3	F	3	М	G	М	G						G	М	-	-
RSTIS_4	Tisa	Tisa ušća Šika do ušća kanala S-V-0	Р		3	3	3	3		2	G	3	М											-	-
RSTIS_5	Tisa	Tisa od ušća kanala S-V-0 do državne granice sa Mađarskom	Р	2	3	3	3	3		3	F	3	М	G	М	G						G	М	-	-
RSVMOR_1	Velika Morava	Velika Morava od ušća u Dunav do Ljubičevskog mosta	Р		4	3		4		2	F	4	М	F	М							F	М	-	-
RSVMOR_2_A	Velika Morava	Velika Morava od Ljubičevskog mosta do ušća Jasenice	Ν		4	3	4	4		3	F	4	М	F	М							F	М	-	-
RSVMOR_2_B	Velika Morava	Velika Morava od ušća Jasenice do ušća Resave	Ν		4	2		4		2	G	4	М											-	-
RSVMOR_3_A	Velika Morava	Velika Morava od ušća Resave do ušća Lepenice	Ν		2	4		4		2	G	4	М											-	-
RSVMOR_3_B	Velika Morava	Velika Morava od ušća Lepenice do ušća Belice	N		3	2		3		4	F	3	М	G	М	G						G	М	-	-
RSVMOR_3_C	Velika Morava	Velika Morava od ušća Belice do ušća Brestovačkog potoka	N		4	2		4		2	G	4	М											-	-
RSVMOR_3_D	Velika Morava	Velika Morava od ušća Brestovačkog potoka do ušća Crnice	N		3	2		3		3	F	3	М											-	-
RSVMOR_3_E	Velika Morava	Velika Morava od ušća Crnice do ušća Jovanovačke reke	Ν		3	3		3		3	F	3	М											-	-

					Bioloş E	gical (Jemer		7	S	ons		TAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RSVMOR_3_F	Velika Morava	Velika Morava od ušća Jovanovačke reke uzvodno	N		3	2		3		2	G	3	М											-	-
RSZMOR_1_A	Zapadna Morava	Zapadna Morava od sastava sa J. Moravom do ušća Pepeljuše	N		4	4		4		3	F	4	М	G	М	G						G	М	-	-
RSZMOR_1_B	Zapadna Morava	Zapadna Morava ušća Pepeljuše do ušća Mijajlovačke reke	N		3	2		3		3	F	3	L											-	-
RSZMOR_1_C	Zapadna Morava	Zapadna Morava ušća Mijajlovačke reke do ušća Dubokog potoka	N		3	2		3		4	F	3	М											-	-
RSZMOR_1_D	Zapadna Morava	Zapadna Morava ušća Dubokog potoka do ušća Ibra	N		3	2		3		3	F	3	М											-	-
RSZMOR_2_A	Zapadna Morava	Zapadna Morava od ušća Ibra do ušća Ivkovskog potoka	N		2			2		3	F	3	М	F	М							F	М	-	-
RSZMOR_2_B	Zapadna Morava	Zapadna Morava od ušća Ivkovskog potoka do ušća Šemernice	N		3			3		2	G	3	L											-	-
RSZMOR_2_C	Zapadna Morava	Zapadna Morava od ušća Šemernice do ušća Kamenice	Р		4			4		2	G	4	М											-	-
RSZMOR_3_A	Zapadna Morava	Zapadna Morava od ušća Kamenice do brane HE Međuvršje	N		4	3		4		4	F	4	М											-	-
RSZMOR_3_B	Zapadna Morava	Akumulacija HE Međuvršje	Р		4	2		4		3	F	4	М											-	-
RSZMOR_3_C	Zapadna Morava	Akumulacijema HE Ovčar Banja od brane do ušća Vrnčanske reke	Р		4	3		4		4	F	4	М											-	-
RSZMOR_3_D	Zapadna Morava	Akumulacijema HE Ovčar Banja od ušća Vrnčanske reke do ušća Suvodola	Р		4	3		4		4	F	4	М											-	-
RSZMOR_3_E	Zapadna Morava	Akumulacijema HE Ovčar Banja od ušća Suvodola uzvodno	Р		4	3	4	4		4	F	4	М											-	-
RSZMOR_4	Zapadna Morava	Zapadna Morava uzvodno od akumulacije HE Ovčar Banja	N		4	3		4		3	F	4	М	G	М	G						G	М	-	-
ROLW10-1_B1	Arges	Ac. Vidraru	Н		-	-	2	2	Ν	1	G	2	М	G	L	G	L					G	L	Ν	Ν

						gical (Elemer)uality its	7	S	ons		LIAL		fe			MICA 1bstan		ATUS nd con	fidenc	e)	US			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ROLW10-1_B2	Arges	Arges - sector intrare Ac. Oesti - amonte confluenta Valsan	Н		-	-	2	2	N	1	G	2	М	G	Н	G	Н					G	Н	N	Ν
ROLW10-1_B3	Arges	Arges: sector amonte confluenta Valsan - intrare Ac. Prundu(am. confluenta Raul Doamnei)	Н		-	-	2	2	N	1	G	2	М	G	Н	G	Н					G	Н	N	N
ROLW10-1_B4	Arges	Arges: sector intrare Ac. Prundu (Pitesti) - aval Ac. Golesti	Н		-	-	3	3	Ν	2	G	3	L	G	М	G	М					G	М	Y	Ν
ROLW10-1_B5	Arges	Ac. Zavoiul Orbului	Н		-	-	2	2	Ν	2	G	2	М	G	L	G	L					G	L	Ν	Ν
ROLW10-1_B7	Arges	Ac. Mihailesti	Н		-	-	3	3	Ν	2	G	3	L	G	L	G	L					G	L	Y	Ν
RORW10-1_B1	Arges	Arges: sector izvor - intrare Ac. Vidraru si afluentii	Ν	3	1	2	-	3	Ν	1	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW10-1_B2	Arges	Arges: sector aval Ac. Vidraru - intrare Ac. Oesti	Н		1	1	-	1	Ν	1	G	3	М	G	L	G	L					G	L	Ν	Y
RORW10-1_B3	Arges	Arges: sector aval Ac. Golesti - intrare Ac. Zavoiul Orbului	Ν	2	2	-	1	2	Ν	2	G	2	Н	G	М	G	М					G	М	N	Ν
RORW10-1_B4A	Arges	Arges: sector aval Ac. Zavoiul Orbului - av. Ac. Frontala Ogrezeni	Ν	2	2	-	1	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW10-1_B5	Arges	Arges: sector aval Ac. Frontala Ogrezeni - intrare Ac. Mihailesti	Ν	4	1	-	1	4	Ν	2	G	4	Н	G	Н	G	Н					G	Н	Y	Ν
RORW10-1_B6	Arges	Arges: sector aval Ac. Mihailesti - amonte confluenta Dambovita	Н	2	1	-	1	2	N	2	G	2	М	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW10-1_B7	Arges	Arges: sector amonte confluenta Dambovita - confluenta Dunare	Н	3	2	-	1	3	N	3	G	3	М	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ROLW3-1-44- 33_B4	Barcau	Barcau - Ac.Suplacu de Barcau	Н	-	-	-	2	2	N	3	G	3	L	G	L	G	L					G	L	Y	N
RORW3-1-44- 33_B1	Barcau	Barcau - izvor - cnf. Toplita + Afluenti	Ν		1	1	-	1	N	2	G	2	L	G	М	G	М					G	М	N	Ν
RORW3-1-44- 33_B2A	Barcau	Barcau - cnf. Toplita - cnf. Groapa	Н	2	1	1	-	2	N	2	G	2	М	G	Н	G	Н					G	Н	N	Ν

48

						gical (lemer	Quality Its	,	SI	ions	s	TIAL		fo			MICA ubstan				e)	N			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW3-1-44- 33 B3A	Barcau	Barcau - cnf. Groapa - am. Ac.Suplacu de Barcau	N	2	1	1	1	2	N	2	G	2	Н	G	М	G	М					G	М	N	N
RORW3-1-44- 33 B5	Barcau	Barcau - baraj Suplacu de Barcau - cnf. Bistra	N	2	2	2	2	2	N	2	G	2	Н	G	Н	G	Н					G	Н	N	N
RORW3-1-44- 33 B6	Barcau	Barcau - cnf. Bistra - frontiera	N	2	1	4	1	4	N	3	G	4	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
RORW5-1_B1	Bega	Bega - izvor-cf. Bega Poienilor + afluenti	N	2	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	N	N
RORW5-1_B2	Bega	Bega - cf. Bega Poienilor-cf. Chizdia	Ν	2	1	1	1	2	Ν	2	G	2	Н	F	Н	F	Н	F	Н	G	Н	F	Н	Y	Ν
RORW5-1_B3	Bega	Bega - cf. Chizdia-cf. Behela	Н	2	1	-	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW5-1_B4	Bega	Bega - cf. Behela-frontiera	Α	2	2	-	1	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW12-1-78_B1	Birlad	Barlad - izvoare - confl. Garboveta	Ν	3	2	3	-	3	Y	3	G	3	Н	G	Н	G	Н			G		G	Н	Y	Ν
RORW12-1-78_B2	Birlad	Barlad - confl. Garboveta - confl. Crasna	Н		2	1	-	2	Ν	3	G	3	М	G	Н	G	Н			G		G	Н	Y	N
RORW12-1-78_B3	Birlad	Barlad - confl. Crasna - confl. Siret (include si derivatia Munteni - Tecucel)	Н	1	2	-	2	2	N	3	G	3	М	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
ROLW12-1-53_B3	Bistrita	Lac Izvoru Muntelui	Н	-	-	-	1	1	Ν	2	G	2	L	G	М	G	М					G	М	Ν	Ν
ROLW12-1-53_B5	Bistrita	Lac Batca Doamnei	Н	-	-	-	1	1	Ν	2	G	2	L	G	Н	G	Н					G	Н	Ν	Ν
ROLW12-1-53_B7	Bistrita	Lac Agrement Bacau	Н	-	-	-	1	1	Y	2	G	2	L	G	L	G	L					G	L	Ν	Ν
RORW12-1-53_B1	Bistrita	Bistrita (izv - cf Neagra)	Ν	2	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW12-1-53_B2	Bistrita	Bistrita (cf Neagra - ac Izvorul Muntelui)	Ν	3	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW12-1-53_B4	Bistrita	Bistrita (baraj Izv Muntelui - ac Pangarati	Ν	2	1	3	-	3	Ν	2	G	3	Н	G	М	G	М					G	М	Y	N
RORW12-1-53_B6	Bistrita	Bistrita (baraj Batca Doamnei - ac Racova)	Ν	2	1	2	-	2	N	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
ROLW12-1-82_B1	Buzau	Acumularea Siriu	Н		-	-	1	1	Ν	2	G	2	М	G	Н	G	Н					G	Н	Ν	Ν

						gical (Clemer	Quality Its	7	SI	SUO	8	TIAL		fo	or prio			L STA		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ROLW12-1-82_B2	Buzau	Acumularea Candesti	Н		-	-	1	1	N	1	G	2	М	G	L	G	L					G	L	N	Ν
RORW12-1-82_B1	Buzau	Buzau_IzvAc. Siriu_Si_Afluentii	Ν		1	2	-	2	Y	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW12-1-82_B2	Buzau	Buzau_Ac. Siriu_Cf. Basca	Ν		1	2	-	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW12-1-82_B3	Buzau	Buzau_Cf. Basca_Ac. Candesti	Ν		1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW12-1-82_B4	Buzau	Buzau_Ac. Candesti_Buzau	Ν		2	2	1	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW12-1-82_B5	Buzau	Buzau_Buzau_Cf. Costei	Ν		2	2	1	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW12-1-82_B6	Buzau	Buzau_Cf. Costei_Cf. Siret	Ν	1	1	2	1	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW15-1- 10B_B1	Canal Dunare Marea Neagra 1	Canalul Dunarea Marea Neagra 1	А		2		1	2	Ν	2	G	2	Н	G	М	G	М			G		G	М	N	Ν
RORW15-1- 10B_B2	Canal Dunare Marea Neagra 2 - Canal Poarta Alba - Marea Neagra	Canalul Dunare Marea Neagra 2 - CPAMN	A		2		2	2	N	2	G	2	Н	G	Н	G	Н			G		G	Н	N	N
RORW3-1_B1	Crisul Alb	Crisul Alb - izvor - am. Ac.Mihaileni + Afluenti	Ν	2	1	2	-	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW3-1_B2	Crisul Alb	Crisul Alb - Ac.Mihaileni - am. Ac.Mihaileni - baraj Mihaileni + Afluent	N		1	3	-	3	N	3	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW3-1_B3	Crisul Alb	Crisul Alb - baraj Mihaileni - cnf. Tebea	N	1	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW3-1_B4	Crisul Alb	Crisul Alb - cnf. Tebea - cnf. Zimbru	Ν	2	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW3-1_B5	Crisul Alb	Crisul Alb - cnf. Zimbru - cnf. Chisindia	N	2	1	4	1	4	Ν	2	G	4	Н	G	Н	G	Н					G	Н	Y	Ν
RORW3-1_B6	Crisul Alb	Crisul Alb - cnf. Chisindia - cnf. Cigher	N	2	1	1	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	N	Ν
RORW3-1_B7	Crisul Alb	Crisul Alb - cnf. Cigher - frontiera	Ν	2	2	3	1	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν

						gical (Clemer	Quality Its	7	IS	ions	s	TIAL		fo			MICA ubstan				e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW3-1-42_B1	Crisul Negru	Crisul Negru - izvor - cnf. Valea Mare + Afluent	н	2	2	1	-	2	N	2	G	2	М	G	Н	G	н					G	Н	N	N
RORW3-1-42_B2	Crisul Negru	Crisul Negru - cnf. Valea Mare - cnf. Nimaiesti	N	2	1	4	-	4	N	2	G	4	Н	G	Н	G	Н					G	Н	Y	N
RORW3-1-42_B3	Crisul Negru	Crisul Negru - cnf. Nimaiesti - cnf. Soimul	N	2	1	1	1	2	N	2	G	2	Н	G	Н	G	Н					G	Н	N	N
RORW3-1-42_B4	Crisul Negru	Crisul Negru - cnf. Soimul - cnf. Valea Noua	Ν	2	1	1	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	N	N
RORW3-1-42_B5	Crisul Negru	Crisul Negru - cnf. Valea Noua - frontiera	N	2	1	3	1	3	N	2	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	N
ROLW3-1-44_B5	Crisul Repede	Crisul Repede - Ac.Tileagd + Afluent	Н	-	-	-	2	2	Ν	2	G	2	М	G	L	G	L					G	L	N	Ν
RORW3-1-44_B1	Crisul Repede	Crisul Repede - izvor - cnf. Sacuieu	N	2	2	4	-	4	Ν	3	G	4	Н	G	Н	G	Н					G	Н	Y	Ν
RORW3-1-44_B2	Crisul Repede	Crisul Repede - cnf. Sacuieu - cnf. Iad	N	2	1	3	-	3	N	2	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW3-1-44_B3	Crisul Repede	Crisul Repede - Def.Crisul Repede - cnf. Iad - av. Def.Crisul Repede + Afluent	N	2	1	3	-	3	N	2	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW3-1-44_B4	Crisul Repede	Crisul Repede - av. Def.Crisul Repede - am. Ac.Lugasu	Ν	4	1	2	1	4	Ν	2	G	4	Н	G	Н	G	Н					G	Н	Y	N
RORW3-1-44_B6	Crisul Repede	Crisul Repede - baraj Tileagd - cnf. Bonor	N	2	1	2	1	2	N	2	G	2	Н	G	М	G	М					G	М	N	N
RORW3-1-44_B7	Crisul Repede	Crisul Repede - cnf. Bonor - frontiera	Н	2	1	1	1	2	Ν	2	G	2	М	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ROLW11-1_B1	Ialomita	Acumularea Bolboci	Н		-	-	2	2	Ν	1	G	2	М	G	L	G	L					G	L	Ν	N
ROLW11-1_B2	Ialomita	Acumularea Pucioasa	Н		-	-	1	1	Ν	1	G	2	М	G	Н	G	Н					G	Н	Ν	Ν
ROLW11-1_B3	Ialomita	Acumularea Dridu	Н		-	-	1	1	Ν	2	G	2	М	G	L	G	L					G	L	Ν	Ν
RORW11-1_B1	Ialomita	Ialomita_IzvAc. Bolboci	Ν		1	2	-	2	Y	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW11-1_B2	Ialomita	Ialomita_Ac. Bolboci_Cf. Ialomicioara I	Ν		1	2	-	2	N	2	G	2	Н	G	Н	G	Н					G	Н	N	Ν

						gical Q lemen	Quality Its	7	IS	ions	s	TIAL		fo	or prio			L STA ces (a		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW11-1_B3	Ialomita	Ialomita_Cf. Ialomicioara I_Ac. Pucioasa	N		1	2	-	2	N	2	G	2	Н	G	L	G	L					G	L	N	N
RORW11-1_B4	Ialomita	Ialomita_Ac. Pucioasa_Priboiu	Ν		1	2	-	2	Ν	2	G	2	Н	G	М	G	М					G	М	N	Ν
RORW11-1_B5	Ialomita	Ialomita_Priboiu_Cf. Izvoru	Ν		1	3	-	3	Ν	3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW11-1_B6	Ialomita	Ialomita_Cf. Izvoru_Ac. Dridu	Ν		2	2	1	2	Ν	2	G	2	Н	G	М	G	М					G	М	Ν	Ν
RORW11-1_B7	Ialomita	Ialomita_Ac. Dridu_Ion Roata	Ν		3	2	1	3	Ν	3	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW11-1_B8	Ialomita	Ialomita_Ion Roata_Slobozia	Ν		2	2	1	2	Ν	3	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW11-1_B9	Ialomita	Ialomita_Slobozia_Cf. Dunare	Ν	1	2	2	2	2	Ν	3	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
ROLW13-1-15_B2	Jijia	Jijia CONTINUA - ac. Ezer	Н		-	-	2	2	Ν	2	G	2	L	G	М	G	М			G		G	М	Ν	Ν
RORW13-1-15_B1	Jijia	Jijia - sector izvor - ac. Ezer	Ν	2	2	2	2	2	Y	3	G	3	М	G	М	G	М			G		G	М	Y	Ν
RORW13-1-15_B3	Jijia	Jijia - sector aval ac. Ezer - confl. Sitna	Ν	2	2	4	2	4	Ν	3	F	4	Н	G	М	G	М			G		G	М	Y	N
RORW13-1-15_B4	Jijia	Jijia - sector confl. Sitna - confl. Prut	Α	2	2	-	2	2	Ν	3	G	3	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW13-1-15_B5	Jijia	Jijia Veche	Н	-	3	-	3	3	Y	3	G	3	L	G	L	G	L			G		G	L	Y	Ν
ROLW7-1_B120	Jiu	Ac. Isalnita	Н		-		1	1	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
ROLW7-1_B26	Jiu	Ac. Vadeni + TgJiu	Н		-		2	2	Ν	3	G	3	Н	G	L	G	L					G	L	Y	Ν
ROLW7-1_B56	Jiu	Ac. Turceni	Н		-		2	2	Ν	2	G	2	М	G	М	G	М					G	М	Ν	Ν
RORW7-1_B121	Jiu	Jiu Acum. Isalnita- Bratovoiesti	Ν	2	2	2	1	2	Ν	2	G	2	Η	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW7-1_B14	Jiu	Jiu confl. Jiu de Est-Acum. Vadeni	Ν	2	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW7-1_B148	Jiu	Jiu Bratovoiesti-confl. Dunarea	Ν	2	1	2	2	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW7-1_B1A	Jiu	JIU DE VEST - izvor- loc. Paroseni si afl. Garbov, Buta, Lazar, Paraul Morii, Pilug, Sterminos, Valea de Pesti, Balomir, Mierleasa, Braia, Baleia	N	2	1	2	-	2	N	2	G	2	Н	G	Н	G	Н					G	Н	N	N

						gical (Elemer	•	7	IS	ions	s	TIAL		fo			MICA 1bstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW7-1_B28	Jiu	Jiu Tg. Jiu-Rovinari	N	2	1	2	-	2	N	2	G	2	Н	G	Н	G	Н					G	Н	N	Ν
RORW7-1_B4	Jiu	Jiu de Vest - loc. Paroseni-confl. Jiul de Est	N	2	1	3	-	3	Ν	3	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW7-1_B51	Jiu	Jiu Rovinari-Ac. Turceni	Ν	3	1	1	1	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW7-1_B57	Jiu	Jiu Acum. Turceni-Acum. Isalnita	Ν	2	2	2	1	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW12-1-40_B1	Moldova	Moldova (izv - cf Sadova)	Ν	2	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW12-1-40_B2	Moldova	Moldova (cf Sadova - cf Suha)	Ν	2	1	3	-	3	Ν	2	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW12-1-40_B3	Moldova	Moldova (cf Suha - cf Vier)	Н	2	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW12-1-40_B4	Moldova	Moldova (cf Vier - cf Siret)	Ν	1	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW4-1_B1	Mures	Mures, izvor - conf. Carbunele Negru	Ν	2	1	3	-	3	Ν	2	G	3	М	G	L	G	L			G		G	L	Y	Ν
RORW4-1_B10	Mures	Mures, conf. Soimos - conf. Zadarlac	Н		1	-	1	1	Ν	2	G	2	М	G	М	G	М			G		G	М	Ν	Ν
RORW4-1_B11	Mures	Mures, conf. Zadarlac - Romanian/Hungarian Border	Н	1	2	1	1	2	Ν	2	G	2	М	G	М	G	М			G		G	М	N	N
RORW4-1_B2	Mures	Mures, conf. Carbunele Negru - conf. Lazarea	Н		1	1	-	1	Ν	2	G	2	М	G	L	G	L			G		G	L	Ν	N
RORW4-1_B3	Mures	Mures, conf. Lazarea - conf.Toplita	Ν		1	3	-	3	Ν	3	G	3	Μ	G	L	G	L			G		G	L	Y	Ν
RORW4-1_B4	Mures	Mures, conf. Toplita - conf. Pietris	Ν	2	1	3	-	3	Ν	3	G	3	М	G	L	G	L			G		G	L	Y	Ν
RORW4-1_B5	Mures	Mures, conf. Pietris - conf. Petrilaca	Ν	2	1	3	1	3	Ν	2	G	3	М	G	L	G	L			G		G	L	Y	Ν
RORW4-1_B6	Mures	Mures, conf. Petrilaca - conf. Aries	Н		1		2	2	Ν	2	G	2	М	G	М	G	М	F	М	G	М	F	М	Y	Ν
RORW4-1_B7	Mures	Mures, conf. Aries - conf. Cerna	Н	2	1	1	2	2	Ν	2	G	2	М	G	М	G	М	F	М	F	М	F	М	Y	Ν
RORW4-1_B8	Mures	Mures, conf. Cerna - conf. Dobra	Н	2	1		3	3	Ν	3	G	3	Н	G	М	G	М			G		G	М	Y	Ν
RORW4-1_B9	Mures	Mures, conf. Dobra - conf. Soimos	Ν	1	2	1	3	3	Y	2	G	3	Н	G	М	G	М			G		G	М	Y	Ν
ROLW8-1_B10	Olt	OLT-ac.Ionesti, Zavideni, Dragasani, Strejesti, ArcestiDraganesti si av Frunzaru	Н		-	-	1	1	N	2	G	3	L	G	Н	G	Н					G	Н	N	Y

						gical (Elemer			SI	SUO	s	TIAL		fo			MICA 1bstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ROLW8-1_B11	Olt	OLT -acumulare Rusanesti si Izbiceni	Н		-	-	1	1	N	2	G	3	L	G	Н	G	Н					G	Н	N	Y
ROLW8-1_B7	Olt	OLT -am. Ac. Voila, Vistea, Arpas, Scorei Arig si aval ac. Racovita	Н		-	-	2	2	N	3	G	3	L	G	М	G	М					G	М	Y	Y
ROLW8-1_B9	Olt	OLT -am.ac.Robesti, Cornet, Gura Lotrului, TurnuRm Valcea, Raureni, Govora si av Babeni	Н		-	-	1	1	N	3	G	3	L	G	Н	G	Н					G	Н	Y	Y
RORW8-1_B1	Olt	OLT - izv aval confl.Sipos si afluentii (Medias si Sipos)	Ν	2	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	N	Ν
RORW8-1_B12	Olt	OLT -aval acumulare Izbiceni confluenta Dunare	Ν		3	-	2	3	Ν	2	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW8-1_B2	Olt	OLT - aval confluenta Sipos - aval confluenta Cad	Н	3	1	1	-	3	Ν	3	G	3	М	G	Н	G	Н					G	Н	Y	Ν
RORW8-1_B3	Olt	OLT -aval confluenta Cad aval confluenta Mitaci	Н	3	2	1	-	3	Y	3	G	3	М	G	Н	G	Н					G	Н	Y	Ν
RORW8-1_B4	Olt	OLT -aval confluenta Mitaci aval confluenta Talomir	Ν	2	1	2	-	2	Ν	3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW8-1_B5	Olt	OLT -aval confluenta Talomir aval confluenta Raul Negru	Ν		1	2	-	2	Ν	3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW8-1_B6	Olt	OLT -aval confluenta Raul Negru amonte acumulare Voila	Н		2	1	-	2	Ν	2	G	3	М	G	Н	G	Н					G	Н	Y	Ν
RORW8-1_B8	Olt	OLT -aval acumulare Racovita - amonte acumulare Robesti	Ν		2	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
ROLW13-1_B2	Prut	Prut CONTINUA - ac. Stanca - Costesti	Н		-	-	1	1	Ν	2	G	2	М	G	Н	G	Н			G		G	Н	N	N
RORW13-1_B1	Prut	Prut - sector am. ac. Stanca	Ν	3	1	-	1	3	Y	2	G	3	Н	G	Н	G	Н			G		G	Н	Y	Ν
RORW13-1_B3	Prut	Prut - sector av. ac. Stanca - conf. Solonet	Ν	4	1	2	1	4	Y	2	G	4	Н	G	Н	G	Н			G		G	Н	Y	Ν
RORW13-1_B4	Prut	Prut - sector conf. Solonet - confl. Jijia	Н	1	1	-	1	1	Ν	2	G	2	Н	G	Н	G	Н			G		G	Н	Ν	Ν

						gical (Elemer	Quality Its	7	IS	ons	S	IIAL		fo					ATUS nd con	fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW13-1_B5	Prut	Prut - sector confl. Jijia - confl. Dunarea	Н	3	2	1	1	3	N	2	G	3	М	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
ROLW12-1_B1	Siret	Lac Rogojesti	Н	-	-	-	1	1	Ν	3	G	3	L	G	М	G	М					G	М	Y	Ν
ROLW12-1_B3	Siret	Lac Bucecea	Н	-	-	-	1	1	Ν	3	G	3	L	G	Н	G	Н					G	Н	Y	Ν
ROLW12-1_B6	Siret	Siret (am. Galbeni - av. Beresti)	Н	-	-	-	1	1	Ν	2	G	2	L	G	L	G	L					G	L	Ν	Ν
ROLW12-1_B8	Siret	Lac Calimanesti	Н	-	-	-	1	1	Ν	2	G	2	L	G	L	G	L					G	L	Ν	Ν
RORW12-1_B0	Siret	Siret (granita - lac Rogojesti)	Ν	2	2	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW12-1_B2	Siret	Siret (ac Rogojesti - ac Bucecea)	Ν	3	1	3	-	3	Y	2	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW12-1_B4	Siret	Siret (baraj Bucecea - cf Moldova)	Н	2	1	3	-	3	Ν	3	G	3	Н	G	М	G	М					G	М	Y	Ν
RORW12-1_B5	Siret	Siret (cf Moldova - ac Galbeni)	Ν	3	2	-	2	3	Ν	2	G	3	Н	G	L	G	L					G	L	Y	Ν
RORW12-1_B7	Siret	Siret (baraj Beresti - ac Calimanesti)	Ν	3	1	-	1	3	Ν	2	G	3	Н	G	L	G	L					G	L	Y	Ν
RORW12-1_B9	Siret	Siret (baraj Calimanesti - cf Dunare)	Ν	2	2	2	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW2-1_B1	Somes	Somesul Mare -izvoare-cf.Feldrisel si afluenti	Ν	2	1	2	-	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW2-1_B2	Somes	Somesul Mare -cf.Feldrisel-cf.Sieu	Ν	2	2	3	-	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
RORW2-1_B3	Somes	Somesul Mare -cf.Sieu-Dej	Н	3	2	1	-	3	Ν	3	G	3	М	G	Н	G	Н					G	Н	Y	Ν
RORW2-1_B4	Somes	Somes -Dej-cf.Apa Sarata	Ν	2	3	3	-	3	Y	3	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	Ν
RORW2-1_B5	Somes	Somes-cf.Apa Sarata-cf.Lapus	Ν	3	2	2	2	3	Ν	2	G	3	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW2-1_B6	Somes	Somes-cf.Lapus-cf.Homorodu Nou	Ν		2	2	2	2	Ν	2	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW2-1_B7	Somes	Somes-cf.Homorodu Nou-granita cu Ungaria	N		2	2	2	2	N	3	G	3	Н	G	Н	G	Н	F	Н	F	Η	F	Н	Y	Ν
ROLW4-1-96_B2	Tarnava Mare	Tarnava Mare, ac. Zetea	Н		1	-	2	2	Ν	1	G	2	М	G	М	G	М			G		G	М	Ν	Ν
RORW4-1-96_B1	Tarnava Mare	Tarnava Mare, izvor - ac. Zetea si afluentii	Ν	2	1	2	-	2	Y	2	G	2	М	G	L	G	L			G		G	L	N	Ν

						gical (lemer	Quality Its	7	IS	suo	8	IIAL		fo	or prio		MICA ubstan			fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW4-1-96_B3	Tarnava Mare	Tarnava Mare, ac. Zetea - conf. Bradesti si Desag	Ν	2	1	2	-	2	N	2	G	2	М	G	М	G	М			G		G	М	N	N
RORW4-1-96_B4	Tarnava Mare	Tarnava Mare, conf. Bradesti - conf. Cris	Н		1	1		1	N	2	G	2	М	G	М	G	М			G		G	М	N	N
RORW4-1-96_B5	Tarnava Mare	Tarnava Mare, conf. Cris - conf. Paucea	Ν	2	1		2	2	Ν	2	G	2	М	G	М	G	М			G		G	М	N	N
RORW4-1-96_B6	Tarnava Mare	Tarnava Mare, conf. Paucea - conf. Vorumloc	Н	2	1		2	2	Ν	2	G	2	М	G	L	G	L			G		G	L	N	Ν
RORW4-1-96_B7	Tarnava Mare	Tarnava Mare, conf. Vorumloc - conf. Mures	Н	2	2		2	2	Ν	2	G	2	М	G	М	G	М	F	М	F	М	F	М	Y	Ν
ROLW5-2_B1	Timis	Timis - ac. Trei Ape	Н		-	-	2	2	Ν	2	G	2	L	G	Н	G	Н					G	Н	Ν	Ν
RORW5-2_B1	Timis	Timis - izvoare-ac. trei ape	Ν	2	1	2	-	2	Ν	2	G	2	М	G	М	G	М					G	М	Ν	Ν
RORW5-2_B2	Timis	Timis - ac. trei ape-cf. fenes	Н	1	1	1	-	1	Ν	1	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW5-2_B3	Timis	Timis - cf. fenes-cf. sebes	Ν	2	1	3	-	3	Ν	2	G	3	Н	G	Н	G	Η					G	Н	Y	Ν
RORW5-2_B4	Timis	Timis - cf. sebes-cf. tapia	Ν	2	1	2	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW5-2_B5	Timis	Timis - cf. tapia-evacuare gc lugoj	Н	2	1	-	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW5-2_B6	Timis	Timis - evacuare gc lugoj-cf. timisana	Н	2	2	-	1	2	Ν	3	F	3	L	G	Н	G	Н	F	Н	G	Н	F	Н	Y	Ν
RORW5-2_B7	Timis	Timis - cf. timisana-frontiera	Ν	2	2	-	1	2	Ν	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν
RORW1-1_B1	Tisa	Tisa	Ν	2	1	2	-	2	Ν	2	G	2	Η	G	Н	G	Η	F	Н	F	Н	F	Н	Y	Ν
RORW12-1-69_B1	Trotus	Trotus (izvor - cf Valea Rece)	Ν		1	3	-	3	Ν	3	G	3	Η	G	Н	G	Н					G	Н	Y	Ν
RORW12-1-69_B2	Trotus	Trotus (cf Valea Rece - cf Urmenis)	Ν		1	3	-	3	Ν	3	G	3	Η	G	М	G	М					G	М	Y	Ν
RORW12-1-69_B3	Trotus	Trotus (cf Urmenis - cf Tazlau)	Ν		1	3	-	3	Ν	3	G	3	Η	G	М	G	М					G	М	Y	Ν
RORW12-1-69_B4	Trotus	Trotus (cf Tazlau - cf Siret)	Ν	2	1	-	1	2	Ν	2	G	2	Η	F	Н	F	Н	F	Н	F	Н	F	Н	Y	Ν
RORW9-1_B2	Vedea	Vedea : confluenta Vedita - amonte confluenta Cotmeana	Ν		2	-	1	2	Y	2	G	2	Н	G	Н	G	Н					G	Н	Ν	Ν

						gical Q Clemen	Quality ts		IS	ions	s	TIAL		fo	or prio			L STA ces (a		fidenc	e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
RORW9-1_B3	Vedea	Vedea : confluenta Cotmeana - amonte evacuare Rosiori de Vede	N		2	-	1	2	Y	2	G	2	Н	G	М	G	М					G	М	Ν	N
RORW9-1_B4	Vedea	Vedea : amonte evacuare Rosiori de Vede - confluenta Paraul Cainelui	N		1	3	1	3	Y	3	F	3	Н	G	Н	G	Н					G	Н	Y	N
RORW9-1_B5	Vedea	Vedea : confluenta Paraul Cainelui - amonte evacuare Alexandria	N		1	3	1	3	N	3	G	3	Н	G	Н	G	Н					G	Н	Y	N
RORW9-1_B6	Vedea	Vedea : amonte evacuare Alexandria - amonte confluenta Teleorman	N		1	3	2	3	Y	3	G	3	Н	G	М	G	М					G	М	Y	N
RORW9-1_B7	Vedea	Vedea : confluenta Teleorman - localitate Bujoru	Н		1	-	1	1	N	3	G	3	М	G	L	G	L					G	L	Y	N
RORW9-1_B8	Vedea	Vedea : localitate Bujoru - confluenta Dunare	А		1	-	2	2	N	3	G	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	N
BG1IS100R1027	Iskar	ISKAR RWB1027	Н		2	2	-	2		3	G	3	Н	G	М	G	М					G	М		Ν
BG1IS135R1026	Iskar	ISKAR RWB1026	Ν		3	3	-	3		3	G	3	Н	G	М	G	М					G	М		Ν
BG1IS135R1126	Iskar	ISKAR RWB1126	N		3	3	-	3		3	G	3	Н	G	М	G	М					G	М		
BG1IS135R1226	Iskar	ISKAR RWB1226	Ν		3	3	-	3		1	G	3	Н	G	М	G	М					G	М		
BG1IS135R1326	Iskar	ISKAR RWB1326	Ν	2	3	4	-	4		3	F	4	Н	G	М	G	М					G	М		
BG1IS135R1426	Iskar	ISKAR RWB1426	Ν		3	4	-	4		3	F	4	Н	G	М	G	М					G	М		
BG1IS135R1726	Iskar	ISKAR RWB1726	Ν		3	2	-	3		2	G	3	Н	G	М	G	М					G	М		
BG1IS500L008	Iskar	Dam Pancharevo	Н	-		-	3	3		2	G	3	Н	G	М	G	М					G	М	Ν	Ν
BG1IS700L005	Iskar	Dam Iskar	Н	-	2	-	2	2		2	G	2	Н	G	М	G	М					G	М	Ν	Ν
BG1IS700L1306	Iskar	Dam Kokalyane	Н	-	2	-	2	2		1	G	2	Н	G	М	G	М					G	М	Ν	Ν
BG1IS700R1006	Iskar	ISKAR RWB1006	Ν		3	2	-	3		2	F	3	Н	G	М	G	М					G	М		
BG1IS700R1206	Iskar	ISKAR RWB1206	Ν		3	2	-	3		2	G	3	Н	G	М	G	М					G	М	Ν	Ν
BG1IS789R1104	Iskar	ISKAR RWB1104	Ν		2	2	-	2		3	F	3	Н	G	М	G	М					G	М		
BG1IS900R1003	Iskar	ISKAR RWB1003	Ν		2	1	-	2		2	F	3	Н	G	М	G	М					G	М		

					c	gical (lemer	Quality ts	7	SI	ions	s	TIAL		fo				L STA		fidenc	e)	N			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
BG1NV200R1001	Nishava	NISHAVA RWB1001	Ν		2	2	-	2		2	G	2	Н	G	М	G	М					G	М	Ν	Ν
BG10G100R014	Ogosta	OGOSTA RWB14	Н	4	3	3	-	4		2	G	4	Н	G	Μ	G	Μ					G	Μ		
BG10G307R1013	Ogosta	OGOSTA RWB1013	Ν		1	2	-	2		2	G	2	Н	G	Μ	G	М					G	М	Ν	Ν
BG10G307R1213	Ogosta	OGOSTA RWB1213	Ν		3	2	-	3		2	F	3	Н	G	Μ	G	М					G	М		
BG10G307R1313	Ogosta	OGOSTA RWB1313	Ν		1	3	-	3		1	F	3	Н	G	Μ	G	Μ					G	Μ		
BG10G700L004	Ogosta	Dam Ogosta	Н			-	2	2		2	F	3	Н	G	Μ	G	М					G	М		
BG10G789R1001	Ogosta	OGOSTA RWB1001	Ν	2	2	2	-	2		2	F	3	Н	G	Μ	G	М					G	М		
BG10G789R1401	Ogosta	OGOSTA RWB1401	Ν		2		-	2		2	F	3	Н	G	Μ	G	М					G	М	Ν	
BG10G789R1501	Ogosta	OGOSTA RWB1501	Ν		2	2	-	2		2	F	3	Н	G	М	G	М					G	М	Ν	
BG10G789R1601	Ogosta	OGOSTA RWB1601	Ν		2	1	-	2		2	F	3	Н	G	М	G	М					G	М	Ν	
BG1WO100R001	Timok	TIMOK WORWB01	Ν		4	3	-	4		3	F	4	Н	F	М	F	М					F	М	Y	
BG1YN130R1029	Yantra	YANTRA RWB1029	Н	3	3	2	-	3		2	G	3	Н	F	М	G	М					F	М		
BG1YN307R1027	Yantra	YANTRA RWB1027	Н		3	2	-	3		3	G	3	Н	G	М	G	М					G	М		Ν
BG1YN307R1127	Yantra	YANTRA RWB1127	Н		2	3	-	3		2	G	3	М	G	М	G	М					G	М		Ν
BG1YN700R1017	Yantra	YANTRA RWB1017	Ν		3	3	-	3		3	G	3	Н	G	М	G	М					G	М		Ν
BG1YN900R1015	Yantra	YANTRA RWB1015	Ν		3	3	-	3		3	F	3	Н	G	М	G	М					G	М		
BG1YN900R1215	Yantra	YANTRA RWB1215	Ν		1	1	-	1		2	G	2	Н	G	М	G	М					G	М	Ν	Ν
BG1YN900R1415	Yantra	YANTRA RWB1415	Ν		2		-	2		2	G	2	Н	G	М	G	М					G	М	Ν	Ν
UALAR01	Latorica	Latorica	Ν					-																-	-
UALAR02	Latorica	Latorica	Ν					-																-	-
UALAR03	Latorica	Latorica	Ν					-																-	-
UALAR04	Latorica	Latorica	Ν					-																-	-

						gical (lemer	Quality Its	,	SI	ions	s	TIAL		fo				L STA		fidenc	e)	NS			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
UALAR05	Latorica	Latorica	Ν					-																-	-
UALAR06	Latorica	Latorica	Ν					-																-	-
UA0201/01	Prut	Prut	Ν					-																-	-
UA0201/02	Prut	Prut	Ν					-																-	-
UA0201/03	Prut	Prut	Ν					-																-	-
UA0201/04	Prut	Prut	Ν					-																-	-
UA0201/05	Prut	Prut	Ν					-																-	-
UA0201/06	Prut	Prut	Ν					-																-	-
UA0201/07	Prut	Prut	Ν					-																-	-
UASr01	Siret	Siret	Ν					-																-	-
UASr02	Siret	Siret	Ν					-																-	-
UASr03	Siret	Siret	Ν					-																-	-
UASr04	Siret	Siret	Ν					-																-	-
UASr05	Siret	Siret	Ν					-																-	-
UASr06	Siret	Siret	Ν					-																-	-
UATISR01	Tisza	Tisa	Ν					-																-	-
UATISR02	Tisza	Tisa	Ν					-																-	-
UATISR03	Tisza	Tisa	Ν					-																-	-
UATISR04	Tisza	Tisa	Ν					-																-	-
UATISR05	Tisza	Tisa	Ν					-																-	-
UATISR06	Tisza	Tisa	Ν					-																-	-
UATISR07	Tisza	Tisa	Ν					-																-	-

					Biolog E	gical (lemer		7	S	ons		TAL		fe	or prio			L STA			e)	SU			
Water body code	River	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STAT	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
UATISR08	Tisza	Tisa	Ν					-																-	-
UADUN_IAL_M D_05 (39_05)	Yalpuh	Danube	Р					-																-	-

Status assessment of lakes

				•	gical Q lemen	• •	7	S	ons		TAL		fo	or pria		MICA ubstan				e)	US			
Water body code	Water body name	Water body type	Fish	Benthic invertebrates	Phytobenthos & Macrophytes	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ATOK10500200	Neusiedler See	Ν	2	2	2	2	2	Y	2	G	2	Н	G	Н	G	L	F	Н	G	Н	F	Н	Ν	Ν
HUAIH049	Balaton	Ν	2	2	2	1	2	Ν	1	G	2	Н	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
HUAIH070	Fertő	Ν			3	1	3	Ν	2	F	3	Н	G	Н	G	Н	F	Н	F	Н	F	Н	Y	
HUANS560	Tisza-tó	А		3	3	2	3	Ν	2	F	3	Η	G	Н	G	Н	F	Н	G	Н	F	Н	Y	
ROLW14-1_B7	Razim	Ν	1	1		2	2	Ν	2	G	2	Η	G	Н	G	Н					G	Н	Ν	Ν
UAKUW	Kuhurlui	Ν					-																-	-
UAYAW	Ialpuh	Ν					-																-	-

Status assessment of transitional waters

			Bi	ologic	al Qu	ality l	Eleme	nts	sn	tions	ts	TIAL		fo	r prio		MICA Ibstan				e)	TUS			
Water body code	Water body name	Water body type	Fish	Benthic invertebrates	Angiosperms	Macroalgae	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STAT	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)
ROTT02_B1	Lac Sinoie	Ν		5	-	-	5	5	Ν	2	G	5	М	G	Н	G	Н					G	Н	Y	Ν
ROTT03_B1	Chilia-Periboina	Ν		3	-	-	2	3	Ν	3	G	3	Н	G	Н	G	Н					G	Н	Y	Ν
UADDBS	Black sea	Ν						-																-	-

Status assessment of coastal waters

			Bi	ologic	al Qu	ality I	Eleme	nts	S	suo		TAL		fo				L ST. ices (a			ce)	ß						
Water body code	Water body name	Water body type	Fish	Benthic invertebrates	Angiosperms	Macroalgae	Phytoplankton	Overall Biological Status	Hydromorphology - High Status	General Phys. and Chem. conditions	River Basin Specific pollutants	ECOLOGICAL STATUS/POTENTIAL	Related confidence class	in water	Related confidence class	in water w/o ubiquitous	Related confidence class	in biota	Related confidence class	in biota w/o ubiquitous	Related confidence class	OVERALL CHEMICAL STATUS	Related confidence class	Exemption Art. 4(4)	Exemption Art. 4(5)			
ROCT01_B1	Periboina-Cap Singol	Ν	-	2	-	-	3	3	Ν	3	G	5	Н	G	Н	G	Н					G	Н	Y	Ν			
ROCT01_B2	Mangalia	Н	-	1	-	-	2	2	Ν	3	G	5	Н	G	Н	G	Н					G	Н	Y	Ν			
ROCT02_B1	Cap Singol-Eforie Nord	Н	-	2	-	-	2	2	Ν	3	G	5	Н	G	Н	G	Н					G	Н	Ν	Ν			
ROCT02_B2	Eforie Nord-Vama Veche	Ν	-	2	-	-	3	3	Ν	3	G	5	Н	G	Н	G	Н					G	Н	Ν	Ν			

TRANSBOUNDARY SURFACE WATER BODIES

ANNEX 10

The table provides an overview of the transboundary surface water bodies in the Danube River Basin reported by Danube countries.

Transboundary water bodies are those crossing the border between countries or constituting part of the border between two countries for a certain length. WFD Reporting Guidance 2022 adds that "a water body that is entirely within one Member State but is contiguous with a water body in another country is, for the purposes of this reporting, also considered as a transboundary water body."

The table was prepared within the frame of the IMGIS and MA Expert Groups of the ICPDR to compare the characteristics of water bodies on common river stretches reported by Danube countries, but did not have the harmonisation of neither delineation nor status assessment as objective. It contributed to discuss any differences and to improve the consistency of all maps related to surface water bodies in the DRBMP Update 2021.

The mandate for harmonisation of the delineation and the status of the transboundary surface water bodies is not within the ICPDR, but with bilateral river commissions, in case they exist, or for other forms of bilateral coordination between the neighbouring countries.

Addressing the recommendations from the European Commission in their Report on the Implementation of the WFD and FD (Second RBMPs and First FRMPs) in 2019 on further coordination of transboundary surface water bodies, this table supports Danube countries in receiving an informative overview of transboundary surface water bodies in the Danube River Basin.

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
AT / HU	border crossing	ATOK1001040041 / HUAEP903	Raab / Rába	5.6 / 10.3
AT / HU	border crossing	ATOK1001790039 / HUAEP919	Rabnitz / Répce	9.9 / 39.1
AT / HU	different delineation	ATOK1002140000 / HUAEP903	Raab / Rába	6.8 / 10.3
AT / DE	border crossing	ATOK302340001 / DERW_DEBY_1_F373	Isar	3.4 / 12.9
AT / DE	different delineation	ATOK303070000 / DERW_DEBY_1_F633	Donau	21.5 / 23.3
AT / DE	different delineation	ATOK305340005 / ATOK305340007 / ATOK305340009 / ATOK305340010 / DERW_DEBY_1_F654	Inn	16.5 / 12.5 / 13 / 7.8 / 48.8
AT / DE	different delineation	ATOK305340011 / DERW_DEBY_1_F509	Inn	1.5 / 4.6
AT / DE	same delineation	ATOK305340012 / DERW_DEBY_1_F655	Inn	14.5 / 14.4
AT / DE	same delineation	ATOK307030000 / DERW_DEBY_1_F656	Inn	13.6 / 13.5
AT / DE	different delineation	ATOK307080000 / DERW_DEBY_1_F121	Lech	1 / 2.3
AT / DE	different delineation	ATOK307200001 / DERW_DEBY_1_F640	Salzach	5.1 / 6.5
AT / DE	different delineation	ATOK307200002 / ATOK307200003 / DERW_DEBY_1_F641	Salzach	32.5 / 21.8 / 53.1
AT / SK	different delineation	ATOK411340000 / SKD0016	Donau / Dunaj	7.5 / 11.3
AT / CZ	border crossing	ATOK500010036 / CZDYJ_0100	Thaya / Dyje	28 / 13.9
AT / SK	same delineation	ATOK500020001 / SKM0002	March / Morava	69.3 / 69.1
AT / CZ	border crossing	ATOK501710003 / CZDYJ_0180	Thaya / Dyje	1.5 / 58.6
AT / CZ	border crossing	ATOK501710003 / CZDYJ_0190	Thaya / Dyje	1.5 / 12.5
AT / CZ	same delineation	ATOK501790000 / CZDYJ_1300	Thaya / Dyje	5.6 / 5.7
AT / CZ	different delineation	ATOK501870001 / CZDYJ_0170	Thaya / Dyje	23.3 / 30.2
AT / CZ	border crossing	ATOK501930000 / CZDYJ_0190	Thaya / Dyje	1.7 / 12.5
AT / CZ	border crossing	ATOK501930000 / CZDYJ_0200	Thaya / Dyje	1.7 / 6
AT / CZ	different delineation	ATOK501940000 / CZDYJ_1260	Thaya / Dyje	10.8 / 12.6

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
AT / SI	same delineation	ATOK804000000 / SI43VT10	Mur / Mura	33.6 / 34.1
AT / SI	same delineation	ATOK903770000 / SI3VT197	Drau / Drava	4.1 / 4.3
BA / HR	different delineation	BA_BD_SA_1B / HRCSRI0001_001 / HRCSRI0001_002	Sava	34.8 / 28.8 / 38.5
BA / RS	different delineation	BA_RS_DR_1 / RSDR_1_A / RSDR_1_B / RSDR_1_C	Drina	83.7 / 34.2 / 47.2 / 7.1
BA / RS	different delineation	BA_RS_DR_2 / RSDR_2 / RSDR_3_A	Drina	28.4 / 21.4 / 20.6
BA / RS	different delineation	BA_RS_DR_3A / RSDR_3_A / RSDR_3_B	Drina	43.6 / 20.6 / 39.5
BA / RS	different delineation	BA_RS_DR_3B / RSDR_3_B / RSDR_3_C	Drina	34.1 / 39.5 / 24.3
BA / RS	different delineation	BA_RS_DR_4A / RSDR_4	Drina	23.6 / 23.6
BA / RS	different delineation	BA_RS_Dr_LIM_3 / RSLIM_1	Lim	5.2 / 13.8
BA / RS	different delineation	BA_RS_SA_1A / RSSA_7	Sava	34.3 / 32.7
BA / HR	different delineation	BA_RS_SA_2B / HRCSRI0001_005 / HRCSRI0001_006 / HRCSRI0001_007 / HRCSRI0001_008	Sava	80.4 / 25.6 / 16.5 / 22 / 23.7
BA / HR	different delineation	BA_RS_SA_3 / HRCSRI0001_009 / HRCSRI0001_010 / HRCSRI0001_011	Sava	88.8 / 35.1 / 12.7 / 41.2
BA / HR	different delineation	BA_RS_UNA_1 / HRCSRI0005_001 / HRCSRI0005_002 / HRCSRI0005_003 / HRCSRI0005_004	Una	70.5 / 24.6 / 26.8 / 17.8 / 14.6
BA / HR	different delineation	BA_RS_UNA_2A / HRCSRI0005_004	Una	13.2 / 14.6
BA / HR	different delineation	BASA_1C / HRCSRI0001_002 / HRCSRI0001_003	Sava	68.2 / 38.5 / 37.7
BA / HR	different delineation	BASA_2A / HRCSRI0001_004 / HRCSRI0001_005	Sava	32.3 / 25.1 / 25.6
BA / HR	different delineation	BAUNA_3 / HRCSRI0005_005	Una	73 / 18.3

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
BA / HR	different delineation	BAUNA_4 / HRCSRI0005_006	Una	9.9 / 7.6
BG / RO	different delineation	BG1DU000R001 / RORW14-1_B3	Dunav / Dunarea	466.8 / 540.3
BG / RS	border crossing	BG1NV200R1001 / RSNIS_3_E	Nishava / Nišava	52.2 / 9.9
BG / RS	same delineation	BG1WO100R001 / RSTIM_1	Timok	16.8 / 17.7
CZ / SK	same delineation	CZMOV_1430 / SKM0001	Morava	38.5 / 37.9
HR / RS	same delineation	HRCDRI0001_001 / RSD_09	Dunav	87.8 / 133.9
HR / HU	border crossing	HRCDRI0001_002 / HUAOC755	Dunav / Duna	50.5 / 64
HR / RS	same delineation	HRCDRI0001_002 / RSD_10	Dunav	50.5 / 65
HR / HU	different delineation	HRCDRI0002_004 / HRCDRI0002_005 / HRCDRI0002_006 / HRCDRI0002_007 / HRCDRI0002_008 / HRCDRI0002_009 / HRCDRI0002_010 / HUAEP438	Drava / Dráva	12.8 / 15.3 / 9.5 / 16.6 / 27 / 25.9 / 20.6 / 127.1
HR / HU	different delineation	HRCDRI0002_012 / HUAEP439	Drava / Dráva	19.8 / 6
HR / SI	different delineation	HRCDRI0002_019 / SI3VT970	Drava	15.3 / 8.6
HR / SI	different delineation	HRCDRI0002_020 / SI3VT950	Drava	3.7 / 3
HR / SI	different delineation	HRCDRI0002_021 / SI3VT930	Drava	1.5 / 25.5
HR / SI	different delineation	HRCDRI0002_022 / SI378VT	Drava / Kanal Hidroelektrarne Formin	2 / 16.8
HR / HU	different delineation	HRCDRI0003_001 / HRCDRI0003_002 / HUAEP816	Mura	33.2 / 17.1 / 49.5
HR / SI	different delineation	HRCDRI0003_003 / SI43VT50	Mura	32.3 / 32.4
HR / SI	different delineation	HRCSRI0001_021 / SI1VT913	Sava	4.1 / 22.3
HR / SI	different delineation	HRCSRI0001_021 / SI1VT930	Sava	4.1 / 2.9
HR / SI	different delineation	HRCSRI0004_012 / HRCSRI0004_013 / HRCSRI0004_014 / HRCSRI0004_015 / HRCSRI0004_016 / SI21VT50	Kupa / Kolpa	19.9 / 14.4 / 30.1 / 15 / 17.3 / 84.8

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
HR / SI	different delineation	HRCSRI0004_012 / SI21VT70	Kupa / Kolpa	19.9 / 12
HR / SI	same delineation	HRCSRI0004_017 / SI21VT13	Kupa / Kolpa	21.4 / 21.5
HU / RO	border crossing	HUAEP322 / RORW3-1-44-33_B6	Berettyó / Barcau	74.4 / 44.6
HU / SK	different delineation	HUAEP334 / SKB0001	Bodrog	51.2 / 15.4
HU / SK	different delineation	HUAEP443 / SKD0017	Duna / Dunaj	67.2 / 80.3
HU / SK	different delineation	HUAEP446 / SKD0018	Duna / Dunaj	77.5 / 82.6
HU / RO	border crossing	HUAEP471 / RORW3-1_B7	Fehér-Körös / Crisul Alb	9.7 / 40
HU / RO	different delineation	HUAEP475 / RORW3-1-42_B5	Fekete-Körös / Crisul Negru	20.5 / 47.3
HU / SK	different delineation	HUAEP580 / SKH0004	Hernád / Hornád	68.2 / 64.6
HU / SK	different delineation	HUAEP614 / SKI0004 / SKI0136	Ipoly / Ipeľ	126.5 / 99.5 / 73.3
HU / RO	different delineation	HUAEP784 / RORW4-1_B11	Maros / Mures	22.2 / 90.9
HU / SK	border crossing	HUAEP931 / SKS0003	Sajó / Slaná	52.9 / 46.5
HU / RO	border crossing	HUAEP953 / RORW3-1-44_B7	Sebes-Körös / Crisul Repede	44.5 / 34.3
HU / RO	border crossing	HUAEP971 / RORW2-1_B7	Szamos / Somes	50 / 21.2
HU / UA	different delineation	HUAEQ054 / UATISR07	Tisza	45.6 / 7.8
HU / UA	different delineation	HUAEQ055 / UATISR07	Tisza	21 / 7.8
HU/RS	different delineation	HUAEQ056 / RSTIS_5	Tisza / Tisa	84 / 55.4
HU / SK	different delineation	HUAEQ057 / SKT0001	Tisza / Tisa	110.3 / 5.4
HU / UA	different delineation	HUAEQ057 / UATISR08	Tisza	110.3 / 17.4
MD / RO	different delineation	MD0201/01 / RORW13-1_B1	Prut	19.9 / 139.3
MD / RO	different delineation	MD0201/02 / RORW13-1_B1	Prut	12.7 / 139.3
MD / RO	different delineation	MD0201/03 / RORW13-1_B1	Prut	36.8 / 139.3
MD / RO	different delineation	MD0201/04 / RORW13-1_B1	Prut	2.5 / 139.3
MD / RO	different delineation	MD0201/05 / ROLW13-1_B2	Prut	31 / 18.5
MD / RO	different delineation	MD0201/05 / RORW13-1_B1	Prut	31 / 139.3

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
MD / RO	different delineation	MD0201/06 / ROLW13-1_B2	Prut	15.8 / 18.5
MD / RO	different delineation	MD0201/07 / RORW13-1_B3	Prut	37.7 / 79.1
MD / RO	different delineation	MD0201/08 / RORW13-1_B3	Prut	50.4 / 79.1
MD / RO	different delineation	MD0201/08 / RORW13-1_B4	Prut	50.4 / 124.5
MD / RO	different delineation	MD0201/09 / RORW13-1_B4	Prut	23.3 / 124.5
MD / RO	different delineation	MD0201/10 / RORW13-1_B4	Prut	77.8 / 124.5
MD / RO	different delineation	MD0201/11 / RORW13-1_B4	Prut	19.6 / 124.5
MD / RO	different delineation	MD0201/11 / RORW13-1_B5	Prut	19.6 / 387.7
MD / RO	different delineation	MD0201/12 / RORW13-1_B5	Prut	25.2 / 387.7
MD / RO	different delineation	MD0201/13 / RORW13-1_B5	Prut	179.5 / 387.7
MD / RO	different delineation	MD0201/14 / RORW13-1_B5	Prut	55.2 / 387.7
MD / RO	different delineation	MD0201/15 / RORW13-1_B5	Prut	96.3 / 387.7
ME / RS	border crossing	MEIBAR_1 / RSIB_6	Ibar	21.2 / 17
ME / RS	different delineation	MELIM_1 / RSLIM_4_D	Lim	23.8 / 14.4
RO / UA	different delineation	RORW1-1_B1 / UATISR01	Tisa / Tisza	65.8 / 25
RO / UA	different delineation	RORW1-1_B1 / UATISR02	Tisa / Tisza	65.8 / 64.9
RO / UA	different delineation	RORW1-1_B1 / UATISR03	Tisa / Tisza	65.8 / 5.3
RO / UA	different delineation	RORW13-1_B1 / tbc	Prut	139.3 / -
RO / RS	same delineation	RORW14-1_B1 / RSD_03	Dunarea / Dunav	145.9 / 137.6
RO / RS	different delineation	RORW14-1_B2 / RSD_01	Dunarea / Dunav	100.3 / 17.2
RO / RS	different delineation	RORW14-1_B2 / RSD_02	Dunarea / Dunav	100.3 / 80.4
RO / RS	different delineation	RORW14-1_B3 / RSD_01	Dunarea / Dunav	540.3 / 17.2
RO / UA	different delineation	RORW14-1_B4 / UADB_UA_01	Dunarea / Danube	659.8 / 15.9
RO / UA	different delineation	RORW14-1_B5 / UADB_UA_01	Dunarea / Danube	140.6 / 15.9
RO / UA	different delineation	RORW14-1_B5 / UADB_UA_02	Dunarea / Danube	140.6 / 59.4
RO / UA	same delineation	RORW14-1_B6 / UADB_UA_03	Dunarea / Danube	158.2 / 96.8

Countries	Transboundary category	Water Body Codes	Names	Lengths (km)
RO / RS	border crossing	RORW5-1_B4 / RSCAN_PLBEG	Bega / Plovni Begej	44.7 / 32.5
RO / RS	border crossing	RORW5-2_B7 / RSTAM_5	Timis / Tamiš	90.2 / 13.1
AT / HU	transboundary lake	ATOK10500200 / HUAIH070	Neusiedler See / Fertő	n.a.

INVENTORY OF PROTECTED AREAS

ANNEX 11

Explanations

This inventory only includes water-relevant protection areas covering an area larger than 500 hectar.

Types:

- H = EU Habitat (FFH) Directive
- B = EU Bird Protection Directive
- O = Others (Non EU MS)

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
AT	AT1110137	Neusiedler See - Nordöstliches Leithagebirge	B,H	570.9
AT	AT1122916	Lafnitztal	Н	5.9
AT	AT1126129	Waasen - Hanság	В	30
AT	AT1201A00	Waldviertler Teich-, Heide- und Moorlandschaft	Н	137.2
AT	AT1202000	March-Thaya-Auen	Н	88.6
AT	AT1202V00	March-Thaya-Auen	В	148.1
AT	AT1204000	Donau-Auen östlich von Wien	Н	95
AT	AT1204V00	Donau-Auen östlich von Wien	В	90.9
AT	AT1208A00	Thayatal bei Hardegg	Н	44.3
AT	AT1216000	Tullnerfelder Donau-Auen	Н	175.3
AT	AT1217A00	Strudengau - Nibelungengau	Н	48.2
AT	AT1218000	Machland Süd	Н	16.7
AT	AT1219000	Niederösterreichische Alpenvorlandflüsse	Н	70.2
AT	AT1220000	Feuchte Ebene - Leithaauen	Н	50.8
AT	AT1301000	Nationalpark Donau-Auen (Wiener Teil)	B,H	22.6
AT	AT2101000	Hohe Tauern, Kärnten I	Н	415.8
AT	AT2102000	Nockberge	Н	79.8
AT	AT2105000	Vellacher Kotschna	Н	5.8
AT	AT2108000	Inneres Pöllatal	Н	32
AT	AT2109000	Wolayersee und Umgebung	Н	19.4
AT	AT2112000	Villacher Alpe (Dobratsch)	B,H	23.3
AT	AT2114000	Obere Drau	B,H	10.3
AT	AT2116000	Görtschacher Moos - Obermoos im Gailtal	B,H	12.4
AT	AT2120000	Schütt - Graschelitzen	B,H	23.1
AT	AT2129000	Hohe Tauern, Kärnten II	В	415.8
AT	AT2134000	Mittagskogel - Karawanken Westteil	Н	27
AT	AT2160000	Sattnitz-Ost	Н	7
AT	AT2161000	Kronhofgraben	Н	9
AT	AT2167000	Tscheppaschlucht - Ferlacher Horn	Н	5.5
AT	AT2205000	Pürgschachen-Moos und ennsnahe Bereiche zwischen Selzthal und dem Gesäuseeingang	B,H	16.2
AT	AT2208000	Lafnitztal - Neudauer Teiche	B,H	11.8
AT	AT2210000	Ennstaler Alpen/Gesäuse	B,H	145.2
AT	AT2213000	Steirische Grenzmur mit Gamlitzbach und Gnasbach	B,H	21.9
AT	AT2215000	Teile der Eisenerzer Alpen	Н	43.9
AT	AT2220000	Zirbitzkogel	В	23.1
AT	AT2225000	Demmerkogel-Südhänge, Wellinggraben mit Sulm-, Saggau- und Laßnitzabschnitten und Pößnitzbach	B,H	21.2
AT	AT2226000	Furtner Teich - Dürnberger-Moor	В	10.7
AT	AT2229000	Teile des Steirischen Jogl- und Wechsellandes	В	454.9
AT	AT2229002	Ennstal zwischen Liezen und Niederstuttern	В	25.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
AT	AT2230000	Teile des südoststeirischen Hügellandes inklusive Höll und Grabenlandbäche	B,H	156.6
AT	AT2233000	Raabklamm	B,H	5.6
AT	AT2236000	Ober- und Mittellauf der Mur mit Puxer Auwald, Puxer Wand und Gulsen	Н	13.2
AT	AT2243000	Totes Gebirge mit Altausseer See	B,H	239.6
AT	AT3101000	Dachstein	B,H	145.6
AT	AT3105000	Unterer Inn	B,H	8.7
AT	AT3110000	Ettenau	B,H	6.3
AT	AT3111000	Nationalpark Kalkalpen und Umgebung	B,H	221.1
AT	AT3113000	Untere Traun	В	23.1
AT	AT3114000	Traun-Donau-Auen	B,H	6.6
AT	AT3117000	Mond- und Attersee	Н	61.3
AT	AT3119000	Auwälder am Unteren Inn	Н	5.8
AT	AT3120000	Waldaist und Naarn	Н	38.4
AT	AT3121000	Böhmerwald und Mühltäler	Н	93.5
AT	AT3122000	Oberes Donau- und Aschachtal	Н	71.2
AT	AT3123000	Wiesengebiete und Seen im Alpenvorland	Н	12.6
AT	AT3124000	Wiesengebiete im Freiwald	В	24.1
AT	AT3127000	Eferdinger Becken	Н	13.4
AT	AT3128000	Bäche in den Steyr- und Ennstaler Voralpen	Н	5.1
AT	AT3129000	Wiesengebiete im Mühlviertel	Н	5.7
AT	AT3132000	Machland Nord	Н	11.4
AT	AT3138000	Schluchtwälder der Steyr- und Ennstaler Voralpen	Н	7.7
AT	AT3139000	Unteres Traun- und Almtal	Н	12.5
AT	AT3144000	Goiserer Weißenbachtal	Н	10.6
AT	AT3209022	Salzachauen, Salzburg	В	11.2
AT	AT3210001	Hohe Tauern, Salzburg	B,H	805
AT	AT3211012	Kalkhochalpen, Salzburg	Н	237
AT	AT3223000	Salzachauen, Salzburg	Н	7.4
AT	AT3302000	Vilsalpsee	B,H	18.3
AT	AT3303000	Valsertal	B,H	35.2
AT	AT3309000	Tiroler Lech	B,H	41.4
AT	AT3410000	Gadental	Н	15.4
AT	AT3412000	Verwall	В	121.1
AT	AT3438000	Ifen	Н	24.7
BA	BABardaca	Zasticeno podrucje BARDACA	В	35
BA	BAGromizelj	Zasticeno staniste Gromizelj	0	8.5
BA	BAKozara	Nacionalni park Kozara	0	39.1
BA	BAProkosko jezero	Zasticeno podrucje Prokoško jezero	0	21.2
BA	BASkakavac	Zasticeno podrucje Skakavac	0	14.3

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
BA	BASutjeska	Nacionalni park Sutjeska	0	160.5
BA	BAUna	Zasticeno podrucje Una	0	198
BA	BAVrelo Bosne	Zasticeno podrucje Vrelo Bosne	0	6
BG	BG0000106	Harsovska reka	Н	367.6
BG	BG0000107	Suha reka	Н	624.8
BG	BG0000113	Vitosha	B,H	158.7
BG	BG0000117	Kotlenska planina	Н	149.2
BG	BG0000165	Lozenska planina	Н	13
BG	BG0000166	Vrachanski Balkan	Н	360.3
BG	BG0000168	Ludogorie	Н	594.5
BG	BG0000169	Ludogorie - Srebarna	Н	52.2
BG	BG0000171	Ludogorie - Boblata	Н	48.3
BG	BG0000173	Ostrovche	Н	58.9
BG	BG0000180	Boblata	Н	32.2
BG	BG0000181	Reka Vit	Н	57.2
BG	BG0000182	Orsoya	Н	24.6
BG	BG0000190	Vitata stena	Н	26.3
BG	BG0000199	Tzibar	Н	23
BG	BG0000204	Vardim	Н	11.1
BG	BG0000211	Tvardishka planina	Н	256
BG	BG0000213	Tarnovski visochini	Н	44.3
BG	BG0000214	Dryanovski manastir	Н	29.9
BG	BG0000231	Belenska gora	Н	50.4
BG	BG0000232	Batin	Н	26.8
BG	BG0000233	Studena reka	Н	53
BG	BG0000237	Ostrov Pozharevo	В	9.8
BG	BG0000239	Obnova - Karaman dol	Н	107.5
BG	BG0000240	Studenetz	B,H	280.6
BG	BG0000241	Srebarna	B,H	14.5
BG	BG0000247	Nikopolsko plato	Н	185
BG	BG0000263	Skalsko	Н	21.9
BG	BG0000275	Yazovir Stamboliyski	Н	93.5
BG	BG0000308	Verila	Н	37.5
BG	BG0000313	Rui	Н	16.4
BG	BG0000322	Dragoman	Н	213.6
BG	BG0000332	Karlukovski karst	В	142.2
BG	BG0000334	Ostrov	Н	34.4
BG	BG0000335	Karaboaz	Н	122
BG	BG0000336	Zlatiya	Н	32
BG	BG0000339	Rabrovo	Н	9.1

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
BG	BG0000340	Tzar Petrovo	Н	17.5
BG	BG0000374	Bebresh	Н	68.2
BG	BG0000377	Kalimok - Brashlen	Н	73.3
BG	BG0000396	Persina	Н	223.8
BG	BG0000399	Bulgarka	Н	210.9
BG	BG0000432	Golyama reka	Н	74.5
BG	BG0000494	Tzentralen Balkan	B,H	312.2
BG	BG0000495	Rila	B,H	206.5
BG	BG0000497	Archar	Н	6
BG	BG0000498	Vidbol	Н	13.1
BG	BG0000500	Voynitza	Н	23.1
BG	BG0000503	Reka Lom	Н	14.4
BG	BG0000507	Deleina	Н	22.6
BG	BG0000509	Tzibritza	Н	9.6
BG	BG0000517	Portitovtsi-Vladimirovo	Н	6.6
BG	BG0000518	Vartopski dol	Н	9.9
BG	BG0000521	Makresh	Н	20.6
BG	BG0000522	Vidinski park	Н	15.8
BG	BG0000523	Shishentzi	Н	5.7
BG	BG0000529	Marten-Ryahovo	Н	11.7
BG	BG0000530	Pozharevo - Garvan	Н	63.1
BG	BG0000533	Ostrovi Kozlodui	Н	6.1
BG	BG0000569	Kardam	Н	9.2
BG	BG0000570	Izvorovo - Kraishte	Н	10.8
BG	BG0000572	Rositza - Loznitza	Н	18.1
BG	BG0000576	Svishtovska gora	Н	19.2
BG	BG0000608	Lomovete	Н	324.9
BG	BG0000609	Reka Rositza	Н	14.4
BG	BG0000610	Reka Yantra	Н	139
BG	BG0000611	Yazovir Gorni Dubnik	Н	25.4
BG	BG0000613	Reka Iskar	Н	94.6
BG	BG0000614	Reka Ogosta	Н	12.5
BG	BG0000615	Devetashko plato	Н	150
BG	BG0000616	Mikre	Н	154.5
BG	BG0000617	Reka Palakariya	Н	31.6
BG	BG0000618	Vidima	Н	18.2
BG	BG0000624	Lyubash	Н	12.7
BG	BG0001014	Karlukovo	Н	288.4
BG	BG0001017	Karvav kamak	Н	36.5
BG	BG0001036	Balgarski izvor	Н	26.2

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
BG	BG0001037	Pastrina	Н	35.5
BG	BG0001040	Zapadna stara planina i Predba	Н	2193
BG	BG0001042	Iskarski prolom - Rzhana	Н	226.9
BG	BG0001043	Etropole - Baylovo	Н	191.3
BG	BG0001307	Plana	Н	27.9
BG	BG0001389	Sredna Gora	Н	21.4
BG	BG0001493	Tzentralen Balkan - buffer	Н	867.2
BG	BG0002001	Rayanovtsi	В	132
BG	BG0002002	Zapaden Balkan	В	1467.7
BG	BG0002004	Dolni Bogrov-Kazichene	В	22.5
BG	BG0002005	Ponor	В	314.1
BG	BG0002009	Zlatiata	В	435.4
BG	BG0002017	Complex Belenski Ostrovi	В	66.8
BG	BG0002018	Ostrov Vardim	В	11.7
BG	BG0002024	Ribarnitsi Mechka	В	27.1
BG	BG0002025	Lomovete	В	43.1
BG	BG0002029	Kotlenska planina	В	196.9
BG	BG0002030	Complex Kalimok	В	92.2
BG	BG0002039	Harsovska reka	В	354
BG	BG0002048	Suha reka	В	257.5
BG	BG0002053	Vrachanski Balkan	В	309.2
BG	BG0002062	Ludogorie	В	913.2
BG	BG0002074	Nikopolsko plato	В	222.3
BG	BG0002083	Svishtovsko-Belenska nizina	В	54.4
BG	BG0002084	Palakaria	В	158.3
BG	BG0002085	Chairya	В	14.5
BG	BG0002088	Mikre	В	123.9
BG	BG0002090	Berkovitsa	В	28
BG	BG0002091	Ostrov Lakat	В	11.6
BG	BG0002095	Gorni Dabnik-Telish	В	34
BG	BG0002096	Obnova	В	54.2
BG	BG0002101	Meshtitsa	В	16.3
BG	BG0002102	Devetashko plato	В	78.9
BG	BG0002104	Tsibarsko blato	В	9.1
BG	BG0002109	Vasilyovska planina	В	454.8
BG	BG0002110	Apriltsi	В	19.4
BG	BG0002111	Velchevo	В	23.1
BG	BG0002112	Ruy	В	173.9
CZ	CZ0314024	Šumava	Н	107.1
CZ	CZ0320180	Čerchovský les	Н	22.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
CZ	CZ0323151	Kateřinský a Nivní potok	Н	9.7
CZ	CZ0324026	Niva Nemanického potoka	Н	6.7
CZ	CZ0530146	Králický Sněžník	Н	17.7
CZ	CZ0614131	Údolí Oslavy a Chvojnice	Н	23.4
CZ	CZ0614134	Údolí Jihlavy	Н	8.6
CZ	CZ0620009	Lednické rybníky	Н	6.2
CZ	CZ0620245	Rakovecké údolí	Н	7.6
CZ	CZ0621025	Bzenecká Doubrava - Strážnické Pomoraví	В	117.3
CZ	CZ0621027	Soutok-Tvrdonicko	В	95.8
CZ	CZ0621028	Lednické rybníky	В	6.9
CZ	CZ0621029	Pálava	В	85.4
CZ	CZ0621030	Střední nádrž vodního díla Nové Mlýny	В	10.5
CZ	CZ0624064	Krumlovský les	Н	19.5
CZ	CZ0624068	Strážnická Morava	Н	6.6
CZ	CZ0624070	Hodonínská doubrava	Н	30.3
CZ	CZ0624072	Čertoryje	Н	47.6
CZ	CZ0624095	Údolí Dyje	Н	18.1
CZ	CZ0624096	Podyjí	Н	60.7
CZ	CZ0624099	Niva Dyje	Н	32.5
CZ	CZ0624103	Mušovský luh	Н	5.6
CZ	CZ0624119	Soutok - Podluží	Н	95.8
CZ	CZ0624130	Moravský kras	Н	64.9
CZ	CZ0710161	Království	Н	5.9
CZ	CZ0711018	Litovelské Pomoraví	В	93.2
CZ	CZ0714073	Litovelské Pomoraví	Н	94.6
CZ	CZ0714075	Keprník	Н	18.4
CZ	CZ0714077	Praděd	Н	29.1
CZ	CZ0714085	Morava - Chropyňský luh	Н	32.1
CZ	CZ0714133	Libavá	Н	68.2
CZ	CZ0720033	Semetín	Н	13.1
CZ	CZ0720192	Velká Vela	Н	7.7
CZ	CZ0720422	Valy-Bučník	Н	11
CZ	CZ0720428	Na Koncoch	Н	17.3
CZ	CZ0720435	Podkrálovec	Н	9.6
CZ	CZ0720437	Valentová	Н	5.6
CZ	CZ0724089	Beskydy	Н	634.9
CZ	CZ0724090	Bílé Karpaty	Н	199.2
CZ	CZ0724091	Chřiby	Н	192.3
CZ	CZ0724107	Nedakonický les	Н	15.3
CZ	CZ0724120	Kněžpolský les	Н	5.2

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
CZ	CZ0724121	Nad Jasenkou	Н	7.4
CZ	CZ0724429	Hostýnské vrchy	Н	24
CZ	CZ0724430	Vlárský průsmyk	Н	31.4
DE	DEBW_6927341	Rotachtal	Н	6
DE	DEBW_7226311	Heiden und Wälder zwischen Aalen und Heidenheim	Н	21.8
DE	DEBW_7226441	Albuch	В	73.6
DE	DEBW_7325341	Steinheimer Becken	Н	30
DE	DEBW_7327341	Härtsfeld	Н	32
DE	DEBW_7422441	Mittlere Schwäbische Alb	В	52
DE	DEBW_7425311	Kuppenalb bei Laichingen und Lonetal	Н	17.3
DE	DEBW_7426341	Hungerbrunnen-, Sacken- und Lonetal	Н	9.2
DE	DEBW_7427341	Giengener Alb und Eselsburger Tal	Н	9.9
DE	DEBW_7523311	Münsinger Alb	Н	48.2
DE	DEBW_7524341	Blau und Kleine Lauter	Н	16.3
DE	DEBW_7527341	Donaumoos	Н	9.1
DE	DEBW_7527441	Donauried	В	42.5
DE	DEBW_7621341	Gebiete um Trochtelfingen	Н	7
DE	DEBW_7622341	Großes Lautertal und Landgericht	Н	33.7
DE	DEBW_7623341	Tiefental und Schmiechtal	Н	33
DE	DEBW_7625311	Donau zwischen Munderkingen und Ulm und nördliche Iller	Н	11.6
DE	DEBW_7722311	Glastal, Großer Buchwald und Tautschbuch	Н	35.8
DE	DEBW_7819341	Östlicher Großer Heuberg	Н	8.9
DE	DEBW_7820341	Schmeietal	Н	9.8
DE	DEBW_7820342	Truppenübungsplatz Heuberg	Н	47.4
DE	DEBW_7820441	Südwestalb und Oberes Donautal	В	290.4
DE	DEBW_7821341	Gebiete um das Laucherttal	Н	16.4
DE	DEBW_7823341	Donau zwischen Munderkingen und Riedlingen	Н	14.3
DE	DEBW_7825311	Rot, Bellamonter Rottum und Dürnach	Н	8.4
DE	DEBW_7916311	Baar, Eschach und Südostschwarzwald	Н	22.3
DE	DEBW_7919311	Großer Heuberg und Donautal	Н	83.4
DE	DEBW_7920342	Oberes Donautal zwischen Beuron und Sigmaringen	Н	27
DE	DEBW_7921401	Baggerseen Krauchenwies/Zielfingen	В	7.5
DE	DEBW_7922342	Donau zwischen Riedlingen und Sigmaringen	Н	12.8
DE	DEBW_7923341	Federsee und Blinder See bei Kanzach	Н	28.3
DE	DEBW_7923401	Federseeried	В	29.3
DE	DEBW_7924341	Umlachtal und Riß südlich Biberach	Н	7.1
DE	DEBW_8017341	Nördliche Baaralb und Donau bei Immendingen	Н	25.4
DE	DEBW_8017441	Baar	В	280.2
DE	DEBW_8022401	Pfrunger und Burgweiler Ried	В	27.6
DE	DEBW_8025341	Wurzacher Ried und Rohrsee	Н	18.9

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
DE	DEBW_8025401	Wurzacher Ried	В	18
DE	DEBW_8116441	Wutach und Baaralb	В	24
DE	DEBW_8117341	Südliche Baaralb	Н	10.6
DE	DEBW_8122342	Pfrunger Ried und Seen bei Illmensee	Н	16.3
DE	DEBW_8126311	Aitrach, Ach und Dürrenbach	Н	5.9
DE	DEBW_8226441	Adelegg	В	17.9
DE	DEBY_6139-371	Waldnaabtal zwischen Tirschenreuth und Windisch-Eschenbach	Н	26.2
DE	DEBY_6139-471	Waldnaabaue westlich Tirschenreuth	В	22.6
DE	DEBY_6237-371	Heidenaab, Creussenaue und Weihergebiet nordwestlich Eschenbach	Н	18.7
DE	DEBY_6336-301	US-Truppenübungsplatz Grafenwöhr	Н	192.7
DE	DEBY_6336-401	US-Truppenuebungsplatz Grafenwoehr	В	192.5
DE	DEBY_6336-471	Vilsecker Mulde	В	9.2
DE	DEBY_6337-371	Vilsecker Mulde mit den Tälern der Schmalnohe und Wiesenohe	Н	9.5
DE	DEBY_6338-301	Lohen im Manteler Forst mit Schießlweiher und Straßenweiherkette	Н	7.7
DE	DEBY_6338-401	Manteler Forst	В	26.9
DE	DEBY_6537-371	Vils von Vilseck bis zur Mündung in die Naab	Н	6.4
DE	DEBY_6541-371	Bayerische Schwarzach und Biberbach	Н	5.3
DE	DEBY_6636-371	Lauterachtal	Н	8.4
DE	DEBY_6639-371	Talsystem von Schwarzach, Auerbach und Ascha	Н	7.8
DE	DEBY_6639-372	Charlottenhofer Weihergebiet, Hirtlohweiher und Langwiedteiche	Н	9.3
DE	DEBY_6639-472	Charlottenhofer Weihergebiet, Hirtlohweiher und Langwiedteiche	В	9.3
DE	DEBY_6728-471	Altmuehltal mit Brunst-Schwaigau und Altmuehlsee	В	49.7
DE	DEBY_6734-371	Binnendünen und Albtrauf bei Neumarkt	Н	7.4
DE	DEBY_6736-302	Truppenübungsplatz Hohenfels	Н	149.2
DE	DEBY_6736-402	Truppenuebungsplatz Hohenfels	В	149.1
DE	DEBY_6741-371	Chamb, Regentalaue und Regen zwischen Roding und Donaumündung	Н	32.7
DE	DEBY_6741-471	Regentalaue und Chambtal mit Roetelseeweihergebiet	В	27.8
DE	DEBY_6743-301	Hoher Bogen	Н	5.1
DE	DEBY_6830-371	Obere Altmühl mit Brunst-Schwaigau und Wiesmet	Н	44.7
DE	DEBY_6834-301	Trauf der mittleren Frankenalb im Sulztal	Н	12.3
DE	DEBY_6836-371	Schwarze Laaber	Н	11.4
DE	DEBY_6844-371	Oberlauf des Weißen Regens bis Kötzting mit Kaitersbachaue	Н	6.4
DE	DEBY_6844-373	Großer und Kleiner Arber mit Arberseen	Н	23.2
DE	DEBY_6844-471	Grosser und Kleiner Arber mit Schwarzeck	В	35.7
DE	DEBY_6935-371	Weiße, Wissinger, Breitenbrunner Laaber u. Kreuzberg bei Dietfurt	Н	23
DE	DEBY_6937-301	Flanken des Naabdurchbruchtals zwischen Kallmünz und Mariaort	Н	14.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DEBY_6937-371	Naab unterhalb Schwarzenfeld und Donau von Poikam bis Regensburg	Н	12.2
DE	DEBY_6939-302	Bachtäler im Falkensteiner Vorwald	Н	13.8
DE	DEBY_6939-371	Trockenhänge am Donaurandbruch	Н	5.2
DE	DEBY_6946-301	Nationalpark Bayerischer Wald	Н	244
DE	DEBY_6946-401	Nationalpark Bayerischer Wald	В	242.5
DE	DEBY_7029-371	Wörnitztal	Н	38.4
DE	DEBY_7036-371	Trockenhänge im unteren Altmühltal mit Laaberleiten und Galgental	Н	27.3
DE	DEBY_7036-372	Hienheimer Forst östlich und westlich Schwaben	Н	11.9
DE	DEBY_7037-471	Felsen und Hangwaelder im Altmuehl-, Naab-, Laber- und Donautal	В	48.4
DE	DEBY_7038-371	Standortübungsplatz Oberhinkhofen	Н	5.3
DE	DEBY_7040-302	Wälder im Donautal	Н	12.9
DE	DEBY_7040-371	Donau und Altwässer zwischen Regensburg und Straubing	Н	22.6
DE	DEBY_7040-402	Waelder im Donautal	В	12.8
DE	DEBY_7040-471	Donau zwischen Regensburg und Straubing	В	32.6
DE	DEBY_7043-371	Deggendorfer Vorwald	Н	15.1
DE	DEBY_7045-371	Oberlauf des Regens und Nebenbäche	Н	19.2
DE	DEBY_7128-371	Trockenverbund am Rand des Nördlinger Rieses	Н	9.2
DE	DEBY_7130-471	Noerdlinger Ries und Woernitztal	В	70.3
DE	DEBY_7132-371	Mittleres Altmühltal mit Wellheimer Trockental und Schambachtal	Н	42.6
DE	DEBY_7132-471	Felsen und Hangwaelder im Altmuehltal und Wellheimer Trockental	В	36.1
DE	DEBY_7136-301	'Weltenburger Enge' und 'Hirschberg und Altmühlleiten'	Н	9.3
DE	DEBY_7136-304	Donauauen zwischen Ingolstadt und Weltenburg	Н	27.3
DE	DEBY_7138-372	Tal der Großen Laaber zwischen Sandsbach und Unterdeggenbach	Н	6.8
DE	DEBY_7142-301	Donauauen zwischen Straubing und Vilshofen	Н	47.8
DE	DEBY_7142-471	Donau zwischen Straubing und Vilshofen	В	67.9
DE	DEBY_7229-471	Riesalb mit Kesseltal	В	120.3
DE	DEBY_7230-371	Donauwörther Forst mit Standortübungsplatz und Harburger Karab	Н	23.9
DE	DEBY_7231-471	Donauauen zwischen Lechmuendung und Ingolstadt	В	69.6
DE	DEBY_7232-301	Donau mit Jura-Hängen zwischen Leitheim und Neuburg	Н	32.8
DE	DEBY_7233-372	Donauauen mit Gerolfinger Eichenwald	Н	29
DE	DEBY_7233-373	Donaumoosbäche, Zucheringer Wörth und Brucker Forst	Н	9.4
DE	DEBY_7243-301	Untere Isar zwischen Landau und Plattling	Н	13.6
DE	DEBY_7243-302	Isarmündung	Н	18.9
DE	DEBY_7243-401	Untere Isar oberhalb Muendung	В	9.8
DE	DEBY_7243-402	Isarmuendung	В	21.2
DE	DEBY_7246-371	Ilz-Talsystem	Н	28.4

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DEBY_7329-301	Donauauen Blindheim-Donaumünster	Н	12.3
DE	DEBY_7329-372	Jurawälder nördlich Höchstädt	Н	38.1
DE	DEBY_7330-301	Mertinger Hölle und umgebende Feuchtgebiete	Н	8.8
DE	DEBY_7330-471	Wiesenbrueterlebensraum Schwaebisches Donauried	В	39.6
DE	DEBY_7335-371	Feilenmoos mit Nöttinger Viehweide	Н	8.6
DE	DEBY_7341-471	Wiesenbruetergebiete im Unteren Isartal	В	13.9
DE	DEBY_7347-371	Erlau	Н	5.7
DE	DEBY_7427-471	Schwaebisches Donaumoos	В	25.8
DE	DEBY_7428-301	Donau-Auen zwischen Thalfingen und Höchstädt	Н	58
DE	DEBY_7428-471	Donauauen	В	80.5
DE	DEBY_7433-371	Paar und Ecknach	Н	29.5
DE	DEBY_7439-371	Leiten der Unteren Isar	Н	6.6
DE	DEBY_7440-371	Vilstal zwischen Vilsbiburg und Marklkofen	Н	8.4
DE	DEBY_7446-371	Östlicher Neuburger Wald und Innleiten bis Vornbach	Н	12.5
DE	DEBY_7537-301	Isarauen von Unterföhring bis Landshut	Н	54
DE	DEBY_7537-401	Naturschutzgebiet "Vogelfreistaette Mittlere Isarstauseen"	В	5.9
DE	DEBY_7630-371	Schmuttertal	Н	9
DE	DEBY_7631-371	Lechauen zwischen Königsbrunn und Augsburg	Н	23.1
DE	DEBY_7631-372	Lech zwischen Landsberg und Königsbrunn mit Auen und Leite	Н	24.8
DE	DEBY_7635-301	Ampertal	Н	21.6
DE	DEBY_7636-471	Freisinger Moos	В	11.3
DE	DEBY_7637-471	Nördliches Erdinger Moos	В	45.3
DE	DEBY_7726-371	Untere Illerauen	Н	8.3
DE	DEBY_7735-371	Heideflächen und Lohwälder nördlich von München	Н	19.2
DE	DEBY_7736-471	Ismaninger Speichersee und Fischteiche	В	10.3
DE	DEBY_7739-371	Isental mit Nebenbächen	Н	7.5
DE	DEBY_7742-371	Inn und Untere Alz	Н	15.7
DE	DEBY_7828-471	Mindeltal	В	26.5
DE	DEBY_7829-301	Angelberger Forst	Н	6.5
DE	DEBY_7832-371	Ampermoos	Н	5.5
DE	DEBY_7833-371	Moore und Buchenwälder zwischen Etterschlag und Fürstenfeldbruck	Н	7.9
DE	DEBY_7837-371	Ebersberger und Großhaager Forst	Н	38.5
DE	DEBY_7932-372	Ammerseeufer und Leitenwälder	Н	9.5
DE	DEBY_7932-471	Ammerseegebiet	В	77.1
DE	DEBY_7934-371	Moore und Wälder der Endmoräne bei Starnberg	Н	5.8
DE	DEBY_7939-301	Innauen und Leitenwälder	Н	35.2
DE	DEBY_7939-401	NSG 'Vogelfreistaette Innstausee bei Attel und Freiham'	В	5.7
DE	DEBY_8031-471	Mittleres Lechtal	В	32.1
DE	DEBY_8032-371	Ammersee-Südufer und Raistinger Wiesen	Н	8.9
DE	DEBY_8032-372	Moore und Wälder westlich Dießen	Н	25.8

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
DE	DEBY_8033-371	Moränenlandschaft zwischen Ammersee und Starnberger See	Н	20.6
DE	DEBY_8034-371	Oberes Isartal	Н	46.8
DE	DEBY_8038-371	Rotter Forst und Rott	Н	8
DE	DEBY_8039-302	Moore und Seen nordöstlich Rosenheim	Н	5.5
DE	DEBY_8040-371	Moorgebiet von Eggstädt-Hemhof bis Seeon	Н	21.2
DE	DEBY_8040-471	Moorgebiet von Eggstaett-Hemhof bis Seeon	В	20.1
DE	DEBY_8127-301	Illerdurchbruch zwischen Reicholzried und Lautrach	Н	9.8
DE	DEBY_8131-301	Moorkette von Peiting bis Wessobrunn	Н	9.3
DE	DEBY_8131-371	Lech zwischen Hirschau und Landsberg mit Auen und Leiten	Н	29
DE	DEBY_8133-301	Naturschutzgebiet 'Osterseen'	Н	10.9
DE	DEBY_8133-302	Eberfinger Drumlinfeld mit Magnetsrieder Hardt u. Bernrieder Filz	Н	10.8
DE	DEBY_8133-371	Starnberger See	Н	57.2
DE	DEBY_8133-401	Starnberger See	В	56.9
DE	DEBY_8134-371	Moore südlich Königsdorf, Rothenrainer Moore und Königsdorfer Alm	Н	10.7
DE	DEBY_8135-371	Moore zwischen Dietramszell und Deining	Н	9.4
DE	DEBY_8136-302	Taubenberg	B,H	18.5
DE	DEBY_8136-371	Mangfalltal	Н	13.4
DE	DEBY_8138-372	Moore um Raubling	Н	12.3
DE	DEBY_8139-371	Simsseegebiet	Н	10.3
DE	DEBY_8140-371	Moore südlich des Chiemsees	Н	35.7
DE	DEBY_8140-372	Chiemsee	Н	81.5
DE	DEBY_8140-471	Chiemseegebiet mit Alz	В	103.6
DE	DEBY_8141-471	Moore suedlich des Chiemsees	В	27.2
DE	DEBY_8142-371	Moore im Salzach-Hügelland	Н	12.9
DE	DEBY_8142-372	Oberes Surtal und Urstromtal Höglwörth	Н	8.8
DE	DEBY_8227-373	Kürnacher Wald	Н	27.7
DE	DEBY_8228-301	Kempter Wald mit Oberem Rottachtal	Н	40.9
DE	DEBY_8232-371	Grasleitner Moorlandschaft	Н	20.8
DE	DEBY_8233-301	Moor- und Drumlinlandschaft zwischen Hohenkasten und Antdorf	Н	14
DE	DEBY_8234-371	Moore um Penzberg	Н	11.6
DE	DEBY_8235-301	Ellbach- und Kirchseemoor	Н	11.4
DE	DEBY_8235-371	Attenloher Filzen und Mariensteiner Moore	Н	6.5
DE	DEBY_8236-371	Flyschberge bei Bad Wiessee	Н	9.6
DE	DEBY_8237-371	Leitzachtal	Н	21.6
DE	DEBY_8239-371	Hochriesgebiet und Hangwälder im Aschauer Tal	Н	18.3
DE	DEBY_8239-372	Geigelstein und Achentaldurchbruch	Н	32.1
DE	DEBY_8239-401	Geigelstein	В	32.1
DE	DEBY_8241-372	Östliche Chiemgauer Alpen	Н	129.5
DE	DEBY_8241-401	Naturschutzgebiet "oestliche Chiemgauer Alpen"	В	128.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
DE	DEBY_8327-304	Rottachberg und Rottachschlucht	Н	5.2
DE	DEBY_8329-301	Wertachdurchbruch	Н	8.6
DE	DEBY_8329-303	Sulzschneider Moore	Н	17.9
DE	DEBY_8329-401	Wertachdurchbruch	В	8.6
DE	DEBY_8330-371	Urspringer Filz, Premer Filz und Viehweiden	Н	5.4
DE	DEBY_8330-471	Ammergebirge mit Kienberg und Schwarzenberg sowie Falkenstein	В	300.9
DE	DEBY_8331-302	Ammer vom Alpenrand b. zum NSG 'Vogelfreistätte Ammersee- Südufer'	Н	23.3
DE	DEBY_8331-303	Trauchberger Ach, Moore und Wälder am Nordrand des Ammergebirges	Н	11.1
DE	DEBY_8332-301	Murnauer Moos	Н	42.7
DE	DEBY_8332-371	Moore im oberen Ammertal	Н	6.3
DE	DEBY_8332-372	Moränenlandschaft zwischen Staffelsee und Baiersoien	Н	25.3
DE	DEBY_8332-471	Murnauer Moos und Pfruehlmoos	В	72.8
DE	DEBY_8334-371	Loisach-Kochelsee-Moore	Н	19.7
DE	DEBY_8334-373	Kesselberggebiet	Н	6.7
DE	DEBY_8334-471	Loisach-Kochelsee-Moore	В	41.8
DE	DEBY_8336-371	Mangfallgebirge	Н	149.2
DE	DEBY_8336-471	Mangfallgebirge	В	158.7
DE	DEBY_8342-301	Nationalpark Berchtesgaden	B,H	213.7
DE	DEBY_8342-302	NSG 'Aschau', NSG 'Schwarzbach' und Schwimmendes Moos	Н	8.1
DE	DEBY_8343-303	Untersberg	Н	35.3
DE	DEBY_8426-302	Nagelfluhkette Hochgrat-Steineberg	Н	19.9
DE	DEBY_8429-303	Kienberg mit Magerrasen im Tal der Steinacher Achen	Н	6.2
DE	DEBY_8430-301	Naturschutzgebiet 'Bannwaldsee'	Н	5.6
DE	DEBY_8430-303	Falkenstein, Alatsee, Faulenbacher- und Lechtal	Н	9.8
DE	DEBY_8431-371	Ammergebirge	Н	275.8
DE	DEBY_8432-301	Loisachtal zwischen Farchant und Eschenlohe	Н	6.9
DE	DEBY_8433-301	Karwendel mit Isar	Н	195.8
DE	DEBY_8433-371	Estergebirge	Н	60.7
DE	DEBY_8433-401	Karwendel mit Isar	В	195.8
DE	DEBY_8433-471	Estergebirge	В	119.9
DE	DEBY_8434-372	Jachenau und Extensivwiesen bei Fleck	Н	14.4
DE	DEBY_8527-301	Hörnergruppe	Н	11.8
DE	DEBY_8528-301	Allgäuer Hochalpen	Н	212
DE	DEBY_8528-401	Naturschutzgebiet Allgaeuer Hochalpen	В	207.8
DE	DEBY_8532-371	Wettersteingebirge	Н	42.6
DE	DEBY_8532-471	Naturschutzgebiet "Schachen und Reintal"	В	39.6
DE	DEBY_8533-301	Mittenwalder Buckelwiesen	Н	19
HR	HR1000001	Pokupski bazen	В	350.4
HR	HR1000002	Sava kod Hrušćice	В	15.3

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HR	HR1000003	Turopolje	В	200.5
HR	HR1000004	Donja Posavina	В	1211.2
HR	HR1000005	Jelas polje	В	388.4
HR	HR1000006	Spačvanski bazen	В	434.9
HR	HR1000008	Bilogora i Kalničko gorje	В	949.6
HR	HR1000009	Ribnjaci uz Česmu	В	231.1
HR	HR1000010	Poilovlje s ribnjacima	В	135.1
HR	HR1000011	Ribnjaci Grudnjak i Našice	В	207.3
HR	HR1000013	Dravske akumulacije	В	96.6
HR	HR1000014	Gornji tok Drave (od Donje Dubrave do Terezinog polja)	В	230.2
HR	HR1000015	Srednji tok Drave	В	135.6
HR	HR1000016	Podunavlje i donje Podravlje	В	663.6
HR	HR1000019	Gorski kotar i sjeverna Lika	В	2236.6
HR	HR1000020	NP Plitvička jezera	В	296.9
HR	HR1054	Plitvička jezera	0	296.2
HR	HR146755	Jelas polje	0	195.3
HR	HR146758	Bara Dvorina kraj Donje Bebrine	0	7.4
HR	HR15602	Kopački rit	0	231.4
HR	HR15605	U□e podrucje Kopačkog rita	0	72.4
HR	HR15614	Medvednica	0	179.4
HR	HR15615	Bijele i Samarske stijene	0	11.3
HR	HR15618	Crna Mlaka	0	6.9
HR	HR2000174	Trbušnjak - Rastik	Н	20
HR	HR2000364	Mura	Н	61.5
HR	HR2000369	Vršni dio Ravne gore	Н	7.6
HR	HR2000371	Vršni dio Ivančice	Н	60.7
HR	HR2000372	Dunav - Vukovar	Н	133.5
HR	HR2000394	Kopački rit	Н	231.3
HR	HR2000415	Odransko polje	Н	136.8
HR	HR2000416	Lonjsko polje	Н	511.3
HR	HR2000420	Sunjsko polje	Н	195.7
HR	HR2000426	Dvorina	Н	14.8
HR	HR2000437	Ribnjaci Končanica	Н	12.8
HR	HR2000438	Ribnjaci Poljana	Н	16
HR	HR2000440	Ribnjaci Siščani i Blatnica	Н	7.6
HR	HR2000441	Ribnjaci Narta	Н	6.2
HR	HR2000444	Varoški Lug	Н	8.5
HR	HR2000447	Nacionalni park Risnjak	Н	63.5
HR	HR2000449	Ribnjaci Crna Mlaka	Н	6.9
HR	HR2000459	Petrinjčica	Н	8.4

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HR	HR2000463	Dolina Une	Н	43
HR	HR2000465	Žutica	Н	47
HR	HR2000570	Crni jarki	Н	5.2
HR	HR2000580	Papuk	Н	374
HR	HR2000583	Medvednica	Н	185.3
HR	HR2000586	Žumberak Samoborsko gorje	Н	341.2
HR	HR2000589	Stupnički lug	Н	7.5
HR	HR2000591	Klek	Н	8.5
HR	HR2000592	Ogulinsko-plaščansko područje	Н	330.7
HR	HR2000593	Mrežnica - Tounjčica	Н	10.6
HR	HR2000594	Povremeno jezero Blata	Н	8.2
HR	HR2000609	Dolina Dretulje	Н	5.8
HR	HR2000623	Šume na Dilj gori	Н	150
HR	HR2000632	Krbavsko polje	Н	134.9
HR	HR2000634	Stajničko polje	Н	5
HR	HR2000642	Кира	Н	51.8
HR	HR2000646	Polje Lug	Н	7.2
HR	HR2000879	Lapačko polje	Н	22.1
HR	HR2001069	Kanjon Une	Н	8.2
HR	HR2001085	Ribnjak Grudnjak s okolnim šumskim kompleksom	Н	124.1
HR	HR2001086	Breznički ribnjak (Ribnjak Našice)	Н	14.4
HR	HR2001115	Strahinjčica	Н	13.8
HR	HR2001216	Ilova	Н	8.1
HR	HR2001281	Bilogora	Н	74.9
HR	HR2001293	Livade kod Grubišnog Polja	Н	29.7
HR	HR2001307	Drava - akumulacije	Н	96.6
HR	HR2001308	Donji tok Drave	Н	215.1
HR	HR2001309	Dunav S od Kopačkog rita	Н	138.1
HR	HR2001311	Sava nizvodno od Hrušćice	Н	129.6
HR	HR2001319	Ris	Н	9.1
HR	HR2001324	Bjelopolje	Н	9.6
HR	HR2001326	Jelas polje s ribnjacima	Н	47.6
HR	HR2001335	Jastrebarski lugovi	Н	37.8
HR	HR2001340	Područje oko Kuštrovke	Н	32.5
HR	HR2001342	Područje oko špilje Gradusa	Н	18
HR	HR2001346	Međimurje	Н	25.2
HR	HR2001351	Područje oko Kupice	Н	25
HR	HR2001353	Lokve-Sunger-Fužine	Н	114.9
HR	HR2001354	Područje oko jezera Borovik	Н	72.2
HR	HR2001355	Psunj	Н	100.5

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HR	HR2001356	Zrinska gora	Н	307.6
HR	HR2001373	Lisac	Н	91.9
HR	HR2001379	Vlakanac-Radinje	Н	29.2
HR	HR2001387	Područje uz Maju i Brućinu	Н	9.7
HR	HR2001409	Livade uz Bednju II	Н	11.4
HR	HR2001414	Spačvanski bazen	Н	381.6
HR	HR2001415	Spačva JZ	Н	53.3
HR	HR2518	Risnjak	0	63.5
HR	HR377823	Vuka	0	5.2
HR	HR377833	Mura	0	143.5
HR	HR377853	Ž umberak - Samoborsko gorje	0	342.4
HR	HR377920	Turopoljski lug i vlaž ne livade uz rijeku Odru	0	33.5
HR	HR378013	Odransko polje	0	94
HR	HR378033	Papuk	0	343.1
HR	HR392915	Sunjsko polje	0	203.2
HR	HR393049	Mura-Drava	0	1448.1
HR	HR5000014	Gornji tok Drave (od Donje Dubrave do Terezinog polja)	Н	230.2
HR	HR5000015	Srednji tok Drave (od Terezinog polja do Donjeg Miholjca)	Н	135.6
HR	HR5000019	Gorski kotar i sjeverna Lika	Н	2173.2
HR	HR5000020	Nacionalni park Plitvička jezera	Н	297.8
HR	HR63666	Lonjsko polje	0	511.3
HR	HR81108	Veliki Paž ut	0	12
HR	HR81116	Varoš ki Lug	0	9
HR	HR81145	Jankovac	0	6.5
HU	HU1092	Baradla barlangrendszer és felszíni védőöveze	0	20.6
HU	HU1093	Ipoly-völgy	0	23
HU	HU1099/EL/14	Farkas-sziget	0	11.9
HU	HU109/NP/74	Kiskunsági Nemzeti Park	0	505.2
HU	HU1102/EL/14	Vörös mocsárhoz kapcsolódó láprétek	0	25.6
HU	HU1113/EL/14	Nagy-Csukástó	0	7.5
HU	HU1120/EL/14	Kiskőrösi Őrjeg	0	21.5
HU	HU1121/EL/14	Szücsi erdő - Hortobány	0	7.2
HU	HU112/TK/75	Ócsai Tájvédelmi Körzet	0	36.5
HU	HU1133/EL/14	Csengődi-rét	0	7
HU	HU1175/EL/14	Káposztási-turjános és Rekettyés'	0	6.7
HU	HU1176/EL/14	Balázsrét-Kurjantó-Társasági-rétek	0	26.9
HU	HU118/TK/75	Lázbérci Tájvédelmi Körzet	0	37.1
HU	HU122/TK/76	Pusztaszeri Tájvédelmi Körzet	0	223.3
HU	HU123/TT/76	Szelidi-tó természetvédelmi terület	0	6.5
HU	HU124/TT/76	Péteri-tavi madárrezervátum természetvédelmi terület	0	7.8

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HU126/TK/76	Zselici Tájvédelmi Körzet	0	83
HU	HU138/NP/76	Bükki Nemzeti Park	0	420.3
HU	HU139/TK/76	Vértesi Tájvédelmi Körzet	0	155.3
HU	HU1409	Csongrád-bokrosi-sóstavak	0	8.7
HU	HU140/TK/77	Soproni Tájvédelmi Körzet	0	50.5
HU	HU1410	Felső-Tisza	0	242.6
HU	HU146/TK/77	Kelet-Mecsek Tájvédelmi Körzet	0	93.4
HU	HU148/TT/77	Tiszadobi-ártér természetvédelmi terület	0	10.2
HU	HU150/TT/77	Nagybereki Fehér-víz természetvédelmi terület	0	15.8
HU	HU152/TK/77	Gerecsei Tájvédelmi Körzet	0	86.8
HU	HU158/TK/78	Közép-tiszai Tájvédelmi Körzet	0	94.6
HU	HU163/TK/78	Budai Tájvédelmi Körzet	0	105
HU	HU1645	Rába-völgy	0	95.5
HU	HU1646	Felső-kiskunsági szikes puszták	0	128.5
HU	HU164/TT/78	Tiszatelek–Tiszaberceli-ártér természetvédelmi terület	0	15.1
HU	HU170/TK/80	Kőszegi Tájvédelmi Körzet	0	43.4
HU	HU171/TK/82	Szatmár-beregi Tájvédelmi Körzet	0	218.9
HU	HU172/TK/84	Zempléni Tájvédelmi Körzet	0	267.7
HU	HU1745	Borsodi-Mezőség	0	175.6
HU	HU1746	Montág-puszta	0	21.9
HU	HU177/NP/85	Aggteleki Nemzeti Park	0	201.8
HU	HU180/TK/85	Mátrai Tájvédelmi Körzet	0	123.8
HU	HU181/TK/86	Sárréti Tájvédelmi Körzet	0	22.2
HU	HU183	Dinnyési-fertő és Velencei-tavi Madárrezervát	0	13.5
HU	HU183/TK/86	Tokaj–Bodrogzug Tájvédelmi Körzet	0	52.9
HU	HU184/TT/86	Bihari-legelő természetvédelmi terület	0	7.7
HU	HU185	Kis-Balaton	0	146.6
HU	HU185/TT/86	Balatonfüredi-erdő természetvédelmi terület	0	8.7
HU	HU186	Mártélyi	0	22.5
HU	HU187	Felső-kiskunsági szikes tavak	0	73.9
HU	HU187/TK/87	Szigetközi Tájvédelmi Körzet	0	96.8
HU	HU188	Pusztaszeri	0	25.6
HU	HU189	Hortobágy	0	330.6
HU	HU1963	Dél-balatoni halastavak és berkek	0	95.1
HU	HU201/TK/88	Hajdúsági Tájvédelmi Körzet	0	70.9
HU	HU210/TK/89	Kelet-cserháti Tájvédelmi Körzet	0	73.1
HU	HU211/TK/89	Karancs–Medves Tájvédelmi Körzet	0	66.7
HU	HU212/TK/89	Borsodi-Mezőség Tájvédelmi Körzet	0	184.7
HU	HU219/TT/90	Császártöltési Vörös Mocsár Természetvédelmi Terület	0	9.3
HU	HU221/TT/90	Kiskőrösi-turjános természetvédelmi terület	0	6.4

Country	Protected Area code	Name of Protected Area	Type (s)	Area in km ²
HU	HU230/TT/90	Kecskeri-puszta Természetvédelmi Terület	0	12.6
HU	HU231/TK/90	Gödöllői Dombvidék Tájvédelmi Körzet	0	114.8
HU	HU232/TK/90	Kesznyéteni Tájvédelmi Körzet	0	57.7
HU	HU238/NP/91	Fertő–Hanság Nemzeti Park	0	238.6
HU	HU240/TK/91	Magas-bakonyi Tájvédelmi Körzet	0	87.3
HU	HU242/TK/91	Boronka-melléki Tájvédelmi Körzet	0	85
HU	HU249/TT/92	Debreceni Nagyerdő Természetvédelmi Terület	0	11
HU	HU253/TK/92	Pannonhalmi Tájvédelmi Körzet	0	82.7
HU	HU254/EL/14	Keszthely	0	23.5
HU	HU257/TK/93	Somló Tájvédelmi Körzet	0	5.7
HU	HU258/TK/93	Hevesi Füves Puszták Tájvédelmi Körzet	0	161
HU	HU260/TK/93	Tarnavidéki Tájvédelmi Körzet	0	93.1
HU	HU271/ES/14	Sósér-Böddi-szék	0	14.7
HU	HU271/NP/96	Duna–Dráva Nemzeti Park	0	496.3
HU	HU272/TT/96	Rétszilasi-tavak Természetvédelmi Terület	0	14.9
HU	HU274/TT/96	Long-erdő természetvédelmi terület	0	10
HU	HU276/NP/97	Körös–Maros Nemzeti Park	0	512
HU	HU277/EL/14	Marcal	0	7.2
HU	HU280/TK/97	Sárvíz-völgye Tájvédelmi Körzet	0	34.8
HU	HU282/NP/97	Balaton-felvidéki Nemzeti Park	0	573.2
HU	HU283/NP/97	Duna–Ipoly Nemzeti Park	0	606.9
HU	HU284/TK/98	Bihari-sík Tájvédelmi Körzet	0	166.1
HU	HU287/TK/98	Tápió-Hajta Vidéke Tájvédelmi Körzet	0	41.3
HU	HU293/TK/99	Dél-Mezőföld Tájvédelmi Körzet	0	77.5
HU	HU296/NP/02	Őrségi Nemzeti Park	0	439
HU	HU308/TK/07	Mura-menti Tájvédelmi Körzet	0	19
HU	HU319/TK/09	Nyugat-Mecsek Tájvédelmi Körzet	0	103.6
HU	HU326/TT/12	Pirtói-homokbuckás Természetvédelmi Terület	0	5.9
HU	HU328/EL/14	Principális 2.	0	5
HU	HU329/ES/14	Gátéri Fehér-tó	0	6.2
HU	HU330/TK/12	Körös-éri Tájvédelmi Körzet	0	22.2
HU	HU357/ES/14	Járás-rét	0	10.1
HU	HU418	Ócsai Turjános	0	11.5
HU	HU419	Tatai tavak	0	19
HU	HU420	Fertő	0	84.4
HU	HU421	Balaton	0	594.8
HU	HU422	Bodrog-zug	0	42.2
HU	HU54/TT/54	Ipolytarnóci ősmaradványok természetvédelmi terület	0	5.1
HU	HU56/TT/54	Fenyőfői-ősfenyves természetvédelmi terület	0	5.8
HU	HU64/ES/14	Velencei-tó	0	14.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HU	HU671/EL/14	Dabasi turjános	0	17.2
HU	HU711/EL/14	Ladányi tőzegbányák	0	6.5
HU	HU87/TT/66	Dinnyési-fertő természetvédelmi terület	0	5.3
HU	HU899	Rétszilasi-halastavak	0	14.9
HU	HU900	Gemenc	0	197.7
HU	HU901	Béda-Karapancsa	0	86.7
HU	HU902	Izsák Kolon-tó	0	30.6
HU	HU903	Biharugrai	0	27.8
HU	HU94/TK/71	Mártélyi Tájvédelmi Körzet	0	22.8
HU	HU97/NP/73	Hortobágyi Nemzeti Park	0	811.6
HU	HUAN10001	Aggteleki-karszt	В	236.2
HU	HUAN10002	Putnok-dombság	В	71.2
HU	HUAN20001	Aggteleki-karszt és peremterületei	Н	231
HU	HUAN20002	Rakaca-völgy és oldalvölgyei	Н	20.8
HU	HUAN20003	Bódva-völgy és Sas-patak-völgye	Н	27
HU	HUAN20004	Hernád-völgy és Sajóládi-erdő	Н	50.4
HU	HUAN20005	Szuha-völgy	Н	10.4
HU	HUAN20006	Sajó-völgy	Н	20.7
HU	HUAN21007	Bózsva-patak	Н	8.3
HU	HUBF10001	Mórichelyi-halastavak	В	6.5
HU	HUBF20001	Keleti-Bakony	Н	226.5
HU	HUBF20002	Papod és Miklád	Н	77.3
HU	HUBF20003	Kab-hegy	Н	80.8
HU	HUBF20004	Agár-tető	Н	51.4
HU	HUBF20006	Tihanyi-félsziget	Н	7.7
HU	HUBF20007	Monostorapáti Fekete-hegy	Н	17.9
HU	HUBF20008	Csatár-hegy és Miklós Pál hegy	Н	16.1
HU	HUBF20009	Devecseri Széki-erdő	Н	15.9
HU	HUBF20011	Felső-Nyirádi-erdő és Meggyes-erdő	Н	41.8
HU	HUBF20014	Pécselyi-medence	Н	8.7
HU	HUBF20015	Marcal-medence	Н	48.9
HU	HUBF20016	Öreg-hegyi riviéra	Н	12.1
HU	HUBF20017	Kádártai dolomitmezők	Н	7.9
HU	HUBF20023	Hajmáskéri Törökcsapás	Н	9
HU	HUBF20028	Tapolcai-medence	Н	23
HU	HUBF20029	Uzsai-erdő	Н	27.2
HU	HUBF20033	Dörögdi-medence	Н	9
HU	HUBF20034	Balatonfüredi-erdő	Н	34.9
HU	HUBF20035	Keszthelyi-hegység	Н	149
HU	HUBF20037	Alsó-Zala-völgy	Н	65.5

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HU	HUBF20039	Nyugat-Göcsej	Н	45.2
HU	HUBF20040	Vétyempuszta	Н	41.4
HU	HUBF20043	Mura mente	Н	21.5
HU	HUBF20044	Kerka mente	Н	73.4
HU	HUBF20045	Szévíz–Principális-csatorna	Н	80.2
HU	HUBF20046	Oltárc	Н	89.6
HU	HUBF20047	Felső-Zala-völgy	Н	11.1
HU	HUBF20048	Kebele	Н	19.3
HU	HUBF20049	Dél-zalai homokvidék	Н	29.1
HU	HUBF20050	Csörnyeberek	Н	21.3
HU	HUBF20052	Sárvíz-patak mente	Н	11.9
HU	HUBF20053	Zalaegerszegi Csácsi-erdő	Н	11.3
HU	HUBF20054	Nagykapornaki erdő	Н	6.4
HU	HUBF20055	Remetekert	Н	9.7
HU	HUBF30001	Északi-Bakony	B,H	257.8
HU	HUBF30002	Balaton	B,H	594.8
HU	HUBF30003	Kis-Balaton	B,H	133.4
HU	HUBN10001	Bodrogzug–Kopasz-hegy–Taktaköz	В	226.5
HU	HUBN10002	Borsodi-sík	В	362.4
HU	HUBN10003	Bükk hegység és peremterületei	В	662.1
HU	HUBN10004	Hevesi-sík	В	770.2
HU	HUBN10005	Kesznyéten	В	63.5
HU	HUBN10006	Mátra	В	373.1
HU	HUBN10007	Zempléni-hegység a Szerencsi-dombsággal és a Hernád- völggyel	В	1145.4
HU	HUBN20001	Bükk-fennsík és Lök-völgy	Н	143.8
HU	HUBN20002	Hór-völgy és Déli-Bükk	Н	55.2
HU	HUBN20004	Szarvaskő	Н	6.3
HU	HUBN20005	Kisgyőri Ásottfa-tető–Csókás-völgy	Н	24.2
HU	HUBN20006	Miskolctapolcai Tatár-árok–Vörös-bérc	Н	5.4
HU	HUBN20007	Kisgyőri Halom-vár–Csincse-völgy–Cseh-völgy	Н	10
HU	HUBN20008	Vár-hegy–Nagyeged	Н	20.4
HU	HUBN20012	Egerbakta-Bátor környéki erdők	Н	26.3
HU	HUBN20013	Hevesaranyosi-Fedémesi dombvidék	Н	12.4
HU	HUBN20014	Gyepes-völgy	Н	30.1
HU	HUBN20015	Izra-völgy és Arlói-tó	Н	13.5
HU	HUBN20018	Upponyi-szoros	Н	12.9
HU	HUBN20021	Domaházi Hangony-patak völgye	Н	11.7
HU	HUBN20025	Nagybarcai Liget-hegy és sajóvelezdi Égett-hegy	Н	12
HU	HUBN20034	Borsodi-Mezőség	Н	148.5
HU	HUBN20035	Poroszlói szikesek	Н	9.2

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HU	HUBN20040	Nagy-fertő–Gulya-gyep–Hamvajárás szikes pusztái	Н	18.2
HU	HUBN20041	Pélyi szikesek	Н	27.7
HU	HUBN20047	Mátra északi letörése	Н	7.8
HU	HUBN20049	Mátrabérc–Fallóskúti-rétek	Н	15.1
HU	HUBN20051	Nyugat-Mátra	Н	15
HU	HUBN20055	Szentkúti Meszes-tető	Н	8.9
HU	HUBN20056	Tepke	Н	24.2
HU	HUBN20057	Bézma	Н	8.3
HU	HUBN20062	Középső-Ipoly-völgy	Н	16.8
HU	HUBN20063	Karancs	Н	8.8
HU	HUBN20069	Kesznyéteni Sajó-öböl	Н	47.3
HU	HUBN20071	Bodrogzug és Bodrog hullámtere	Н	73.7
HU	HUBN20074	Tállyai Patócs-hegy-Sátor-hegy	Н	6.8
HU	HUBN20081	Long-erdő	Н	31.6
HU	HUBN20084	Központi-Zempléni-hegység	Н	86.7
HU	HUBN20085	Északi-Zempléni-hegység	Н	18.5
HU	HUBN20087	Baskói-rétek	Н	5.9
HU	HUBN20089	Füzéri Pál-hegy	Н	7.3
HU	HUDD10002	Nyugat-Dráva	В	152.4
HU	HUDD10003	Gemenc	В	196.4
HU	HUDD10004	Béda-Karapancsa	В	87.2
HU	HUDD10005	Kisszékelyi-dombság	В	26.4
HU	HUDD10007	Mecsek	В	206.4
HU	HUDD10008	Belső-Somogy	В	333.3
HU	HUDD10012	Balatoni berkek	В	86.5
HU	HUDD10013	Zselic	В	230.5
HU	HUDD20001	Tenkes	Н	15.6
HU	HUDD20004	Dél-Zselic	Н	68
HU	HUDD20007	Kelet-Dráva	Н	66.2
HU	HUDD20008	Ormánsági erdők	Н	105.3
HU	HUDD20011	Szekszárdi-dombvidék	Н	24.5
HU	HUDD20012	Geresdi-dombvidék	Н	65.7
HU	HUDD20014	Jánosházi-erdő és Égett-berek	Н	6.2
HU	HUDD20015	Kisbajomi erdők	Н	13
HU	HUDD20016	Észak-Zselici erdőségek	Н	162.5
HU	HUDD20017	Mocsoládi-erdő	Н	25.9
HU	HUDD20020	Közép-mezőföldi löszvölgyek	Н	16
HU	HUDD20023	Tolnai Duna	Н	71.6
HU	HUDD20026	Lengyel-hőgyészi erdők	Н	36.4
HU	HUDD20029	Kisszékelyi-dombság	Н	29.8

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HU	HUDD20030	Mecsek	Н	261.8
HU	HUDD20031	Fehérvíz	Н	15.5
HU	HUDD20032	Gemenc	Н	207
HU	HUDD20035	Pogány-völgyi rétek	Н	19.9
HU	HUDD20036	Ordacsehi berek	Н	7.5
HU	HUDD20039	Dékány-hegy	Н	8.9
HU	HUDD20040	Tengelici homokvidék	Н	57.9
HU	HUDD20042	Köröshegyi-erdők	Н	16.8
HU	HUDD20043	Kopasz-dombi erdő	Н	10.5
HU	HUDD20044	Boronka-melléke	Н	114.9
HU	HUDD20045	Béda-Karapancsa	Н	108
HU	HUDD20046	Törökkoppányi erdők	Н	21.6
HU	HUDD20047	Vityai-erdő	Н	12.9
HU	HUDD20049	Somogytúri erdők	Н	17.3
HU	HUDD20051	Darányi borókás	Н	34.8
HU	HUDD20052	Ormánsági vizes élőhelyek és gyepek	Н	14.1
HU	HUDD20056	Közép-Dráva	Н	62.7
HU	HUDD20057	Somogymeggyesi erdő	Н	6.8
HU	HUDD20058	Látrányi-puszta	Н	9.8
HU	HUDD20059	Balatonkeresztúri rétek	Н	5.9
HU	HUDD20060	Rinyaszentkirályi-erdő	Н	5.1
HU	HUDD20061	Holládi-erdő	Н	19.8
HU	HUDD20062	Nyugat-Dráva-sík	Н	51.8
HU	HUDD20063	Szentai erdő	Н	195.3
HU	HUDD20064	Ságvári dombok	Н	23.4
HU	HUDD20065	Töttösi-erdő	Н	11.9
HU	HUDD20066	Pécsi-sík	Н	5.1
HU	HUDD20068	Gyékényesi erdők	Н	7.8
HU	HUDD20073	Szedresi Ős-Sárvíz	Н	7.5
HU	HUDI10002	Börzsöny és Visegrádi-hegység	В	495.6
HU	HUDI10003	Gerecse	В	296
HU	HUDI10004	Jászkarajenői puszták	В	104.3
HU	HUDI10005	Sárvíz völgye	В	78.6
HU	HUDI10006	Tatai Öreg-tó	В	26.2
HU	HUDI10007	Velencei-tó és Dinnyési-fertő	В	21.8
HU	HUDI10008	Ipoly völgye	В	63.5
HU	HUDI20003	Alapi kaszálórétek	Н	5.2
HU	HUDI20005	Bársonyos	Н	12.1
HU	HUDI20008	Börzsöny	Н	304
HU	HUDI20009	Budai-hegység	Н	95.2

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
HU	HUDI20010	Budaörsi kopárok	Н	5.7
HU	HUDI20012	Csévharaszti homokvidék	Н	12
HU	HUDI20015	Déli-Gerecse	Н	48.2
HU	HUDI20016	Epöli szarmata vonulat	Н	15.8
HU	HUDI20017	Érd-tétényi plató	Н	11.6
HU	HUDI20018	Északi-Gerecse	Н	26.9
HU	HUDI20019	Felső-Tápió	Н	20.5
HU	HUDI20020	Gerecse	Н	24.4
HU	HUDI20021	Gerje mente	Н	33.4
HU	HUDI20022	Gógány- és Kőrös-ér mente	Н	8.2
HU	HUDI20023	Gödöllői-dombság	Н	75.2
HU	HUDI20024	Tápiógyörgye-Újszilvási szikesek	Н	17.4
HU	HUDI20025	Hajta mente	Н	57.9
HU	HUDI20026	Ipoly-völgy	Н	29.4
HU	HUDI20030	Központi-Gerecse	Н	59.1
HU	HUDI20031	Lajoskomáromi löszvölgyek	Н	9.1
HU	HUDI20033	Móri-árok	Н	6.8
HU	HUDI20034	Duna és ártere	Н	165.7
HU	HUDI20035	Nagykőrösi pusztai tölgyesek	Н	33
HU	HUDI20037	Nyakas-tető szarmata vonulat	Н	6.1
HU	HUDI20038	Nyugat-Cserhát és Naszály	Н	96.1
HU	HUDI20039	Pilis és Visegrádi-hegység	Н	301.5
HU	HUDI20042	Ráckevei Duna-ág	Н	31.9
HU	HUDI20044	Sárrét	Н	41.1
HU	HUDI20046	Székek	Н	36.2
HU	HUDI20047	Szigeti homokok	Н	8.5
HU	HUDI20049	Szentgyörgypuszta	Н	9.8
HU	HUDI20050	Alsó-Tápió és patakvölgyek	Н	18
HU	HUDI20051	Turjánvidék	Н	122.1
HU	HUDI20053	Velencei-hegység	Н	40
HU	HUDI20054	Velencei-tó	Н	10.8
HU	HUDI21056	Jászkarajenői puszták	Н	69.7
HU	HUDI30001	Vértes	B,H	255.5
HU	HUDI30002	Zámolyi-medence	B,H	26
HU	HUFH10001	Fertő-tó	В	87
HU	HUFH10004	Mosoni-sík	В	131
HU	HUFH20001	Rábaköz	Н	59.7
HU	HUFH20002	Fertő-tó	Н	113
HU	HUFH20003	Fertőmelléki dombsor	Н	25.6
HU	HUFH20006	Dudlesz-erdő	Н	10.9

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUFH20008	Pannonhalmi-dombság	Н	76.8
HU	HUFH20009	Gönyüi-homokvidék	Н	26.9
HU	HUFH20010	Répce mente	Н	16.3
HU	HUFH20011	Rába	Н	51.1
HU	HUFH20012	Soproni-hegység	Н	52.6
HU	HUFH20013	Határ-menti erdők	Н	22.5
HU	HUFH30004	Szigetköz	B,H	171.8
HU	HUFH30005	Hanság	B,H	135.5
HU	HUHN10001	Szatmár-Bereg	В	528.5
HU	HUHN10002	Hortobágy	В	1211.1
HU	HUHN10003	Bihar	В	716.1
HU	HUHN10004	Közép-Tisza	В	136.4
HU	HUHN10005	Jászság	В	201.3
HU	HUHN10008	Felső-Tisza	В	148.2
HU	HUHN20001	Felső-Tisza	Н	286.8
HU	HUHN20002	Hortobágy	Н	1051.7
HU	HUHN20003	Tisza-tó	Н	178.3
HU	HUHN20004	Felső-Sebes-Körös	Н	5.2
HU	HUHN20007	Szentpéterszeg-Hencidai gyepek	Н	10.2
HU	HUHN20008	Kismarj-pocsaj-esztári gyepek	Н	24.3
HU	HUHN20009	Derecske-konyári gyepek	Н	37.9
HU	HUHN20013	Közép-Bihar	Н	120.5
HU	HUHN20014	Kismarjai Nagy-szik	Н	8.5
HU	HUHN20015	Közép-Tisza	Н	142.4
HU	HUHN20016	Kék-Kálló-völgye	Н	15
HU	HUHN20023	Hármashegyi-tölgyesek	Н	5
HU	HUHN20032	Gúti-erdő	Н	56.8
HU	HUHN20033	Debrecen-hajdúböszörményi tölgyesek	Н	56.3
HU	HUHN20035	Ömbölyi-erdő és Fényi-erdő	Н	14.3
HU	HUHN20045	Kaszonyi-hegy–Dédai-erdő	Н	13.3
HU	HUHN20046	Gelénes–Beregdaróc	Н	11.6
HU	HUHN20047	Vámosatya-Csaroda	Н	20.1
HU	HUHN20048	Tarpa-Tákos	Н	63.5
HU	HUHN20049	Lónya-Tiszaszalka	Н	41.4
HU	HUHN20050	Kömörő-Fülesd	Н	19.4
HU	HUHN20053	Magosligeti-erdő és gyepek	Н	5.6
HU	HUHN20054	Csaholc–Garbolc	Н	40.5
HU	HUHN20055	Rozsály–Csengersima	Н	9.8
HU	HUHN20058	Teremi-erdő	Н	9.1
HU	HUHN20063	Baktai-erdő	Н	9.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUHN20069	Hajdúszoboszlói szikes gyepek	Н	5.5
HU	HUHN20076	Borsóhalmi-legelő	Н	15.6
HU	HUHN20081	Újszász–jászboldogházi gyepek	Н	19.6
HU	HUHN20085	Jászapáti–jászkiséri szikesek	Н	17.8
HU	HUHN20093	Kaba-földesi gyepek	Н	50.8
HU	HUHN20098	Dél-ásványi gyepek	Н	14.8
HU	HUHN20100	Gatály	Н	7.1
HU	HUHN20101	Bihari-legelő	Н	26.4
HU	HUHN20103	Berekböszörmény–körmösdpusztai-legelők	Н	13.7
HU	HUHN20105	Csökmői gyepek	Н	6.1
HU	HUHN20113	Kisvárdai gyepek	Н	6.9
HU	HUHN20114	Tiszalöki szikesek	Н	15.9
HU	HUHN20141	Tiszaigar–tiszaörsi Körtvélyes	Н	6.1
HU	HUHN20144	Kenderesi-legelő	Н	5.3
HU	HUHN20145	Kecskeri-puszta és környéke	Н	15.4
HU	HUHN20146	Hegyesbor	Н	13.7
HU	HUHN21164	Liget-legelő	Н	22.1
HU	HUKM10001	Kígyósi-puszta	В	87.7
HU	HUKM10002	Kis-Sárrét	В	83.4
HU	HUKM10003	Dévaványai-sík	В	252.1
HU	HUKM10004	Vásárhelyi- és Csanádi-puszták	В	218.3
HU	HUKM10005	Cserebökényi-puszták	В	280.7
HU	HUKM20001	Hódmezővásárhely környéki és csanádi-háti puszták	Н	164.2
HU	HUKM20002	Hómezővásárhelyi Kék-tó	Н	39.1
HU	HUKM20004	Száraz-ér	Н	15.2
HU	HUKM20005	Deszki gyepek	Н	5.4
HU	HUKM20008	Maros	Н	59.6
HU	HUKM20010	Gyula-szabadkígyósi gyepek	Н	106.3
HU	HUKM20011	Körösközi erdők	Н	56.4
HU	HUKM20012	Fekete-, Fehér- és Kettős-Körös	Н	19.8
HU	HUKM20013	Bélmegyeri Fás-puszta	Н	6.5
HU	HUKM20014	Dévaványa környéki gyepek	Н	140.3
HU	HUKM20015	Hortobágy-Berettyó	Н	30.8
HU	HUKM20016	Sebes-Körös	Н	14.6
HU	HUKM20017	Hármas-Körös	Н	78.2
HU	HUKM20019	Dél-bihari szikesek	Н	65.2
HU	HUKM20026	Tóniszállás-szarvasi gyepek	Н	5.9
HU	HUKM20027	Cserebökény	Н	100
HU	HUKM20028	Tőkei gyepek	Н	29.9
HU	HUKM20029	Szentesi gyepek	Н	6.1

Country	Protected Area code	Name of Protected Area	Type (s)	Area in km²
HU	HUKM20030	Lapistó-Fertő	Н	19
HU	HUKN10001	Felső-Kiskunsági szikes puszták és turjánvidék	В	418.2
HU	HUKN10002	Kiskunsági szikes tavak és az őrjegi turjánvidék	В	357.2
HU	HUKN10004	Tisza Alpár-Bokrosi ártéri öblözete	В	50.3
HU	HUKN10007	Alsó-Tiszavölgy	В	362.9
HU	HUKN10008	Balástya-Szatymaz környéki homokvidék	В	61.7
HU	HUKN20001	Felső-kiskunsági szikes puszta	Н	157.8
HU	HUKN20002	Peszéri-erdő	Н	16.3
HU	HUKN20003	Felső-kiskunsági turjánvidék	Н	144.4
HU	HUKN20004	Dél-Bácska	Н	7.8
HU	HUKN20005	Tass-szalkszentmártoni szikes puszta	Н	16.6
HU	HUKN20006	Nagynyíri-erdő	Н	7.5
HU	HUKN20008	Déli-Homokhátság	Н	23.9
HU	HUKN20009	Felső-kiskunsági szikes tavak és Mikla-puszta	Н	196.8
HU	HUKN20011	Fülöpházi homokbuckák	Н	21.2
HU	HUKN20013	Fülöpszállás-soltszentimre-csengődi lápok	Н	31.2
HU	HUKN20015	Ágasegyháza-orgoványi rétek	Н	43.2
HU	HUKN20017	Közép-csongrádi szikesek	Н	11.4
HU	HUKN20018	Jánoshalma-kunfehértói erdők	Н	13.4
HU	HUKN20019	Baksi-puszta	Н	48.8
HU	HUKN20020	Harkai-tó	Н	6.6
HU	HUKN20021	Ökördi–erdőteleki–keceli lápok	Н	25.2
HU	HUKN20022	Kiskőrösi turjános	Н	28.7
HU	HUKN20023	Tázlár–kiskunhalasi homokbuckák	Н	19.3
HU	HUKN20024	Bócsa-bugaci homokpuszta	Н	116.6
HU	HUKN20026	Móricgáti lápok	Н	7.7
HU	HUKN20027	Péteri-tó	Н	7.8
HU	HUKN20028	Tisza Alpár-Bokrosi ártéri öblözet	Н	32.9
HU	HUKN20031	Alsó-Tisza hullámtér	Н	79.3
HU	HUKN20032	Dél-Őrjeg	Н	45.9
HU	HUKN20035	Harkakötöny–kiskunmajsai homokbuckák	Н	7.1
HU	HUKN20036	Imre-hegy–pirtó–kiskunhalasi homokbuckák	Н	15.6
HU	HUKN30001	Csongrád-Bokrosi Sóstó,Csongrád-Bokrosi Sós-tó	B,H	7.1
HU	HUKN30002	Gátéri Fehér-tó	B,H	8.5
HU	HUKN30003	Izsáki Kolon-tó	B,H	35.8
HU	HUON10001	Őrség	В	456.9
HU	HUON20002	Kőszegi-hegység	Н	40.2
HU	HUON20003	Ablánc-patak völgye	Н	14.7
HU	HUON20005	Váti gyakorlótér	Н	6
HU	HUON20008	Rába és Csörnöc-völgy	Н	121.5

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
HU	HUON20011	Kenyeri reptér	Н	7
HU	HUON20012	Kemenessömjéni cserjés legelő	Н	6.2
HU	HUON20018	Őrség	Н	441.7
MD	MDPA03	Feteti-Fetesti	0	5.6
MD	MDPA04	La Costel-Gordinesti	0	7.4
MD	MDPA05	Zabriceni-Onesti	0	5.9
MD	MDPA06	Suta de Movila-Cobani	0	6.9
MD	MDPA08	Padurea Domneasca-Cobani	0	60.5
MD	MDPA09	Izvoare-Risipeni-Risipeneni	0	15.4
MD	MDPA13	Vila Nisporeni-Nisporeni	0	41.6
MD	MDPA14	Padurea Hincesti-Mereseni	0	46.8
MD	MDPA18	Prutul de Jos-Manta	0	132.5
ME	MEBiogradskaGora	Biogradska Gora National Park	0	57.6
ME	MEDurmitor	Durmitor National Park with the Tara River Gorge	0	356.9
RO	RO2.104.	Zona carstica - Cheile Dambovita	0	12.5
RO	RO2.125.	Valea Valsanului	0	118.9
RO	RO2.234.	Rezervatia naturala Bucegi (Abruptul Bucsoiu, Malaesti, Gaura)	0	17.2
RO	RO2.243.	Rezervatia naturala Cheile Dopca	0	20.6
RO	RO2.253.	Rezervatia naturala Muntele Postavarul	0	12.4
RO	RO2.257.	Rezervatia naturala Padurea Bogatii	0	63.3
RO	RO2.260.	Lacul Jirlau-Trup Visani	0	5.4
RO	RO2.271.	Balta Alba	0	11.7
RO	RO2.272.	Balta Amara	0	8.1
RO	RO2.276.	Rezervatia Cheile Nerei Beusnita	0	41.9
RO	RO2.277.	Valea Ciclovei - Ilidia	0	19.6
RO	RO2.282.	Cheile Carasului	0	32.7
RO	RO2.283.	Izvoarele Carasului	0	5.8
RO	RO2.284.	Izvoarele Nerei	0	50.7
RO	RO2.285.	Cheile Garlistei	0	5.1
RO	RO2.298.	Rezervatia naturala Valea Mare	0	11.6
RO	RO2.334.	Stufarisurile de la Sic I	0	5
RO	RO2.337.	Pestera din Piatra Ponorului	0	17.1
RO	RO2.345.	Vama Veche - 2 Mai (Acvatoriul litoralul marin)	0	55.6
RO	RO2.346.	Grindul Chituc DDIA	0	23
RO	RO2.347.	Grindul Lupilor	0	20.7
RO	RO2.372.	Mestecanisul de la Reci	0	21.1
RO	RO2.376.	Orzea - Zanoaga	0	7.1
RO	RO2.389.	Gogosu Stefanel	0	8.2
RO	RO2.399.	Cleanov	0	7.4
RO	RO2.414.	Lunca joasa a Prutului	0	11.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	RO2.422.	Piatra Closanilor	0	23.6
RO	RO2.442.	Cheile Sohodolului	0	6.1
RO	RO2.482.	Cheile Bicazului si Lacul Rosu	0	22
RO	RO2.483.	Masivul Hasmasul Mare, Piatra Singuratica	0	8.8
RO	RO2.485.	Cheile Varghisului si pesterile din chei	0	7.7
RO	RO2.494.	Rezervatia Stiintifica Gemenele	0	19.3
RO	RO2.497.	Complexul carstic Calianu Ponorici Ciclovina	0	15.5
RO	RO2.499.	Cheile si Pestera Sura Mare	0	38
RO	RO2.500.	Pestera Tecuri (Complexul carstic Rachitaua v Tecuri)	0	5.4
RO	RO2.525.	Codrii seculari de pe valea Dobrisoarei si Prisloapei	0	5
RO	RO2.530.	Cheile Cernei	0	5.4
RO	RO2.556.	Raul Prut	0	53.2
RO	RO2.580.	Cornu Nedeii-Ciungii Balasanii	0	25.1
RO	RO2.583.	Cheile Lapusului (intre Groape si Impreunaturi)	0	14.9
RO	RO2.589.	Piatra Rea	0	5.2
RO	RO2.597.	Gura Vaii - Varciorova PN - D Municipiul Drobeta - Turnu Severin localitatea	0	7.2
RO	RO2.600.	Padurea de liliac Ponoarele Comuna Ponoarele	0	6.2
RO	RO2.601.	Tufarisurile mediteraneene de la Isverna Comuna Isverna	0	5
RO	RO2.602.	Varful lui Stan, PN-B, Comuna Isverna	0	7.1
RO	RO2.603.	Valea Tesna PN-B Comuna Balta	0	10.7
RO	RO2.613.	Complexul carstic de la Ponoarele Comuna Ponoarele	0	6.6
RO	RO2.615.	Cheile Cosustei	0	7.2
RO	RO2.616.	Cornetul Babelor si Cerboaniei Comuna Balta	0	8.5
RO	RO2.619.	Cornetul Baltii, Comuna Balta	0	9.4
RO	RO2.638.	Defileul Deda - Toplita	0	91.6
RO	RO2.643.	Cheile Bicazului	0	17.5
RO	RO2.658.	Rezervatia de zimbri Neamt	0	121.1
RO	RO2.672.	Abruptul Prahovean Bucegi	0	56.3
RO	RO2.673.	Muntii Coltii lui Barbes	0	8.7
RO	RO2.680.	Cursul inferior al raului Tur, Comuna Calinesti Oas	0	15.1
RO	RO2.701.	Valea Balii	0	5.1
RO	RO2.705.	Iezerele Cindrelului	0	14.5
RO	RO2.706.	Parcul Natural Dumbrava Sibiului	0	10.1
RO	RO2.707.	Parcul Natural Cindrel	0	79.1
RO	RO2.709.	Golul Alpin al Muntilor Fagaras	0	48.5
RO	RO2.715.	Tinovul Poiana Stampei	0	6.4
RO	RO2.722.	Pietrele Doamnei-Rarau	0	9.7
RO	RO2.723.	Codrul Secular Slatioara	0	10.1
RO	RO2.730.	Jnepenisul cu Pinus Cembra-Calimani PN-K	0	5.6
RO	RO2.750.	Rosca Buhaiova DD A	0	94.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	RO2.751.	Padurea Letea	0	30.9
RO	RO2.752.	Grindul si Lacul Raducu	0	26.6
RO	RO2.754.	Complexul Vatafu Lungulet	0	16.2
RO	RO2.755.	Padurea Caraorman DDUA	0	22.5
RO	RO2.758.	Complexul Sacalin Zatoana	0	213.9
RO	RO2.761.	Lacul Potcoava	0	6.3
RO	RO2.798.	Padurea Calinesti - Brezoi	0	9.9
RO	RO2.826.	Rezervatia naturala Valea Tisitei	0	27.1
RO	RO2.827.	Rezervatia naturala Padurea Neagra	0	6
RO	ROA	Delta Dunarii - zona marina	0	5800
RO	ROA.1	Defileul Muresului Superior	0	94.9
RO	ROA.1.	Defileul Jiului	0	111.4
RO	ROB	Domogled - Valea Cernei	0	611.9
RO	ROC	Retezat	0	381.2
RO	ROD	Portile de Fier	0	1300
RO	ROE	Cheile Nerei - Beusnita	0	367.1
RO	ROF	Apuseni	0	760.2
RO	ROG	Muntii Rodnei	0	472.1
RO	ROH	Bucegi	0	326
RO	ROI	Cheile Bicazului - Hasmas	0	69.3
RO	ROII.1.	Buila - Vanturarita	О	44.9
RO	ROJ	Ceahlau	О	77.4
RO	ROK	Calimani	0	239.2
RO	ROL	Cozia	0	167.2
RO	ROM	Piatra Craiului	0	147.8
RO	RON	Gradistea Muncelului - Cioclovina	0	381.2
RO	ROO	Semenic - Cheile Carasului	0	362.2
RO	ROP	Muntii Macinului	О	111.1
RO	ROR	Balta Mica a Brailei	О	204.6
RO	ROS	Vanatori-Neamt	О	308.4
RO	ROSCI0002	Apuseni	Н	758.8
RO	ROSCI0003	Arboretele de castan comestibil de la Baia Mare	Н	20.9
RO	ROSCI0004	Bagau	Н	31.7
RO	ROSCI0005	Balta Alba - Amara - Jirlau - Lacul Sarat Caineni	Н	64
RO	ROSCI0006	Balta Mica a Brailei	Н	206.7
RO	ROSCI0007	Bazinul Ciucului de Jos	Н	27.6
RO	ROSCI0008	Betfia	Н	17.6
RO	ROSCI0009	Bisoca	Н	12.2
RO	ROSCI0012	Bratul Macin	Н	104.3
RO	ROSCI0013	Bucegi	Н	386.9

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
RO	ROSCI0014	Bucsani	Н	5.1
RO	ROSCI0015	Buila - Vanturarita	Н	44.8
RO	ROSCI0019	Calimani - Gurghiu	Н	1352.6
RO	ROSCI0020	Campia Careiului	Н	236.4
RO	ROSCI0021	Campia Ierului	Н	212.3
RO	ROSCI0022	Canaralele Dunarii	Н	261.1
RO	ROSCI0024	Ceahlau	Н	77.6
RO	ROSCI0025	Cefa	Н	52.2
RO	ROSCI0027	Cheile Bicazului - Hasmas	Н	76.3
RO	ROSCI0028	Cheile Cernei	Н	5.1
RO	ROSCI0029	Cheile Glodului, Cibului si Mazii	Н	7.4
RO	ROSCI0030	Cheile Lapusului	Н	17.1
RO	ROSCI0031	Cheile Nerei - Beusnita	Н	377.2
RO	ROSCI0036	Cheile Varghisului	Н	8.7
RO	ROSCI0037	Ciomad - Balvanyos	Н	59.8
RO	ROSCI0038	Ciucas	Н	219.7
RO	ROSCI0039	Ciuperceni - Desa	Н	395.6
RO	ROSCI0042	Codru Moma	Н	246.3
RO	ROSCI0043	Comana	Н	265.8
RO	ROSCI0044	Corabia - Turnu Magurele	Н	83.5
RO	ROSCI0045	Coridorul Jiului	Н	713.7
RO	ROSCI0046	Cozia	Н	167.3
RO	ROSCI0047	Creasta Nemirei	Н	35.9
RO	ROSCI0048	Crisul Alb	Н	8.3
RO	ROSCI0049	Crisul Negru	Н	18.2
RO	ROSCI0050	Crisul Repede amonte de Oradea	Н	20
RO	ROSCI0051	Cusma	Н	440.9
RO	ROSCI0056	Dealul Ciocas - Dealul Vitelului	Н	9.6
RO	ROSCI0057	Dealul Istrita	Н	5.7
RO	ROSCI0058	Dealul lui Dumnezeu	Н	7.1
RO	ROSCI0061	Defileul Crisului Negru	Н	22.1
RO	ROSCI0062	Defileul Crisului Repede - Padurea Craiului	Н	402.7
RO	ROSCI0063	Defileul Jiului	Н	109.3
RO	ROSCI0064	Defileul Muresului	Н	342
RO	ROSCI0065	Delta Dunarii	Н	4536.6
RO	ROSCI0066	Delta Dunarii - zona marina	Н	3362.1
RO	ROSCI0069	Domogled - Valea Cernei	Н	621.2
RO	ROSCI0070	Drocea	Н	261.1
RO	ROSCI0071	Dumbraveni - Valea Urluia - Lacul Vederoasa	Н	180.3
RO	ROSCI0074	Fagetul Clujului - Valea Morii	Н	16.9

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
RO	ROSCI0075	Padurea Patrauti	Н	87.7
RO	ROSCI0076	Dealul Mare - Harlau	Н	250.6
RO	ROSCI0084	Ferice - Plai	Н	19.9
RO	ROSCI0085	Frumoasa	Н	1372.6
RO	ROSCI0086	Gaina - Lucina	Н	8.4
RO	ROSCI0087	Gradistea Muncelului - Cioclovina	Н	398.6
RO	ROSCI0088	Gura Vedei - Saica - Slobozia	Н	101.4
RO	ROSCI0089	Gutai - Creasta Cocosului	Н	6.9
RO	ROSCI0090	Harghita Madaras	Н	133.2
RO	ROSCI0091	Herculian	Н	129.2
RO	ROSCI0092	Ignis	Н	196.4
RO	ROSCI0094	Izvoarele sulfuroase submarine de la Mangalia	Н	57.9
RO	ROSCI0099	Lacul Stiucilor - Sic - Puini - Bontida	Н	38.9
RO	ROSCI0101	Larion	Н	30.6
RO	ROSCI0102	Leaota	Н	13.8
RO	ROSCI0103	Lunca Buzaului	Н	95.8
RO	ROSCI0104	Lunca Inferioara a Crisului Repede	Н	6.4
RO	ROSCI0105	Lunca Joasa a Prutului	Н	57.5
RO	ROSCI0106	Lunca Mijlocie a Argesului	Н	36.5
RO	ROSCI0108	Lunca Muresului Inferior	Н	174
RO	ROSCI0109	Lunca Timisului	Н	101.7
RO	ROSCI0111	Mestecanisul de la Reci	Н	21.3
RO	ROSCI0115	Mlastina Satchinez	Н	25.2
RO	ROSCI0116	Molhasurile Capatanei	Н	8.1
RO	ROSCI0119	Muntele Mare	Н	16.4
RO	ROSCI0122	Muntii Fagaras	Н	1986.3
RO	ROSCI0123	Muntii Macinului	Н	169.3
RO	ROSCI0124	Muntii Maramuresului	Н	1068.7
RO	ROSCI0125	Muntii Rodnei	Н	479.4
RO	ROSCI0126	Muntii Tarcu	Н	586.1
RO	ROSCI0128	Nordul Gorjului de Est	Н	492
RO	ROSCI0129	Nordul Gorjului de Vest	Н	869.8
RO	ROSCI0130	Oituz - Ojdula	Н	153.4
RO	ROSCI0131	Oltenita - Mostistea - Chiciu	Н	115.2
RO	ROSCI0132	Oltul Mijlociu - Cibin - Hartibaciu	Н	29.1
RO	ROSCI0135	Padurea Barnova - Repedea	Н	122.4
RO	ROSCI0137	Padurea Bogatii	Н	63.4
RO	ROSCI0138	Padurea Bolintin	Н	56.4
RO	ROSCI0149	Padurea Eseschioi - Lacul Bugeac	Н	29.4
RO	ROSCI0152	Padurea Floreanu - Frumusica - Ciurea	Н	189.2

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0154	Padurea Glodeni	Н	11.7
RO	ROSCI0156	Muntii Gosman	Н	171.5
RO	ROSCI0157	Padurea Hagieni - Cotul Vaii	Н	36.8
RO	ROSCI0158	Padurea Balteni - Harboanca	Н	5.4
RO	ROSCI0162	Lunca Siretului Inferior	Н	249.8
RO	ROSCI0166	Padurea Resca Hotarani	Н	16.5
RO	ROSCI0168	Padurea Sarului	Н	67.7
RO	ROSCI0172	Padurea si Valea Canaraua Fetii - Iortmac	Н	136.4
RO	ROSCI0173	Padurea Starmina	Н	27.8
RO	ROSCI0187	Pajistile lui Suciu	Н	160.2
RO	ROSCI0188	Parang	Н	302.9
RO	ROSCI0190	Penteleu	Н	112.8
RO	ROSCI0194	Piatra Craiului	Н	159.1
RO	ROSCI0195	Piatra Mare	Н	42.8
RO	ROSCI0197	Plaja submersa Eforie Nord - Eforie Sud	Н	57.2
RO	ROSCI0198	Platoul Mehedinti	Н	535.6
RO	ROSCI0200	Platoul Vascau	Н	50
RO	ROSCI0201	Podisul Nord Dobrogean	Н	848.8
RO	ROSCI0202	Silvostepa Olteniei	Н	93
RO	ROSCI0206	Portile de Fier	Н	1255.1
RO	ROSCI0207	Postavarul	Н	12.9
RO	ROSCI0208	Putna - Vrancea	Н	380.6
RO	ROSCI0211	Podisul Secaselor	Н	70
RO	ROSCI0213	Raul Prut	Н	105.8
RO	ROSCI0214	Raul Tur	Н	205.4
RO	ROSCI0215	Recifii Jurasici Cheia	Н	56.6
RO	ROSCI0217	Retezat	Н	435.3
RO	ROSCI0218	Dealul Mocrei - Rovina - Ineu	Н	41.9
RO	ROSCI0219	Rusca Montana	Н	127.7
RO	ROSCI0220	Sacueni	Н	7.4
RO	ROSCI0222	Saraturile Jijia Inferioara - Prut	Н	106.7
RO	ROSCI0224	Scrovistea	Н	33.5
RO	ROSCI0225	Seaca - Optasani	Н	21.2
RO	ROSCI0226	Semenic - Cheile Caras	Н	374.6
RO	ROSCI0227	Sighisoara - Tarnava Mare	Н	892.7
RO	ROSCI0229	Siriu	Н	62.4
RO	ROSCI0230	Slanic	Н	13.9
RO	ROSCI0231	Nadab - Socodor - Varsad	Н	78
RO	ROSCI0233	Somesul Rece	Н	85
RO	ROSCI0236	Strei - Hateg	Н	249.8

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0238	Suatu - Cojocna - Crairat	Н	41.6
RO	ROSCI0239	Tarnovu Mare - Latorita	Н	13.6
RO	ROSCI0240	Tasad	Н	15.9
RO	ROSCI0241	Tinovul Apa Lina - Honcsok	Н	78.3
RO	ROSCI0247	Tinovul Mare Poiana Stampei	Н	7
RO	ROSCI0250	Tinutul Padurenilor	Н	70.6
RO	ROSCI0251	Tisa Superioara	Н	62.8
RO	ROSCI0252	Toplita - Scaunul Rotund Borsec	Н	56.2
RO	ROSCI0253	Trascau	Н	499.7
RO	ROSCI0259	Valea Calmatuiului	Н	181.3
RO	ROSCI0260	Valea Cepelor	Н	7.8
RO	ROSCI0262	Valea Iadului	Н	29.8
RO	ROSCI0263	Valea Ierii	Н	62.9
RO	ROSCI0264	Valea Izei si Dealul Solovan	Н	469.4
RO	ROSCI0265	Valea lui David	Н	14.4
RO	ROSCI0266	Valea Oltetului	Н	15.7
RO	ROSCI0267	Valea Rosie	Н	7.9
RO	ROSCI0268	Valea Valsanului	Н	95.8
RO	ROSCI0269	Vama Veche - 2 Mai	Н	123.1
RO	ROSCI0270	Vanatori-Neamt	Н	302
RO	ROSCI0273	Zona marina de la Capul Tuzla	Н	49.5
RO	ROSCI0275	Barsau - Somcuta	Н	47.5
RO	ROSCI0277	Becicherecu Mic	Н	20.9
RO	ROSCI0278	Bordusani - Borcea	Н	58.5
RO	ROSCI0281	Cap Aurora	Н	135.9
RO	ROSCI0283	Cheile Doftanei	Н	26.2
RO	ROSCI0285	Codrii seculari de la Strambu - Baiut	Н	29.6
RO	ROSCI0286	Colinele Elanului	Н	7.4
RO	ROSCI0289	Coridorul Drocea - Codru Moma	Н	32.3
RO	ROSCI0290	Coridorul Ialomitei	Н	271.1
RO	ROSCI0291	Coridorul Muntii Bihorului - Codru Moma	Н	76
RO	ROSCI0292	Coridorul Rusca Montana - Tarcu - Retezat	Н	244.3
RO	ROSCI0293	Costinesti - 23 August	Н	48.8
RO	ROSCI0294	Crisul Alb intre Gurahont si Ineu	Н	11.9
RO	ROSCI0295	Dealurile Clujului de Est	Н	196.2
RO	ROSCI0296	Dealurile Dragasaniului	Н	76.1
RO	ROSCI0297	Dealurile Tarnavei Mici - Biches	Н	373.5
RO	ROSCI0298	Defileul Crisului Alb	Н	165.6
RO	ROSCI0299	Dunarea la Garla Mare - Maglavit	Н	94.9
RO	ROSCI0301	Bogata	Н	36.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0303	Hartibaciu Sud - Est	Н	258.3
RO	ROSCI0304	Hartibaciu Sud - Vest	Н	228.4
RO	ROSCI0305	Ianca - Plopu - Sarat - Comaneasca	Н	32.4
RO	ROSCI0306	Jiana	Н	132.6
RO	ROSCI0308	Lacul si Padurea Cernica	Н	32.9
RO	ROSCI0309	Lacurile din jurul Mascurei	Н	11.4
RO	ROSCI0310	Lacurile Falticeni	Н	8.8
RO	ROSCI0313	Confluenta Mures cu Aries	Н	8.6
RO	ROSCI0314	Lozna	Н	102.1
RO	ROSCI0315	Lunca Chineja	Н	9.2
RO	ROSCI0318	Magura Targu Ocna	Н	8.5
RO	ROSCI0319	Mlastina de la Fetesti	Н	21.1
RO	ROSCI0320	Mociar	Н	39.4
RO	ROSCI0322	Muntele Ses	Н	349.8
RO	ROSCI0323	Muntii Ciucului	Н	600.5
RO	ROSCI0324	Muntii Bihor	Н	209.3
RO	ROSCI0325	Muntii Metaliferi	Н	143.2
RO	ROSCI0326	Muscelele Argesului	Н	100.4
RO	ROSCI0327	Nemira - Lapos	Н	99.8
RO	ROSCI0328	Obcinele Bucovinei	Н	322.1
RO	ROSCI0329	Oltul Superior	Н	15.4
RO	ROSCI0333	Pajistile Sarmasel - Milas - Urmenis	Н	11.3
RO	ROSCI0334	Padurea Buciumeni - Homocea	Н	49.9
RO	ROSCI0335	Padurea Dobrina - Husi	Н	84.5
RO	ROSCI0337	Padurea Neudorfului	Н	45
RO	ROSCI0339	Padurea Povernii - Valea Cernita	Н	9
RO	ROSCI0341	Padurea si Lacul Stolnici	Н	15.3
RO	ROSCI0344	Padurile din Sudul Piemontului Candesti	Н	43.2
RO	ROSCI0345	Pajistea Cenad	Н	59.7
RO	ROSCI0350	Lunca Teuzului	Н	52.9
RO	ROSCI0351	Culmea Cucuieti	Н	65
RO	ROSCI0352	Persani	Н	22.5
RO	ROSCI0354	Platforma Cotmeana	Н	125.6
RO	ROSCI0355	Podisul Lipovei - Poiana Rusca	Н	359.8
RO	ROSCI0357	Porumbeni	Н	69.8
RO	ROSCI0358	Pricop - Huta - Certeze	Н	31.7
RO	ROSCI0359	Prigoria - Bengesti	Н	24.6
RO	ROSCI0360	Raul Barlad intre Zorleni si Gura Garbavotului	Н	24.8
RO	ROSCI0361	Raul Caras	Н	5.4
RO	ROSCI0362	Raul Gilort	Н	8.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSCI0363	Raul Moldova intre Oniceni si Mitesti	Н	33.6
RO	ROSCI0364	Raul Moldova intre Tupilati si Roman	Н	47.2
RO	ROSCI0365	Raul Moldova intre Paltinoasa si Rusi	Н	53.3
RO	ROSCI0366	Raul Motru	Н	18.7
RO	ROSCI0367	Raul Mures intre Moresti si Ogra	Н	6.4
RO	ROSCI0370	Raul Mures intre Lipova si Paulis	Н	6.1
RO	ROSCI0373	Raul Mures intre Branisca si Ilia	Н	18.6
RO	ROSCI0374	Raul Negru	Н	23.2
RO	ROSCI0376	Raul Olt intre Maruntei si Turnu Magurele	Н	122.2
RO	ROSCI0377	Raul Putna	Н	6.5
RO	ROSCI0378	Raul Siret intre Pascani si Roman	Н	37.5
RO	ROSCI0379	Raul Suceava	Н	11
RO	ROSCI0380	Raul Suceava Liteni	Н	12.5
RO	ROSCI0381	Raul Targului - Argesel - Rausor	Н	131.8
RO	ROSCI0382	Raul Tarnava Mare intre Copsa Mica si Mihalt	Н	8.9
RO	ROSCI0385	Raul Timis intre Rusca si Prisaca	Н	14
RO	ROSCI0386	Raul Vedea	Н	91.6
RO	ROSCI0387	Salonta	Н	37.9
RO	ROSCI0391	Siretul Mijlociu - Bucecea	Н	5.9
RO	ROSCI0393	Somesul Mare	Н	5.3
RO	ROSCI0395	Soveja	Н	45.7
RO	ROSCI0399	Suharau - Darabani	Н	19.7
RO	ROSCI0400	Sieu - Budac	Н	8.6
RO	ROSCI0406	Zarandul de Est	Н	202.6
RO	ROSCI0407	Zarandul de Vest	Н	88.7
RO	ROSCI0411	Grosii Tiblesului	Н	9.3
RO	ROSCI0424	Padurea si Lacul Margineni	Н	22.3
RO	ROSCI0427	Pajistile de la Liteni - Savadisla	Н	24.3
RO	ROSCI0434	Siretul Mijlociu	Н	29.7
RO	ROSCI0435	Somesul intre Rona si Ticau	Н	5
RO	ROSCI0436	Somesul Inferior	Н	22
RO	ROSCI0439	Valea Chiurutilor	Н	12.5
RO	ROSPA0002	Allah Bair - Capidava	В	117.2
RO	ROSPA0003	Avrig - Scorei - Fagaras	В	29.4
RO	ROSPA0004	Balta Alba - Amara - Jirlau	В	47.5
RO	ROSPA0005	Balta Mica a Brailei	В	258
RO	ROSPA0006	Balta Tataru	В	99.6
RO	ROSPA0007	Balta Vederoasa	В	21.4
RO	ROSPA0008	Baneasa - Canaraua Fetei	В	61
RO	ROSPA0010	Bistret	В	20.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSPA0011	Blahnita	В	440.1
RO	ROSPA0012	Bratul Borcea	В	133
RO	ROSPA0013	Calafat - Ciuperceni - Dunare	В	293.8
RO	ROSPA0014	Campia Cermeiului	В	244.8
RO	ROSPA0015	Campia Crisului Alb si Crisului Negru	В	391.6
RO	ROSPA0016	Campia Nirului - Valea Ierului	В	383.5
RO	ROSPA0017	Canaralele de la Harsova	В	73.1
RO	ROSPA0018	Cheile Bicazului - Hasmas	В	79.4
RO	ROSPA0019	Cheile Dobrogei	В	109.2
RO	ROSPA0020	Cheile Nerei - Beusnita	В	403
RO	ROSPA0021	Ciocanesti - Dunare	В	8
RO	ROSPA0022	Comana	В	249.8
RO	ROSPA0023	Confluenta Jiu - Dunare	В	195.3
RO	ROSPA0024	Confluenta Olt - Dunare	В	204.9
RO	ROSPA0025	Cozia - Buila - Vanturarita	В	217.4
RO	ROSPA0026	Cursul Dunarii - Bazias - Portile de Fier	В	103.3
RO	ROSPA0027	Dealurile Homoroadelor	В	366.6
RO	ROSPA0028	Dealurile Tarnavelor si Valea Nirajului	В	861.6
RO	ROSPA0029	Defileul Muresului Inferior - Dealurile Lipovei	В	559.5
RO	ROSPA0030	Defileul Muresului Superior	В	101.6
RO	ROSPA0031	Delta Dunarii si Complexul Razim - Sinoie	В	5083.2
RO	ROSPA0033	Depresiunea si Muntii Giurgeului	В	878.7
RO	ROSPA0034	Depresiunea si Muntii Ciucului	В	517.9
RO	ROSPA0035	Domogled - Valea Cernei	В	667.4
RO	ROSPA0037	Dumbravita - Rotbav - Magura Codlei	В	44.3
RO	ROSPA0038	Dunare - Oltenita	В	59.3
RO	ROSPA0039	Dunare - Ostroave	В	162.4
RO	ROSPA0040	Dunarea Veche - Bratul Macin	В	190.1
RO	ROSPA0042	Elesteiele Jijiei si Miletinului	В	190.8
RO	ROSPA0043	Frumoasa	В	1309
RO	ROSPA0044	Gradistea - Caldarusani - Dridu	В	64.7
RO	ROSPA0045	Gradistea Muncelului - Ciclovina	В	381.1
RO	ROSPA0046	Gruia - Garla Mare	В	29.6
RO	ROSPA0047	Hunedoara Timisana	В	15.3
RO	ROSPA0048	Ianca - Plopu - Sarat	В	20.3
RO	ROSPA0049	Iazurile de pe valea Ibanesei - Baseului - Podrigai	В	27.7
RO	ROSPA0050	Iazurile Mihesu de Campie - Taureni	В	11.9
RO	ROSPA0051	Iezerul Calarasi	В	50.1
RO	ROSPA0053	Lacul Bugeac	В	13.9
RO	ROSPA0054	Lacul Dunareni	В	12.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
RO	ROSPA0055	Lacul Galatui	В	8.1
RO	ROSPA0056	Lacul Oltina	В	33.1
RO	ROSPA0057	Lacul Siutghiol	В	18.6
RO	ROSPA0058	Lacul Stanca Costesti	В	21.9
RO	ROSPA0059	Lacul Strachina	В	20.2
RO	ROSPA0060	Lacurile Tasaul - Corbu	В	27.3
RO	ROSPA0061	Lacul Techirghiol	В	29.5
RO	ROSPA0062	Lacurile de acumulare de pe Arges	В	22.9
RO	ROSPA0063	Lacurile de acumulare Buhusi - Bacau - Beresti	В	56.1
RO	ROSPA0064	Lacurile Falticeni	В	7.9
RO	ROSPA0065	Lacurile Fundata - Amara	В	20.5
RO	ROSPA0066	Limanu - Herghelia	В	8.8
RO	ROSPA0067	Lunca Barcaului	В	52.9
RO	ROSPA0068	Lunca inferioara a Turului	В	205.4
RO	ROSPA0069	Lunca Muresului Inferior	В	174
RO	ROSPA0070	Lunca Prutului - Vladesti - Frumusita	В	146
RO	ROSPA0071	Lunca Siretului Inferior	В	374.8
RO	ROSPA0072	Lunca Siretului Mijlociu	В	103.3
RO	ROSPA0073	Macin - Niculitel	В	673.1
RO	ROSPA0074	Maglavit	В	36.4
RO	ROSPA0075	Magura Odobesti	В	131.7
RO	ROSPA0076	Marea Neagra	В	1491.5
RO	ROSPA0080	Muntii Almajului - Locvei	В	1177.8
RO	ROSPA0081	Muntii Apuseni - Vladeasa	В	928.6
RO	ROSPA0082	Muntii Bodoc - Baraolt	В	566.5
RO	ROSPA0084	Muntii Retezat	В	383.2
RO	ROSPA0085	Muntii Rodnei	В	548.2
RO	ROSPA0086	Muntii Semenic - Cheile Caras	В	362.2
RO	ROSPA0087	Muntii Trascaului	В	931.6
RO	ROSPA0088	Muntii Vrancei	В	380.6
RO	ROSPA0089	Obcina Feredeului	В	637.6
RO	ROSPA0090	Ostrovu Lung - Gostinu	В	25.4
RO	ROSPA0091	Padurea Babadag	В	579.1
RO	ROSPA0092	Padurea Barnova	В	126.9
RO	ROSPA0093	Padurea Bogata	В	63.4
RO	ROSPA0095	Padurea Macedonia	В	45.8
RO	ROSPA0096	Padurea Miclesti	В	86.1
RO	ROSPA0097	Pescaria Cefa - Padurea Radvani	В	120.9
RO	ROSPA0098	Piemontul Fagaras	В	712
RO	ROSPA0099	Podisul Hartibaciului	В	2377.9

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
RO	ROSPA0100	Stepa Casimcea	В	219.6
RO	ROSPA0101	Stepa Saraiu - Horea	В	41.3
RO	ROSPA0102	Suhaia	В	45.2
RO	ROSPA0103	Valea Alceului	В	36
RO	ROSPA0104	Bazinul Fizesului	В	16.5
RO	ROSPA0105	Valea Mostistea	В	66.2
RO	ROSPA0106	Valea Oltului Inferior	В	527.9
RO	ROSPA0107	Vanatori - Neamt	В	307.1
RO	ROSPA0108	Vedea - Dunare	В	224.1
RO	ROSPA0109	Acumularile Belcesti	В	21
RO	ROSPA0110	Acumularile Rogojesti - Bucecea	В	21.1
RO	ROSPA0112	Campia Gherghitei	В	76
RO	ROSPA0113	Canepisti	В	62
RO	ROSPA0114	Cursul Mijlociu al Somesului	В	332.1
RO	ROSPA0115	Defileul Crisului Repede - Valea Iadului	В	171.6
RO	ROSPA0116	Dorohoi - saua Bucecei	В	253.6
RO	ROSPA0117	Drocea - Zarand	В	407
RO	ROSPA0119	Horga - Zorleni	В	202.1
RO	ROSPA0120	Kogalniceanu - Gura Ialomitei	В	70.9
RO	ROSPA0121	Lacul Brates	В	158.8
RO	ROSPA0122	Lacul si Padurea Cernica	В	37.8
RO	ROSPA0123	Lacurile de acumulare de pe Crisul Repede	В	18.6
RO	ROSPA0124	Lacurile de pe Valea Ilfovului	В	6
RO	ROSPA0127	Lunca Barzavei	В	23.9
RO	ROSPA0128	Lunca Timisului	В	135.1
RO	ROSPA0129	Masivul Ceahlau	В	277.2
RO	ROSPA0130	Mata - Carja - Radeanu	В	58.7
RO	ROSPA0131	Muntii Maramuresului	В	710.5
RO	ROSPA0132	Muntii Metaliferi	В	266.7
RO	ROSPA0133	Muntii Calimani	В	291.6
RO	ROSPA0134	Muntii Gutai	В	284.4
RO	ROSPA0135	Nisipurile de la Dabuleni	В	110.1
RO	ROSPA0136	Oltenita - Ulmeni	В	124.1
RO	ROSPA0137	Padurea Radomir	В	12.4
RO	ROSPA0138	Piatra soimului - Scorteni - Garleni	В	373.9
RO	ROSPA0139	Piemontul Muntilor Metaliferi - Vintu	В	83.7
RO	ROSPA0140	Scrovistea	В	33.5
RO	ROSPA0141	Subcarpatii Vrancei	В	357.6
RO	ROSPA0142	Teremia Mare - Tomnatic	В	66.1
RO	ROSPA0143	Tisa Superioara	В	28.6

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RO	ROSPA0144	Uivar - Dinias	В	100.1
RO	ROSPA0145	Valea Calmatuiului	В	208.6
RO	ROSPA0146	Valea Calnistei	В	25.8
RO	ROSPA0147	Valea Raului Negru	В	23.2
RO	ROSPA0148	Vitanesti - Rasmiresti	В	11.1
RO	ROSPA0149	Depresiunea Bozovici	В	96.7
RO	ROSPA0150	Acumularile Sarca - Podu Iloaiei	В	19.3
RO	ROSPA0152	Coridorul Ialomitei	В	253.1
RO	ROSPA0153	Defileul Crisului Alb	В	165.6
RO	ROSPA0154	Galicea Mare - Bailesti	В	61.6
RO	ROSPA0156	Iazul Mare - Stauceni - Dracsani	В	22.4
RO	ROSPA0158	Lacul Ciurbesti-Fanatele Barca	В	5.2
RO	ROSPA0159	Lacurile din jurul Mascurei	В	11.4
RO	ROSPA0160	Lunca Buzaului	В	95.8
RO	ROSPA0161	Lunca Mijlocie a Argesului	В	36.5
RO	ROSPA0162	Manjesti	В	10.1
RO	ROSPA0163	Padurea Floreanu - Frumusica - Ciurea	В	189.2
RO	ROSPA0165	Piatra Craiului	В	159.1
RO	ROSPA0167	Raul Barlad intre Zorleni si Gura Garbavatului	В	23.4
RO	ROSPA0168	Raul Prut	В	76.6
RO	ROSPA0169	Tinovul Apa Lina - Honcsok	В	78.3
RO	ROSPA0171	Valea Izei si Dealul Solovan	В	469.4
RO	ROT	Cefa	0	50
RO	ROV.1.	Lunca Muresului	0	173.6
RO	ROV.2	Lunca Joasa a Prutului Inferior	0	72.6
RO	ROV.3.	Comana	0	249.6
RO	ROV.4.	Geoparcul Dinozaurilor Tara Hategului	0	1000
RO	ROV.5.	Muntii Maramuresului	0	1300
RO	ROV.6.	Geoparcul Platoul Mehedinti	0	1100
RO	ROV.7.	Putna - Vrancea	0	381.9
RS	RS121	Nacionalni park Fruška Gora	0	266.5
RS	RS155	Deliblatska pešcara	0	352.9
RS	RS314	Nacionalni park _Djerdap	0	637.3
RS	RS352	Klisura reke Mileševke	0	12.4
RS	RS365	Sicevacka klisura	0	77.4
RS	RS4514	Potamišje	0	239.8
RS	RS4518	Kanjiški jaraši	0	35.5
RS	RS4524	Slatine u dolini Zlatice	0	35.9
RS	RS4525	Gornja Mostonga	0	35.9
RS	RS4526	Slatine srednjeg Banata	0	94.1

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
RS	RS4529	Srednja Mostonga	0	31.2
RS	RS4530	Poloj	0	20.3
RS	RS471	Nacionalni park Kopaonik	0	120.8
RS	RS483	Suboticka Pešcara	0	55
RS	RS484	Palic	0	7.4
RS	RS485	Gornje podunavlje	0	193.7
RS	RS50	Obedska bara	0	98.9
RS	RS571	Klisura reke Gradac	0	12.3
RS	RS595	Uvac	0	77.5
RS	RS599	Zasavica	0	11.2
RS	RS601	Pašnjaci Velike Droplje	0	68
RS	RS602	Karadjordjevo	0	42.4
RS	RS603	Selevenjske pustare	0	18.7
RS	RS604	Stara planina	0	1132.8
RS	RS605	Tikvara	0	5.5
RS	RS608	Koviljsko-petrovaradinski rit	0	58.9
RS	RS612	Lazarev kanjon	0	18.1
RS	RS613	Ovcarsko-kablarska klisura	0	22.8
RS	RS615	Golija	0	759.4
RS	RS619	Slano Kopovo	0	9.7
RS	RS64	Ludaško jezero	0	8.6
RS	RS661	Šargan-Mokra Gora	0	108.1
RS	RS663	Jegricka	0	11.4
RS	RS666	Vlasina	0	126.8
RS	RS686	Stara Tisa kod Bisernog Ostrva	0	9.7
RS	RS69	Carska bara	0	47.3
RS	RS706	Okanj bara	0	55
RS	RS709	Mali vršacki rit	0	9.3
RS	RS715	Bojcinska šuma	0	6.7
RS	RS722	Rusanda	0	11.6
RS	RS723	Goc-Gvozdac	0	39.5
RS	RS724	Kamena Gora	0	77.8
RS	RS725	Jerma	0	69.6
RS	RS728	Ozren - Jadovnik	0	102.8
RS	RS729	Ritovi donjeg Potisja	0	30.1
RS	RS732	Karaš-Nera	0	15.4
RS	RS735	Suva planina	0	181.7
RS	RS742	Backotopolske doline	0	5.1
RS	RS743	Radan	0	413
RS	RS744	Zlatibor	0	419.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
RS	RS748	Rtanj	0	54.2
RS	RS749	Pancevacke ade	0	13.1
SI	SI3000051	Krakovski gozd	Н	34.2
SI	SI3000059	Mirna	Н	5.5
SI	SI3000062	Gradac	Н	15.1
SI	SI3000075	Lahinja	Н	8.5
SI	SI3000100	Gozd Kranj - Škofja Loka	Н	19.4
SI	SI3000101	Gozd Olševek - Adergas	Н	8.4
SI	SI3000108	Raduha	Н	16.3
SI	SI3000110	Ratitovec	Н	23.3
SI	SI3000117	Haloze - vinorodne	Н	63
SI	SI3000118	Boč - Haloze - Donačka gora	Н	108.8
SI	SI3000120	Šmarna gora	Н	16.9
SI	SI3000126	Nanoščica	Н	7.7
SI	SI3000166	Razbor	Н	14.5
SI	SI3000171	Radensko polje - Viršnica	Н	5.2
SI	SI3000172	Zgornja Drava s pritoki	Н	46.8
SI	SI3000173	Bloščica	Н	7.9
SI	SI3000175	Kolpa	Н	6.7
SI	SI3000181	Kum	Н	59.5
SI	SI3000188	Ajdovska planota	Н	24.1
SI	SI3000191	Ajdovska jama	Н	17.2
SI	SI3000192	Radulja s pritoki	Н	13.1
SI	SI3000205	Kandrše - Drtijščica	Н	13.6
SI	SI3000206	Lubnik	Н	12.7
SI	SI3000214	Ličenca pri Poljčanah	Н	27.3
SI	SI3000215	Mura	Н	100.7
SI	SI3000219	Grad Brdo - Preddvor	Н	5.8
SI	SI3000220	Drava	Н	36.9
SI	SI3000221	Goričko	Н	448.2
SI	SI3000224	Huda luknja	Н	30.2
SI	SI3000231	Javorniki - Snežnik	Н	440.4
SI	SI3000232	Notranjski trikotnik	Н	152.3
SI	SI3000253	Julijske Alpe	Н	740.9
SI	SI3000256	Krimsko hribovje - Menišija	Н	203.3
SI	SI3000257	Rački ribniki - Požeg	Н	6.1
SI	SI3000261	Menina	Н	41.8
SI	SI3000262	Sava - Medvode - Kresnice	Н	11.2
SI	SI3000263	Kočevsko	Н	1068
SI	SI3000264	Kamniško - Savinjske Alpe	Н	145.7

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
SI	SI3000267	Gorjanci - Radoha	Н	118
SI	SI3000268	Dobrava - Jovsi	Н	28.7
SI	SI3000270	Pohorje	Н	275.7
SI	SI3000271	Ljubljansko barje	Н	129.6
SI	SI3000273	Orlica	Н	38.3
SI	SI3000274	Bohor	Н	68.3
SI	SI3000275	Rašica	Н	22.4
SI	SI3000278	Pokljuška barja	Н	8.6
SI	SI3000280	Veliko Kozje	Н	6
SI	SI3000285	Karavanke	Н	230.9
SI	SI3000288	Dolsko	Н	8.7
SI	SI3000297	Mišja dolina	Н	6.4
SI	SI3000303	Sotla s pritoki	Н	5.3
SI	SI3000306	Dravinja s pritoki	Н	5.4
SI	SI3000311	Vitanje - Oplotnica	Н	13
SI	SI3000313	Vzhodni Kozjak	Н	16.9
SI	SI3000335	Polhograjsko hribovje	Н	29.7
SI	SI3000338	Krka s pritoki	Н	24.5
SI	SI3000348	Bohinjska Bistrica in Jereka	Н	7.3
SI	SI5000001	Jelovica	В	97.7
SI	SI500002	Snečnik - Pivka	В	549.3
SI	SI5000005	Dravinjska dolina	В	19.1
SI	SI5000006	Pohorje	В	186.9
SI	SI5000009	Goričko	В	402
SI	SI5000010	Mura	В	144.6
SI	SI5000011	Drava	В	100.3
SI	SI5000012	Krakovski gozd - Šentjernejsko polje	В	83.5
SI	SI5000013	Kočevsko	В	979.4
SI	SI5000014	Ljubljansko barje	В	123.7
SI	SI5000015	Cerkniško jezero	В	33.5
SI	SI5000016	Planinsko polje	В	10.5
SI	SI5000017	Nanoščica	В	19.3
SI	SI5000019	Julijci	В	886.5
SI	SI5000024	Grintovci	В	319.6
SI	SI5000026	Posavsko hribovje	В	35.2
SI	SI5000027	Črete	В	14.5
SI	SI5000029	Gluha loza	В	14.4
SI	SI5000030	Karavanke	В	43.3
SI	SI5000032	Dobrava - Jovsi	В	28.5
SK	SKCHVU002	Bukovské vrchy	В	409.3

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
SK	SKCHVU003	Cerová vrchovina - Porimavie	В	301.9
SK	SKCHVU005	Dolné Považie	В	312
SK	SKCHVU007	Dunajské luhy	В	165.1
SK	SKCHVU008	Horná Orava	В	587.4
SK	SKCHVU009	Košická kotlina	В	173.5
SK	SKCHVU010	Kráľová	В	12.2
SK	SKCHVU013	Malá Fatra	В	662.3
SK	SKCHVU015	Medzibodrožie	В	337.5
SK	SKCHVU016	Záhorské Pomoravie	В	310.7
SK	SKCHVU019	Ostrovné lúky	В	83
SK	SKCHVU021	Poiplie	В	80.6
SK	SKCHVU023	Úľanská mokraď	В	181.7
SK	SKCHVU024	Senianske rybníky	В	26.7
SK	SKCHVU026	Sĺňava	В	5.1
SK	SKCHVU027	Slovenský kras	В	438.6
SK	SKCHVU037	Ondavská rovina	В	159.1
SK	SKCHVU051	Levočské vrchy	В	456
SK	SKUEV0006	Latorica	Н	75
SK	SKUEV0036	Litava	Н	26.3
SK	SKUEV0048	Dukla	Н	68.6
SK	SKUEV0057	Rašeliniská Oravskej kotliny	Н	8.4
SK	SKUEV0064	Bratislavské luhy	Н	6.9
SK	SKUEV0090	Dunajské luhy	Н	45.4
SK	SKUEV0104	Homol'ské Karpaty	Н	51.8
SK	SKUEV0110	Levočská dubina	Н	6
SK	SKUEV0112	Slovenský raj	Н	168.7
SK	SKUEV0125	Gajarské alúvium Moravy	Н	12.4
SK	SKUEV0130	Zobor	Н	19.1
SK	SKUEV0163	Rudava	Н	19.6
SK	SKUEV0168	Horný les	Н	5.6
SK	SKUEV0173	Kotlina	Н	6.2
SK	SKUEV0188	Pilsko	Н	7
SK	SKUEV0189	Babia hora	Н	5
SK	SKUEV0192	Prosečné	Н	23
SK	SKUEV0194	Hybická tiesňava	Н	5.6
SK	SKUEV0197	Salatín	Н	33.5
SK	SKUEV0203	Stolica	Н	28.1
SK	SKUEV0205	Hubková	Н	27.9
SK	SKUEV0209	Morské oko	Н	160.1
SK	SKUEV0210	Stinská	Н	15.3

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km ²
SK	SKUEV0211	Daňová	Н	9
SK	SKUEV0225	Muránska planina	Н	202.6
SK	SKUEV0229	Bukovské vrchy	Н	292.3
SK	SKUEV0238	Veľká Fatra	Н	463.5
SK	SKUEV0251	Zázrivské lazy	Н	29.3
SK	SKUEV0252	Malá Fatra	Н	222.5
SK	SKUEV0256	Strážovské vrchy	Н	299.7
SK	SKUEV0259	Stará hora	Н	24
SK	SKUEV0263	Hodrušská hornatina	Н	102.7
SK	SKUEV0264	Klokoč	Н	22.8
SK	SKUEV0265	Suť	Н	90.4
SK	SKUEV0266	Skalka	Н	97.2
SK	SKUEV0267	Biele hory	Н	101.5
SK	SKUEV0269	Ostrovné lúčky	Н	6.3
SK	SKUEV0273	Vtáčnik	Н	100.6
SK	SKUEV0274	Baské	Н	40.3
SK	SKUEV0275	Kňaží stôl	Н	42.3
SK	SKUEV0276	Kuchynská hornatina	Н	32.8
SK	SKUEV0278	Brezovské Karpaty	Н	26.7
SK	SKUEV0279	Šúr	Н	6.6
SK	SKUEV0282	Tisovský kras	Н	14.7
SK	SKUEV0287	Galmus	Н	32
SK	SKUEV0288	Kysucké Beskydy	Н	70
SK	SKUEV0295	Biskupické luhy	Н	9.2
SK	SKUEV0299	Baranovo	Н	8.6
SK	SKUEV0302	Ďumbierske Tatry	Н	440.3
SK	SKUEV0305	Choč	Н	16.3
SK	SKUEV0306	Pod Suchým hrádkom	Н	7.5
SK	SKUEV0307	Tatry	Н	669.9
SK	SKUEV0310	Kráľovohoľské Tatry	Н	304.8
SK	SKUEV0313	Devínske jazero	Н	12.6
SK	SKUEV0318	Pod Bukovou	Н	5.4
SK	SKUEV0319	Pol'ana	Н	30.7
SK	SKUEV0326	Strahuľka	Н	11.7
SK	SKUEV0327	Milič	Н	51.1
SK	SKUEV0328	Stredné Pohornádie	Н	70.9
SK	SKUEV0331	Čergovský Minčol	Н	42.6
SK	SKUEV0332	Čergov	Н	60.3
SK	SKUEV0337	Pieniny	Н	13
SK	SKUEV0356	Horný vrch	Н	60.3

Country	Protected Area code	Name of Protected Area	Type(s)	Area in km²
SK	SKUEV0357	Cerová vrchovina	Н	26.3
SK	SKUEV0366	Drienčanský kras	Н	16.1
SK	SKUEV0367	Holubyho kopanice	Н	39
SK	SKUEV0387	Beskyd	Н	53.5
SK	SKUEV0393	Dunaj	Н	14.3
SK	SKUEV0642	Javornícky hrebeň	Н	13.6
SK	SKUEV0663	Šíp	Н	17.9
SK	SKUEV1337	Pieniny	Н	13.9
UA	UA0000006	Carpathian Biosphere Reserve	0	576.7
UA	UA0000026	Synevyr National Nature Park	0	399.7
UA	UA0000032	Uzhanskyi	0	394.3
UA	UA0000041	Zacharovanyi Krai National Nature Park	0	60.3
UA	UA0000113	Pritisanskij regional landscape park	0	53.1
UA	UA0000259	Skhidnyi Svydovets	0	149.8
UA	UA0000263	Polonyna Borzhava	0	44.6
UA	UA0000269	Vynohradivska Tysa	0	59.6
UA	UA0000270	Ponyzzia Borzhavy	0	40.5
UA	UA01	Danube Biosphere reserve	0	531.6
UA	UA02	Izmail Islands	0	15.7
UA	UA11	Kartal lake	0	7.9
UA	UA12	Kugurlui Lake	0	84.6
UA	UA37	Lung	0	17.5
UA	UA41	Pistenka	0	26.6
UA	UA42	Gutsulshina	0	388.4
UA	UA43	Cheremoshskiy	0	235.3
UA	UA44	Verhovynskiy	0	103.7
UA	UA47	Chernivetskiy	0	201.3
UA	UA48	Vyzhnytskyi	0	128.9
UA	UA50	Carpathian National Park	0	528.9

OVERVIEW OF KEY MEASURES TO AVOID THE EXTINCTION OF DANUBE STURGEONS AND NECESSARY SUPPORTIVE ACTIONS

ANNEX 12

Overview of key measures to avoid the extinction of Danube sturgeons and necessary supportive actions

1. Ex situ broodstocks/ Reproduction and release programmes

Given the critically endangered status of the Danube sturgeon species and the high risk of their extinction, even in the short term, it is an urgent priority to establish non-commercial/non-private facilities, both in the Upper/Middle Danube and the Lower Danube, for authentic Danube sturgeon broodstocks to secure the genetic diversity of all sturgeon populations by establishing basin-wide so-called ex-situ programmes following best practice guidelines for husbandry with secure funding for construction and operation and jointly managed by catchment countries. Back-up facilities need to be established to minimise the risk of losing the genetic resources due to technical or other failures. Long term breeding plans need to be established and regular control of husbandry methods have to ensure genetic purity and diversity as well as fitness for survival of juveniles from these facilities.

Reproduction and release programmes must be put in place and implemented following the best practice guidelines and monitored to control the success rate of release actions. The regional coherence of measures has to be secured through basin-wide coordination for all population restoration facilities and monitoring actions

2. Follow-up of the We Pass project

The We Pass project is the first concrete project to identify technical solutions for restoring a major ecological corridor for sturgeon migration in the Danube River Basin across the Iron Gate dams. It aims to provide significant benefits at the scale of the River Basin by creating access to sturgeons from the Black Sea to almost 1000 kms of the Danube and its associated habitats for, inter alia, spawning and nursery purposes. The search for solutions, which will benefit all migratory fish in the Danube, has received significant financial support from the EU. The corresponding activities of the ICPDR and Contracting Parties are fully in line with the European Green Deal and the proposed EU Biodiversity Strategy 2030 with its emphasis on restoring freshwater ecosystems, the natural function of rivers and restoration of rivers into free-flowing rivers. The ICPDR is committed to follow through with implementation of solutions to ensure sturgeon migration across the Iron Gate and to ensure that infrastructure development in the Danube River Basin does not prejudice ecological connectivity in the basin and ensure that, with a view to this, Article 4(7) of the Water Framework Directive is strictly applied.

3. Effectively enforced multi-decadal fishing bans

Restoration of habitats and migration corridors will not be effective unless fishing of sturgeon remains prohibited until viable populations are established. For the Danube this will require a multi-decadal approach. Any exceptional catch allowance e.g. for scientific purposes or the establishment of artificially maintained populations in special facilities must also be monitored closely. The implementation and enforcement of existing legislation to prevent illegal, unregulated and undocumented (IUU) fisheries in marine and freshwater must be strengthened and adequate resources as well as continuous capacity building and targeted training for relevant enforcement authorities need to be provided. The fishing sector must be involved and alternative income sources for affected communities developed.

4. Habitats, Migration Corridors and Controls on Infrastructure Development

Successful sturgeon migration, which is a necessary component of their natural lifecycle, depends on the availability of different habitats along their migration route as well as on their ability to overcome any existing barriers which can prevent their migration. The network of habitats and migration routes must extend to the scale of the Basin in order to be effective. Habitat availability is understood in terms of both location and timing of habitat use as well as the resources and conditions needed to enable this use. Mapping of different sturgeon habitats on the Danube River and its tributaries is highly important. A first basin-wide map was developed in the MEASURES project and will need continuous and coordinated updating, based on the shared set of methods and techniques described in the MEASURES project "Danube Migratory Fish Habitat Manual" to ensure comparability and interoperability throughout the basin. It will enable all countries in the Danube River Basin to coordinate their activities concerning mapping sturgeon habitats, mapping and monitoring of any disturbances by human activities (e.g. dredging, port construction, dams or weirs) and potential restoration measures. Special consideration will have to be given to ensure the full implementation of the requirements of Article 4(7) of the WFD to minimize the impact on sturgeon habitats and migration routes due to changes in hydrology and structure of water bodies, e.g. as a result of new infrastructure or activities in the riverbed. A map of sturgeon habitats could be available as a useful tool when assessing future infrastructure works and enabling environmental impact assessment for particular sectors of the Danube River Basin.

5. Monitoring and control of by-catch in marine fisheries

While there are no records of incidental bycatch of sturgeon in Black Sea fisheries, it is equally clear that given the critical state of stocks and the acute risk of extinction of the remaining sturgeons that bycatch in marine fisheries may threaten the effectiveness of conservation action taken in the Danube River Basin. It will therefore be important for ICPDR and Contracting Parties to seek cooperation with fisheries and environmental authorities in non-Danubian Black Sea States, the Black Sea Commission, FAO (GFCM) and the World Bank/GEF to seek improved information on the extent to which such bycatch is taking place and its impact on sturgeon populations and identify coherent regional management options (such as technical solutions, fisheries restrictions, closed areas and seasons) with a view to their implementation and establishing the appropriate monitoring thereof. Action in this respect will bring the ICPDR into line with the proposed EU Biodiversity Strategy 2030 and its emphasis on eliminating by-catch or reducing it to levels allowing full recovery of species threatened with extinction in marine fisheries.

6. Coordination with sturgeon conservation in the Black Sea Basin

As the Danube sturgeon populations are shared with those of the Black Sea Basin, coordination with marine management and conservation efforts in that basin is crucial to ensure the effectiveness of actions in the Danube River Basin. It is therefore important for the ICPDR and its Contracting Parties to seek actively specific and close cooperation on sturgeon conservation in the Black Sea, inter alia with the Black Sea Commission, FAO (GFCM), the World Bank and GEF as well as Black Sea States on issues such as monitoring of sturgeon populations and the impact of marine fisheries on these, protection of sturgeons through technical fisheries regulation and designation of marine protected areas. Furthermore, it will be important to cooperate with non-Danubian States in the Black Sea Basin on protection and conservation of sturgeon in their internal and inland waters.

The objective of the wider cooperation with Black Sea Basin States and the relevant international organisations should be to ensure a regional coherence of measures and approaches to maximise the effectiveness of policies and measures.

4

The effectiveness of the actions outlined above is critically dependent on a number of additional, supportive actions that are also required to facilitate effective management of sturgeon conservation in the Danube River Basin. The most important issues are the following:

7. Sturgeon Population Monitoring

The impact of implemented measures for improving sturgeon populations in the Danube River Basin is impossible to monitor without prior knowledge of status of native stocks of sturgeons. Due to the migratory nature of the sturgeon, monitoring needs to be based on agreed common metrics and methodologies, a shared monitoring network and interoperable equipment throughout the Danube River Basin and the adjacent Black Sea catchment. It is necessary to integrate sturgeon monitoring into fisheries management plans in each country and to collect monitoring data on a basin-wide scale. It could include monitoring annual recruitment from the wild and capturing young of the year (YOY) sturgeons, sampling and tagging YOY sturgeons and sampling and telemetry study of adult sturgeons. Telemetry is the most effective monitoring technique and will require standardized equipment throughout the monitoring area. As some scientists from Danubian countries are active in COST Action "The European Aquatic Animal Tracking Network" (ETN) this network could be used as scientific base for the preparation of a sturgeon telemetry study. National fisheries authorities, fishermen and relevant international organisations should be involved to enable effective implementation of sturgeon telemetry study.

8. Establishment and maintenance of a Danube Migratory Fish Database

This will support the implementation of "Strategy for ecological corridor conservation in the Danube catchment" developed under the MEASURES project. The MIS will be used to collect relevant information on migratory fish and their habitats in the Danube River Basin and allow users to find and visualise specific information about particular migratory fish and their habitats more easily. MIS has a Library (open access publications, articles and reports), a meta database (relevant datasets in the region) and a Data Centre (monitoring data of migratory fish including habitats and corridors). It will thus also be a one-stop shop for information for use in management of the recovery of sturgeon populations in the Danube River Basin. Like other such databases, MIS will need to be maintained and regularly updated to retain its utility as a management tool.

ECONOMIC ANALYSIS

ANNEX 13

The economics analysis of the DRBMP Update 2021 is based on a questionnaire sent out to the Danube countries in autumn 2019 and spring 2020, for the collection of qualitative information on economics important in the framework of WFD implementation (e.g. cost recovery, water pricing, environmental and resource costs etc.). The questionnaire presented the data which was included in the DRBMP Update 2015, and asked the countries to update the information.

The tables in this Annex provide the updated information; the corresponding chapter 7 presents an overview of the approaches which are in place in the Danube countries in text form. Data from all countries are included, with the exception of the Republic of Moldova.

Note: Data from Serbia does not include data from the Autonomous Provinces Kosovo and Metohija.

Country	Demand and Supply Costs ¹ [EUR]	Only demand costs [EUR]	Only investment costs (without distinguishing) [EUR]
DE	-	-	Water supply services: 340 million EUR / year (National total in 2017 approx. 2.7 Billon EUR/year) Waste water services: Approx. 610 million EUR/year (National total in 2016 approx. 4.9 Billon EUR)
AT	-	-	3.3 billion (2013 - 2018)
CZ	-	Data not yet available	Data not yet available
SK	-	-	501.41 million EUR** (water supply + wastewater) of which: water supply: 36.52 million, wastewater: 464.89 million
HU***	-	-	Water supply: 59 646 million HUF 192.3 million EUR (2016-2021) Waste water: 300 579 million HUF 959 million EUR (2016-2021)
SI	-	-	Water supply: Investment costs in the period from 2013 to 2018: 816,6 million. EUR Waste water treatment Total investment costs in the period from 2013 to 2018: - for agglomerations above 2.000 PE for collection systems: 424 million. EUR - for UWWTPs with capacity above 2.000 PE (secondary and tertiary treatment): 225 million. EUR
HR	-	-	2,9 billion € for waste water; 335 million € for water supply; (investment Plan 2014-2023 for whole territory of Croatia)
ВА	-	1.1 billion	Water supply services: 390.82 million EUR (2016-2021) Waste water services: 705.70 million EUR (2016-2021)

Table 1: Investment costs for water supply and wastewater*

¹ According to the questionnaires: demand cost are the "total costs related to implementing the EU Directives"; supply costs are the investment costs that could be realistically covered.

ME	-	-	Urban Waste Water investment costs are estimated at \notin 350.4 million to be incurred prior to 2035. Drinking water Investment costs are estimated at \notin 71 Million to be incurred prior to 2025.
RS	-	-	Total investments for DWD approx. 1.4 billion EUR Total investments for UWWT approx. 4.5 billion EUR
RO			29.411.781 EUR – water supply and waste water infrastructure.
BG	-	 883.9 mio. EUR (2016-2021; wastewater collection and treatment) Assessment of the investment costs for the time 2022-2027 is forthcoming task in the frame of RBMP updating process. 	-
MD			
UA	-	-	Water supply + wastewater: 13.5 million EUR (DRBD). Capital investments for environmental protection expenditures on return water treatment – 0.25 million EUR (DRBD)

*Timescales: 2015-2021, if not noted otherwise.

** (SK): Data for the whole country (Danube part represents 96.23 % of the total territory of Slovakia) and for 2014-2020.

*** (HU): Drinking water supply includes both the protection of national water resources and the implementation of a drinking water quality improvement program. The public wastewater collection and treatment also includes sewerage, wastewater treatment (below and above 2000 PE) and sewage sludge treatment. The costs were planned on the basis of the relevant EU programs, so do not include reconstructions, only direct compliance with the EU Directives. (The applied EUR/HUF exchange rate for the period of the 2nd RBMP is 310.1)

Country	Only water supply and wastewater	Water supply, wastewater AND others	Included in cost recovery calculations (Y/N/Partly)	Other definitions	Is the definition of water services included in the national water legislation (Y/N)
DE	\checkmark		Y		Y
AT		~	Y (based on estimation)		Y (Water services to which Article 9 par 1 second indent WFD is applied are defined. Other water services are regulated in the frame of water uses)
CZ		✓ Rivers and river basin management; surface water abstraction; GW abstraction; discharge of wastewater into surface water; discharge of wastewater into GW; impoundment for the energy production; navigation – only recreation	Y		Y (§ 2 let. a) of Decree No. 24/2011 Coll.) - Any activity which provides for abstraction, retention, collection, treatment and distribution of surface water or GW, or the removal and treatment of waste water with subsequent discharge into surface water, for households, public institutions or any economic activity
SK		✓ Use of hydro- energy potential of water-course; abstraction of energy water from watercourse; abstraction of surface water from water-course	Y (water supply, wastewater, use of hydroenergy potential, abstraction of energy water, abstraction of surface water)	Navigation is defined as a "public service - paid by the state"	Y
HU		Public water supply, public wastewater collection and treatment,	Y	✓ (the other different water uses are taken into consideration as "water uses"	Y

Table 2: What are water services - what are water uses?

SI		agricultural water supply (irrigation, fishponds, other), damming and storage for hydropower production, own water abstraction	Partly	(according to WFD Article 2 Definition 39))	Y
HR	✓		Y	Additional definition of water activities has been enacted. Water activities are all activities that provide for households, public institutions or economic entities: a) abstraction, impoundment, storage, treatment and distribution of surface or groundwater, and b) collection and treatment of wastewater, subsequently discharged into the water. Water activities include but they are not limited to water services. CR calculation includes all water activities.	Y
BA		✓ 13 other water services defined	Ν		
ME	\checkmark	-	-	-	\checkmark
RS			N		N There is no definition of water services in WL, but WL sets the charges/fees for water abstraction and waste water disposal for different purposes (water use: public water supply, irrigation, industries,

					hydropower, bottling, etc., and waste water disposal: municipal, industrial, cooling, etc.), sediment abstraction, etc.
RO		Contributions for using water resource for hydropower, thermal plants, nuclear power plant for aquaculture, irrigation, industry, households. Structured on type of water resource (surface and groundwater).	Y		Yes (Water Law)
BG	-	-	Y All costs considered(financial, environmental and resource costs)	✓ Public water supply; public collection of waste water; public treatment of wastewater; individual water supply in industry; individual water supply in agriculture for irrigation; individual water supply for stockbreeding; producing of electric power by water electric plant; protection of harmful impact of water; conservation of water; navigation and other activities connected with navigation; individual drinking water supply	Y
MD			n.a.		
UA	-	Water supply, wastewater collection and treatment; agricultural; fish farming; surface water abstraction;	Y	Water use - the use of water (water bodies) to meet the needs of the population, industry, agriculture,	Y Water Code

use of hydro-	transport and other
energy potential.	sectors of the
	economy,
	including the right
	to water intake,
	wastewater
	discharge and other
	uses of water
	(water bodies).

Table 3: Water	pricing policies	in place, and	prices of water	services/uses

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]	
DE	Water supply	ERC are considered in the recov services (EUR/m ³); they are			very of the costs of water supply e not quantified individually	
DE	Waste water treatment	ERC are considered in the recov services; they are not q		ERC are considered in the reco services; they are not o		
	Water supply	ERC are internalized in the price they are not yet qua			ed in the price for drinking water yet quantified individually	
AT	Waste water treatment	ERC are internalized in the price for but they are not yet qu			ized in the price for wastewater e not yet quantified individually	
	Others (e.g. hydropower for electricity production, navigation, aquaculture)	ERC are internalized in environme yet quantified		Payments are internalized in environmental requirements but they are not yet quantified individually		
	Drinking water supply	ERC costs in the form of charges f abstraction is internalized in the pr		No separate payment exists. ER	o separate payment exists. ERC recovery costs are internalized.	
CZ	Wastewater treatment	ERC are in the form of charges for pollution and volume of discharged wastewater.		See the answer above.		
CZ	Water storage and impoundment for energy production	ERC costs in the form of charges for impoundments are internalized in the price which is agreed between the customer and State Enterprises of River Basin Management(EUR/m ³)		No separate payment exists. ERC recovery costs are internalized.		
	Navigation	Not assessed	Not assessed	No payment	No payment	
SK	Water supply for households, industry and agriculture	Not assessed	Resource cost in the form of charges for groundwater abstraction as well as payments for surface water abstraction is internalized in the price for drinking water (EUR/m ³)	No payment	No separate payment, only the internalized one	
	Collection and treatment of wastewater	Environmental cost in the form of charges for discharge of wastewater is internalized in the price for the collection and treatment of wastewater (EUR/m ³)	Not assessed	No separate payment, only the internalized one	No payment	

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
	Use of hydro-energy- potential of watercourse	Not assessed	Not assessed	No payment	No payment
	Abstraction of energy water from watercourse	Not assessed	Not assessed	No payment	No payment
	Abstraction of surface water from watercourse	Not assessed	Not assessed	No payment	The payment for surface water abstraction is determined in EUR/m ³ and is a component of the price for drinking water. This payment is considered as covering a part of resource costs.
HU	Public wastewater collection and treatment	EC were assessed in 2006-2007 based on the 2005 data. EC are partly internalized in the water load fee and wastewater fine and this is covered by the water price.	Not assessed	Unit water load fee (WLF) in average (depends on different loads) WLF: 4.4 HUF/m ³ (2018) Wastewater fine: 519.9 million HUF (2018) In the case of a wastewater fine, it does not make sense to calculate a specific m ³ for all wastewater volumes, because only a part of it is fined.	No payment Up to RBMP2, the water resource fee (WRF) could only been considered as an environmental cost, but since the WRF rate for water bodies in poor status differs from the others (20% higher), it can also be considered as a partial resource cost.
	Public water supply	EC were assessed in 2006-2007 based on the 2005 data. EC are partly internalised in the water resource fee and this is covered by the water price	Not assessed	2018 water resource fee (WRF) data: 4.42 HUF/m ³	No payment
	Own water abstraction	EC are partly internalized in water resource fee	Not assessed	2018 water resource fee (WRF) data: Industry and other economic sector: 2.43 HUF/m ³ Agriculture: 1.1 HUF/m ³ Others: 11.9 HUF/m ³	Water resource fee is partially serves as resource cost
	Agricultural water supply (irrigation, fishponds, other)	EC are partly internalized in water resource fee	Not assessed	2018 water resource fee (WRF) data:	Water resource fee is partially serves as resource cost

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
				Irrigation:1.15 HUF/m ³	
				Fish pond: 0.045 HUF/m ³	
				Rice production: 0.044 HUF/m ³	
				Animal husbandry: 13.24 HUF/m ³	
	Damming and storage for hydropower production	EC are partly internalized in water resource fee	Not assessed	2018 water resource fee (WRF) data: In situ water use: 0.0045 HUF/m ³	Water resource fee is partially serves as resource cost
	Water supply	ERC are included in the price of dri		EBC are included in the price of d	inling water supply convice and
SI	Waste water treatment	waste water collection and treatmen are in progress.	waste water collection and treatment service. Additional assessments are in progress.		rinking water supply service and nt service. Additional assessments
	Water Services	·		·	
	0,40 EUR/m3 - an estimation based on annual Finan Water supply Croatian Waters			water abstraction f	fee - 0,38 EUR/m3
	Waste water collection and treatment	0.22 EUR/m3 - an estimation based on annual Financial Plan of Croatian Waters		water pollution charge - 0,18 EU for industrial w	
HR	Other Water Services				
	Abstraction of surface water (excluding water supply and specified activities below)	not assessed (only internalized part was assessed, additional assessments are in progress)		water abstraction charge - 0,11, 0,09, 0,07 and 0,04 EUR/m3 depending on water status (very good, good, moderate, bad and very bad)	
	Abstraction of groundwater (excluding water supply and specified activities below)	not ass (only internalized part was assess progr	ed, additional assessments are in	water abstraction charge - 0,11 and 0,04 EUR/m3 depending on water status (good or bad) and 0,15 EUR/m3 for mineral, thermos- mineral and thermal waters	
	Water power for electricity production	not ass (only internalized part was assess progr	ed, additional assessments are in		(for plants over 5 MW) or 5% (for age price per 1 kWh electricity uced

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m³, no payment]	
	Water power for plant operation (other than electricity production)	not ass (only internalized part was assess progr	ed, additional assessments are in		EUR per 1 kWh of total installed f the plant	
	Heating and cooling of households and offices	not ass (only internalized part was assess progr	ed, additional assessments are in	water abstraction cha	arge - 0,013 EUR/m3	
	Rafting and canoeing (as business activities)	not ass (only internalized part was assess progr	ed, additional assessments are in	water abstraction charge - 6,	57 EUR/yr per passenger seat	
	Anchoring floating vessels for catering and similar businesses	(only internalized part was assess	not assessed (only internalized part was assessed, additional assessments are in progress)		water abstraction charge - 13,14 EUR/yr per m2 of water surface occupied	
	Irrigation	not assessed (only internalized part was assessed, additional assessments are in progress) not assessed (only internalized part was assessed, additional assessments are in progress)		65,68 EUR/yr per ha - if the quantity is not measured, if it is measured - the tariffs for surface water and groundwater abstraction apply		
	Water discharges (other than through public wastewater facilities)			water pollution charge (i) 0,18 EUR/m3 od water discharged (subject to load coefficients for industrial waters discharge), (ii) 0,000177 EUR/m3 of cooling water discharged and (iii) 0.000486 EUR/kg of nitrogen as active substance in mineral fertilizer		
	Public water supply	-	-	-	0.005 Euro/ m ³ of abstracted water	
	Bottling of water & mineral water	-	-	-	1.00 Euro/ m ³ of abstracted water	
BA	Water supply to industry and others (abstraction)	-	-	-	0.01/0.015 Euro/m ³ (RS/FBiH)	
	Irrigation (abstraction)	-	-	-	0.001 Euro/m ³ (RS)	
	Fish farming (abstract)	-	-	-	0.0005 Euro/m ³ (RS only) abstr. water	
	Fish farming (pollution)	-	-	0.01/0.025 (RS/FBiH) Euro/kg produc. fish	-	

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m³, no payment]
	Electricity production	-	-	0.0005 Euro/kWh of produced electricity	-
	Wastewater discharge	-	-	1.00 Euro/PE	-
	Pollution caused by vehicles	-	-	1.00 Euro/PE	-
	Pollution caused by use of artificial fertilizer	-	-	0.0025 Euro/kg prod. / imported fertilizer	-
	Pollution caused by use of pesticides	-	-	0.04 Euro/kg of prod. / imported pesticides	-
	Sediment extraction	-	-	0.75 Euro/m ³ of the extracted material	-
	General water charge	-	-	0.5% of the net salary (FBiH only)	0.5% of the net salary (FBiH only)
	For drinking and community water supply	-	-	-	0,015€/m ³ delivered water
	For operational and technological needs 0.02 € / m3 of used water;	-	-	-	0.02 € / m3 of used water
	for irrigation	-	-	-	0.004 € / m3 of affected water;
	for bottling or packaging of mineral and natural waters	-	-	-	0,003 € / 1 bottled or packaged water
ME	for tanking of vessels	-	-	-	0.02 € / m3 of tanked water
	for drainage or delivery of water for commercial purposes	-	-	-	$0.03 \in / m3$ of delivered water;
	for growing fish, crabs, shellfish and other seafood	-		-	0.01 € / kg of sea bream or sea bass produced 0.005€ / kg of trout produced 0,0075 € / kg of other fish species

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
					€ 0.0025 / kg of shellfish produced 0.01 € / kg of produced crustaceans and other seafood
	for electricity generation at the power plant threshold;				0,0001 €/kWh
	for the use of water in extremely favorable natural conditions using hydro- accumulations;	-	-	-	0,0006 €/m3
	for other propulsion purposes				0,00005 €/kW
	for rafting	-	-	-	0.5 € per person for one descent.
	Fee for water use (public utilities), population	-	-	-	Extracted amount 0.002
	Fee for water use (public utilities), legal entities	-	-	-	Extracted amount 0.004
	Fee for raw water use	-	-	-	0.003
	Fee for irrigation water use	-	-	-	0.001
	Fee for water bottling	-	-	-	0,010 (EUR/l)
RS	Fee for abstracted water for electricity production in hydropower plants below 10 MW	-	-	-	0.708 (EUR/MWh)
	Fee for abstracted water for electricity production in hydropower plants of 10 MW and above	-	-	-	0.772 (EUR/MWh)
	Fee for abstracted water for thermal power plants with recirculating cooling system	-	-	-	0.420 (EUR/MWh)

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
	Municipal waste water disposal	-	-	For the disposal of municipal waste water in general, as well as for the disposal of municipal wastewater into hydromelioration systems, there is methodology prescribed for calculation of environmental fee that takes into account certain parameters and their ELVs.	0.002
	Industrial waste water disposal (depending on type of industry)	-	-	For the disposal of industrial waste water in general, as well as for the disposal of industrial wastewater into hydromelioration systems, there is methodology prescribed for calculation of environmental fee that takes into account certain parameters and their ELVs.	0.044/0.026/0.024/0.012
	Fee for disposal of water from thermal power plants with runoff cooling system	-	-	-	0.420 (EUR/MWh)
	Fee for sediment extraction (depending on location of extraction point)	-	-	-	0.500/0.620/1.000
RO	Water supply	_	0 RC=foregone opportunities that other uses suffer due to the depletion of the resource beyond its natural rate of recharge or recovery based on the assessment of availability of the water resource in one section comparing to the present and future water demand	-	-0
	Wastewater treatment	0,43EUR/cm	-	0,43 EUR/cm	-

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
	(* includes sewerage)	Only Monitoring costs considered Approximated EC= costs of measures whose primary aim is to protect the water environment based on existing legal (environmental) standards			
	Water abstraction for households from surface waters				
	Water abstraction for industry from surface waters				
	Water abstraction for irrigation				
	Water abstraction for aquaculture				
	Water abstraction for hydropower				
	Water abstraction for thermo power plants				
	Water abstraction for households from groundwater waters				
	Navigation (lock)				
	Receive pollutants in the surface waters				
	Water supply and waste water treatment	Approximated by looking at the costs of measures whose primary aim is to protect the water environment based on existing legal (environmental) standards	Costs of foregone opportunities which other uses suffer due to the depletion of the resource beyond its natural rate of recharge or recovery (e.g. linked to the over- abstraction	Internalized in waste water treatment costs Level still in progress	Level still in progress

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
			of groundwater). Based on the assessment of availability of the water resource in one section comparing to the present and future water demand		
	Public water supply	105,837.42 EUR (2012) (According Methodology: Costs for removal of damages, caused by diffuse pollution from agriculture, stock-breeding and fish- breeding)	3,765,664.71 EUR (in 2012) 1.Costs connected with present lack of water 2.Costs connected with future lack of water	Recovery through water price paid by households, industry, agriculture and services Price for water supply by water companies/drinking water: 0.41 €/m3; Price for water supply for irrigation/supply by "Irrigation systems": 0.18 €/ m3	Recovery through water price paid by households, industry, agriculture and branch of services Price for water supply by water companies/drinking water: 0.41 €/ m3 Price for water supply for irrigation/supply by "Irrigation systems":0.18 €/ m3
BG	Public collection of waste water	13,260,866.23 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from settlements without sewage system)	No identified resource costs	Recovery through prices of public collection of waste water Price for collection of waste water: 0.09 €/ m3	N
	Public treatment of waste water	 27 240 608,85 EUR (in 2012) (1.Costs for removal of damages, caused by point pollution of waste water from households and industry /building of WWT-Plants 2. Costs for removal of damages, caused by diffuse pollution from landfills) 	No identified resource costs	Recovery through prices of treatment of waste water Price for treatment of waste water: 0.14 €/ m3	N
	Individual water supply in industry	No identified environmental costs	Costs in case of future water scarcity (no resource costs for 2008-2012: 0 €/m3)	N	Recovery through fee for water use according to National Tariff for fees: 0.045€/m3 – surface water. 0.07€/m3 – ground water.

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
	Individual water supply in agriculture for irrigation	7,669.38 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from agriculture)	Costs in case of future water scarcity (no resource costs for 2008-2012: 0 €/m3)	Recovery through fee for water use according to National Tariff for fees: 0.0005€/m3 – surface water 0.005€ m3 – ground water	Recovery through fee for water use according to National Tariff for fees 0.0005€/m3 – surface water 0.005€/m3 – ground water
	Individual water supply for stock-breeding and fish- breeding	750,065.19 EUR (in 2012) (Costs for removal of damages, caused by diffuse pollution from stock-breeding and fish-breeding)	Costs in case of future water scarcity (no resource costs for the period 2008-2012: 0 €/m3)Recovery through fee for wate use according to National Tar for fees: 0.0005€/m3 – surface wate 0.005€/m3 – ground water		Recovery through fee for water use according to National Tariff for fees 0.0005€/m3 – surface water 0.005€/m3 – ground water
	Producing of electric power by water electric plant	 16,361.34 EUR (in 2012) (1.Costs for removal of damages, caused by drying of rivers due to water use of hydro power plants; 2. Costs for removal of damages, caused by interruption of continuation of the rivers due to water use of hydro power plants /costs for building of fish-passages) 	Costs in case of future water scarcity, but no resource costs for the period 2008-2012: 0 €/ m3	Recovery through fee for water use according to National Tariff for fees: 0.0008 €/m3	Recovery through fee for water use according to National Tariff for fees: 0.0008 €/m3
	Protection of harmful impact of water	Costs for measures for recovery of damages due to gravel extraction: 2008-2012: 0 €/ m3	No identified resource costs	ource costs ource costs No fee. Cost recovery: - Own incomes of municipalities - State financing for "Irrigation systems" -State transfers Total amount for 2012: 20,577,453.03 EUR;	No
	Water conservation	No identified environmental costs (only financial costs)	No identified resource costs (only financial costs)	No fee. Cost recovery of financial costs only	No fee. Cost recovery of financial costs only

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m ³ , no payment]
	Navigation and other activities connected with navigation	Costs for removal and prevention of damages, caused by navigation :2008-2012 for Danube - 0 €/m3	No identified resource costs	Cost recovery through harbor fees paid by shipping sector: 2008-2012 for Danube - 0 €/ m3	No
	Individual drinking water supply	No identified environmental costs	Costs in case of future water scarcity, but no resource costs for the period 2008-2012: 0 €/m3	No	Cost recovery through fees for issue of permits 0.02 €/m3 – surface water 0.75 €/m3 – ground water
MD					
	Water supply for industry			Recovery through water price paid by industry Tariff 0,25 – 0,75 €/ m3	Recovery through water price paid by industry Tariff 0,25 – 0,75 €/ m3
	Water supply for population			Recovery through water price paid by houshold Tariff 0,22 – 0,57 €/ m3	Recovery through water price paid by houshold Tariff 0,22 – 0,57 €/ m3
UA	Wastewater treatment for industry			Recovery through water price paid by industry Tariff 0,15–0,69 €/ m3	Recovery through water price paid by industry Tariff 0,15– 0,69 €/ m3
	Wastewater treatment for population			Recovery through fee for water use according to National Tariff for fees: 0,16 – 0,48 €/ m3	Recovery through fee for water use according to National Tariff for fees: 0,16 - 0,48 €/ m3
	Wastewater treatment	ERC are in the form of charge discharged v			

Country	Water service	Environmental cost [EUR/m ³ , EUR/?, not assessed]	Resource cost [EUR/m ³ , EUR/?, not assessed]	Payment for environmental cost recovery [EUR/m ³ , no payment]	Payment for resource cost recovery [EUR/m³, no payment]
	Drinking water supply	ERC costs in the form of charges for groundwater and surface water abstraction is internalized in the price for drinking water		ERC are in the form of charges for pollution and volume of discharged wastewater.	Cost recovery through fees for issue of permits 1,74 €/m3 – surface water 2,02 €/m3 – ground water
	Producing of electric power by water electric plant		ERC are in the form of charges for pollution and volume of discharged wastewater.		Cost recovery through fees for issue of permits 0,36 €/10 ths m3 – surface water
	Fish farming		ERC are in the form of charges for pollution and volume of discharged wastewater.		Cost recovery through fees for issue of permits 1,87 €/10 ths m3 – surface water 2,24 €/ 10 ths m3 – ground water

Table 4: Use and calculation of ERC

Country	ERC estimations available [Y/N/partly]	Clear Methodology for calculating ERC [Y/N/partly]	Clear Methodology for cross subsidies [Y/N/partly]
DE	Ν	Partly - Issue of operationalizing the concept of ERC remains challenging.	N
AT	Partly The internalized parts of EC in AT are estimated through the quantified costs of measures.	Partly (expert judgment involved)	Y According to the polluter pays principle, water users pay the environmental costs they cause in form of water charges as well as implementation of technical measures in order to prevent cross subsidies.
CZ	Y	Partly The calculation of EC in CZ is based on the costs of renewal and saved costs. It determines the costs that would be necessary for compensation of impacts of water management services on environment, respectively for the compensation of the impacts disturbing the state of surface and GW from the quantitative, qualitative and hydromorphological point of view.	N (Subsidies do not play a role in CZ)
SK	N No "full estimations of ERC for single water services"; only the "internalized parts are quantified" ² .	Partly For the estimation of EC, the cost- based approach is used which involves the costs for certain groups of measures. The evaluation of RC is also based on a cost-based approach (e.g. construction of long-distance pipelines to areas failing to achieve good quantitative status of GWBs). As there have not been applied regulatory measures and restrictions, the RC which appear due to non- coverage of water requirements of specific sectors (foregone costs approach) is not yet actual.	Partly (subsidies play little role)
HU	Partly EC are partly quantified, only the internalized parts are quantified. EC were assessed in 2006-2007 based on the 2005 data for waste water and drinking water. Taking the international experience into account we chose the cost-based approach, so we consider the cost	Y EC calculation methodology is clear (cost-based methodology), but the cost of measures is missing. The Water Load Fee (WLF) and water resource fee is internalized of (a part of the) external environmental costs. The rate of the water load fee is defined by the product of: 1) the total	Y There are subsidies for covering a part of the financial cost for households when the service costs are extremely high, the cost are above a certain threshold.

 $^{^2}$ The share of the charges for the discharge of wastewater into the water courses on the total costs of water companies in providing of wastewater services (i.e. wastewater collection and treatment) is ca. 1,69 % (2018) – these charges are considered as environmental costs. Charges for groundwater abstraction and payments for surface water abstraction are considered as a part of the resource costs (which are paid by those who have the permission to use the water source). The share of these charges and payments for the abstraction on the total costs of water companies in providing of water supply service is about 17,96 % (2018). However, the abstraction of water could be also seen as a form of the environmental costs (because an abstraction represents one of the biggest pressures on water body)...The charges for discharge of wastewater do not represent full estimation of environmental costs. These charges are stipulated by the Decree of the Government and represent only a part (approximately 30%) of the real costs necessary for the wastewater treatment in the wastewater treatment plants.

Country	ERC estimations available [Y/N/partly]	Clear Methodology for calculating ERC [Y/N/partly]	Clear Methodology for cross subsidies [Y/N/partly]
	of the remaining measures needed in order to achieve "good status" as EC.	amount of the annual discharge of the contaminant measured in kilograms, 2) multiplied by a specific rate per pollutant, 3) a measure of area sensitivity and 4) sludge disposal factors. Water resource fee (abstraction fee) is depend on the water resource type and water uses (and some another element). New development: there is a new so called "overload factor" in the calculation, which depends on the quantitative status of each water body.	
		In general, all water users have to pay the water resource fee (WRF) for the amount of water used. The paid amount is received by the state budget.	
SI	Partly	Partly (methodology for calculating ERC is in progress)	Ν
HR	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach) Assessment of ERC is ongoing.	Ν
BA	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach and expert judgment)	Ν
ME	Y	Ν	Ν
RS	N No "full estimations of ERC for each water service", but parts are included in charges/fees.	Partly (cost-based approach)	Ν
RO	Partly ERC are partly quantified, only the internalized parts are quantified.	Partly (cost-based approach) A revise of the assessment is ongoing.	No cross subsidy between different water uses is legally provided.
BG	Y ERC are quantified (2008-2012)	Y (Methodology is developed)	Ν
MD			
UA		Partly (cost-based approach)	

Country	Prices and costs for water services available ³ [Y/N/partly]	Levels of CR stated [Y/N/partly]	Levels of CR for all defined water services [Y/N]	Clear methodology for calculating CR [Y/N/partly]
DE	Y (water supply and waste water services)	Y (water supply and waste water services)	Y	Y
AT	Y (total costs and total revenues of water services [water supply and wastewater treatment] are available, as well as bandwidths/ ranges of average water prices)	Y	Y	Y (based on expert judgement)
CZ	Y (abstraction, water supply and wastewater)	Partly (all O&M costs are fully covered, when including also subsidies on investment we would not reach 100% of cost recovery)	N (only water supply services and wastewater treatment)	Ν
SK	Y (for all five water services)	Y	Y	Partly (only financial costs, including depreciation and internalized part of environmental and resource costs are considered).
HU	Y Costs, prices, revenues are available for public water supply, for public waste water collection and treatment, agricultural water supply, damming and storage for hydropower production. Internalized ERC costs for industry, agriculture and other/own well.	Y	Yes for public water supply, public waste water collection and treatment, agricultural water supply, damming and storage for hydropower production Partly for public water supply for industry and agriculture/own well).	Y Financial cost recovery rates are calculated (including internationalized ERC costs) for water services (public water supply, public wastewater collection and treatment, agricultural water supply, damming and storage for hydropower production).
SI	Y (for several water services)	Partly (additional assessments are in progress)	N	Partly
HR	Partly (Y water supply for households and industry, N for other water activities)	Y	Y	Y (methodology and CR calculation will be included in National RBMP)
BA	Y	Y	Y	Partly

³ For exact amounts, see table 3 above.

Country	Prices and costs for water services available ³ [Y/N/partly]	Levels of CR stated [Y/N/partly]	Levels of CR for all defined water services [Y/N]	Clear methodology for calculating CR [Y/N/partly]
	(water supply and wastewater, excluding treatment)			(depreciation, water loses, environmental and resource costs are not included)
ME	Y	-	-	Ν
RS	Partly (water supply for households and industry)	Ν	Ν	Ν
RO	Y	Y	Y	Partly. Clear methodology for Water supply and waste water services. Ongoing assessment for other services.
BG	Y (for all water services)	Y	Y	Y
MD				
UA	Y (water supply for households and industry and waste water services)	Y	Y	Y Resolutions of the Cabinet of Ministers of Ukraine

Table 6: The links between ERC and payments

Country	CR through fees/charges/taxes	CR through permits	CR through mitigation/supplementary measures	Clear definition of water services paying for RC and/or EC?
DE	\checkmark	\checkmark	\checkmark	Concerted definition across Germany.
AT	~	\checkmark	Through the Programme of Measures the cost recovery regarding ERC was carried out.	Y (water supply and wastewater)
CZ	\checkmark	-	(CR through mitigation/supplementary measures)	Y (water supply: RC; wastewater: EC)
SK	~	-	✓ (CR through mitigation/supplementary measures)	Y (water supply: RC; wastewater: EC)
HU	\checkmark	✓ (at least for abstraction)	\checkmark	Y
SI	\checkmark	\checkmark	\checkmark	Y (all water services)

Country	CR through fees/charges/taxes	CR through permits	CR through mitigation/supplementary measures	Clear definition of water services paying for RC and/or EC?
HR	✓	-	Through the PoM the cost recovery analysis regarding ERC was carried out	Y
BA	\checkmark	-	-	Y (see table 3)
ME	\checkmark	-	-	Y (see table 3)
RS	\checkmark	\checkmark	-	-
RO	\checkmark	-	-	Y (wastewater: EC)
BG	√ (for some water services)	N	-	Costs for some measures of the PoM will be covered by incomes of water services and fees
MD				
UA	\checkmark	\checkmark		

Table 7: CEA used on the national level (whether a cost-effectiveness analysis has been carried out for supporting the selection of measures proposed under the 2015-2021 PoM)

Country	No CEA was used	A qualitative CEA was used	A quantitative CEA was used	A combination of qualitative and quantitative CEA was used		
Austria	Ν	Y	N	N		
Bosnia and Herzegovina	Y	Ν	Ν	Ν		
Bulgaria*	Ν	Ν	Ν	N		
Croatia	Ν	Ν	Ν	N		
Czech Republic	Ν	Ν	Ν	Y		
Germany	Ν	Ν	Ν	Y		
Hungary**	Ν	Y	Ν	Ν		
Republic of Moldova	n.a.					
Montenegro	-	-	-	-		
Romania	Ν	Ν	Ν	Y		
Serbia	Ν	Ν	Ν	N		
Slovakia	Ν	Ν	Ν	Y		
Slovenia	Ν	Ν	Y	Ν		
Ukraine			n.a.			

*Bulgaria: The lack of CEA for selection of measures in the RBMP 2015-2021 was identified as gap in the previous cycle. In the update of the economic analysis, the implementation of a CEA is included.

**Hungary: Hungary undertook a cost-effectiveness analysis for the first Programme of Measures, but this was not carried out at a water body level. Hungary clarified subsequently that cost effectiveness analysis (CEA) was not carried out in the second cycle because the measures did not change substantially and noted that a general description of the method of prioritisation could be found in chapter 7.2 of the RBMP2. This question is also a reporting requirement according to the EC WFD Reporting Guidance 2022 (Version: FINAL DRAFT V4, dated 30-04-2020).

Country	"Disproportionality of costs" used as a justification for exemptions (Y/N)*	Disproportionality applied for justifying Article 4.4 exemptions (Y/N)*	Disproportionality applied for justifying Article 4.5 exemptions (Y/N)*	Methodology/analysis tools used#				
Austria	Y	Y	Ν	CEA				
Bosnia and Herzegovina	N (or partly)	-	-	-				
Bulgaria	Y	Y	Y	Cost-benefit-Analyses Affordability*				
Croatia	Y	Y	Y	Cost-benefit-Analyses Affordability, Cost-Effectiveness Analysis				
Czech Republic	Y	Y	Ν	-				
Germany (Danube RB)	Y	Y	Ν	Cost effectiveness analysis and in specific cases targeted evaluation of costs and benefits				
Hungary	Y	Y	Y	Financial possibilities, Affordability for sectors, for households for state budget in general, CBA in the case of Article 4.5 exemptions				
Republic of Moldova			n.a.					
Montenegro	-	-		-				
Romania	Y	Y	Y	Cost-benefit-Analyses Productivity loss (in case of restoring the longitudinal connectivity for hydropower chain assessment)				
Serbia	-	-	-	-				
Slovakia	Y	Y	Y	Affordability, Cost-Effectiveness Analysis				
Slovenia	Currently unknown	Currently unknown	Currently unknown	Currently unknown				
Ukraine	n.a.							

Table 8: Use of Disproportionality of Costs in the Danube countries

*Bulgaria: The approach to the analysis of disproportionality of costs is set out in the national "Methodology for application of the exemptions" but not used in 2nd RBMP cycle in Bulgaria.

Questions marked with * are reporting requirements for the next reporting period, as listed in the EC WFD Reporting Guidance 2022 (Version: FINAL DRAFT V4, dated 30-04-2020).

Questions marked with # are "conditional" reporting requirements, i.e. required if disproportionality of costs has been used (EC WFD Reporting Guidance 2022 (Version: FINAL DRAFT V4, dated 30-04-2020).

 Table 9: Socio-economic Trends in Danube countries until 2027

Economic growth in general until 2027	Economic growth in agriculture until 2027	Economic growth in industry until 2027	Growth in electricity production (thermal) until 2027	Growth in electricity production (hydropower) until 2027 (change in GWh/a produced 2020-2027)	Growth in energy production (biomass) until 2027 (change in GWh/a produced 2020-2027)	Population growth until 2025 (changes in total population 2020- 2025 at constant fertility rates)	Water demand per capita (development until 2027)
			Aust	tria			
Remark: changed situation due to "Corona".	Agricultural area will slightly decrease. Agricultural production output on a constant level.	Remark: changed situation due to "Corona".	-	< 5 %	-	+3% (2020 - 2027)	130l/day
			Bosnia and H	Ierzegovina			
Average economic growth: 3,5% p.a. until 2027. Overall economic output-growth: 3,8%	-	Average economic growth in industry until 2027: 1,6% (sp. Manufacturing industry)	Average economic growth in electricity production (thermal) until 2027: 1,1%	Average economic growth in el. production (hydropower) until 2027:1,89%	Average economic growth in energy production (Biomass) until 2027: 1,1%	Negative (2,6%)	506 l/capita/day
			Bulg	aria			
n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
			Croa	ntia			
2,4 % per/yr before Corona	No data	No data	Gas and coal: 2.923 GWh	HP: 7.012 Gwh Nuclear:	781 GWh	4.299,3 mil.	Decrease due to the decrease in population

			Geothermal, wind and solar: 5.789 GWh	2.683 GWh			
		I	Czech R	epublic			
n.a.	Stagnation	Stagnation	Stagnation	Expected to remain on the current level	n.a.	241.000	89.2 l/cap/day
			Germ	any			
expected to grow moderately	expected to remain on the current level	expected to grow moderately	expected to remain on the current level or to fall slightly	expected to remain on the current level	expected to remain on the current level	expected to grow moderately	Long term average expected to remain on the current level or to continue to fall
			Hung	gary			
Official Projection 2020-2024 (Based on the Convergence Program) GDP growth per year (%) 2020: -3 2021: 4,8 2022: 4,6 2023: 4,3 2024: 4,2 According to the assumptions used in RBMP3, the growth rate will be similar until 2027, i.e. a minimum annual rate of 4%.	Economic growth in agriculture (in %) until 2027 is not available. The Hungarian Food Economics Concept (2017–2050) provides a detailed description of the expected development of the sector.	Economic growth in industry (in %) until 2027 is not available. The expected development of the sector is described in detail in the Convergence Program and the "Irinyi Plan".	Together with other renewables, the growth is 329% 2020: 78 GWh/a 2027: 335 GWh/a According to Hungary's National Energy and Climate Plan.	0% growth, unchanged production 2020-2027: 244 GWh /a According to Hungary's National Energy and Climate Plan.	Biomass and renewable waste together increase by 30%: 2020: 2332 GWh/a 2027: 3029 GWh/a According to Hungary's National Energy and Climate Plan.	2.6% decrease is projected based on 1.6 constant fertility rates, according to the Central Statistics Office (CSO) "Population Forecast 2015"	During the preparation of the 3rd RBMP, based on the assumptions used in the socio-economic forecasts, an increase in the specific water consumption of households can be expected, but the growth rate does not reach the projected annual increase in household consumption (of

29

			Republic of	Moldova			around 4%) in the Convergence Program. The 96 liters/capita/day in 2018 could increase by 6% to 2027, i.e. to 102 liters/capita/day, taking into account the temporary decline expected in 2020 due to the epidemic.
			*				
			n.a	l.			
			Monter	negro			
-	-	-	-	No information	Predviđena proizvonja el.energije iz biomase 188 GWh until 2030	+/- 0 %	217 l/c/d 2031-2061
			Roma	ania			
Medium term forecast – National commission for prognosis 2025 Estimated a yearly increase of GDP with	Medium term forecast – National commission for prognosis 2025	Medium term forecast – National commission for prognosis 2025 Estimated a yearly increase appr. 1.9%	Expected to remain on the current level or slightly decrease as result of new regulations	Expected to remain on the current level or slightly increase	AccordingtoNational EnergyStrategyanincreasingwith10%-20%biomassproductionis	In progress	A slightly decrease (appr. 5%) is estimated till 2030

an average appr. 1.8% +3.58% per year (2022-2023), +3.63% per year (2024-2027)	Estimated an yearly increase appr. 2% +0.66% per year (2022- 2023), +1.52% per year (2024- 2027)	+3.22% per year (2022-2023), +3.44% per year (2024-2027)	regarding the air pollution Sert +0.97% per year (2022- 2025), +1.38% per year (2026- 2027)	bia +0.97% per year (2022-2025), +0.79% per year (2026-2027)	estimated till 2030 +1.35% per year (2022-2025), +1.39% per year (2026-2027)	-0.24% per year (2022-2026), - 0.15% per year (2026-2027)	No changes
	2021)		Slova	ıkia			
available forecast (June 2020, Ministry of Finance) for 2020- 2023 the Slovak economy will fall by 9.8% in 2020 due to the global pandemic (baseline scenario). In the second half of 2020, the economy should gradually recover, bringing GDP growth to 7.6% in 2021. However, the economy should not catch up with the pre-crisis level until the end of 2022 (but	Economic growth in agriculture (in %) until 2027 is not available. The COVID- 19 pandemic has also caused a crisis in the agricultural sector. In the current CAP reform, which was to apply from 2021, a transitional period of two years is	Economic growth in industry (in %) until 2027 is not available. For more particular information on the possible development of industry – see the separate part "Summary assessments of trends for some Danube countries".	Forecast of the share of disposable electricity production (<i>in</i> <i>fossil power</i> <i>plants</i>) according to expected development in electricity consumption of Slovakia in% is as follows: 2020: 23,3 % 2025: 13,4 % 2030: 13,8 %. The Ministry of Economy expects the	+7,19% (4,464 to 4,785 GWh/a) 2020: 4,464 GWh 2021: 4,467 GWh 2022: 4,470 GWh 2023: 4,473 GWh 2024: 4,476 GWh 2025: 4,507 Gwh 2026: 4,754 GWh 2027: 4,785 GWh All the data/information given above is at the national level.	+43,9% (1,848 to 2,660 GWh/a). Note: pumped storage power plants are eliminated) The data/informatio n given above is at the national level.	+ 0,22 % The data given above is at the national level.	Changes in specific water consumption per capita 2020-2027: + 12,6% 2020: 79,3 liters 2021: 80,2 litres 2022: 81.3 liters 2022: 81.3 liters 2023: 82.6 liters 2024: 84.0 liters 2025: 85.6 liters 2026: 87.4 liters 2027: 89.3 liters The data/information given above is at

2022 will reach only	necessary to	electricity	the	national
1.8%). At the end of	ensure	consumption in	level.	nauonai
the forecast period	stability.	Slovakia will	ievei.	
(2023), economic	Support for	increase.		
growth will be	farmers	Thermal power		
0	under the			
supported by drawing		1		
on EU funds of the	current legal	gradually lose		
third programming		importance.		
period. The main	will continue	In the long term,		
negative risk to the	until the end	the operation of		
forecast is the re-	of 2022.	the Nováky		
spread of the	Over the next	Thermal Power		
pandemic.	two years,	Plant (2x110		
Economic growth	the strategic	MW) is not		
until 2027 is not	plan in line	planned any		
available.	with the new	more, due to the		
	CAP	termination of		
	legislation	support for the		
	has to be	production of		
	prepared.	electricity from		
	The <i>strategic</i>	domestic coal in		
	planning can	2023.		
	be considered	As mentioned		
	as the biggest	above,		
	change in the	production in		
	CAP. More	coal-fired		
	responsibility	power plants		
	will shift to	will gradually		
	Member	decrease. The		
	States to	share of power		
	formulate a	stations		
	strategy that	producing		
	each state	carbon-free		
	wants to	electricity		
	achieve by	should be		
		SHOULU DE		

	I	
2027.	increased. More	
Through the	than 90% of	
CAP	electricity	
Strategic	should be	
Plan,	generated in	
Member	Slovakia, of	
States have	which 67%	
the	through nuclear	
opportunity	power plants.	
to design	The rest is	
their	renewable	
agricultural	energy.	
policy	All	
according to	data/informatio	
their needs.	n above is at the	
This plan is	national level.	
also approved	hauonai ievei.	
by the		
European		
Commission.		
The main		
objectives		
and priorities		
of the		
agricultural sector in		
Slovakia for		
the period up		
to 2027 are		
mentioned in		
the separate		
part		
"Summary		
assessments		
of trends for		

	some Danube countries".						
			Slove	enia			
-	-	-	-	July 2020 1,443GWh (Compared to July 2019 it increased by	-	-	-
				7%)			
	1		Ukraine (fo	or DRBD)	1		
Expected to grow moderately National level: GDP growth at 4.6% in 2021, 4.3% in 2022 and 4.7% in 2023 (Medium term forecast – Resolutuion of the Cabinet of Ministers of Ukraine of July 29, 2020 № 671, On approval of the Forecast of economic and social development of Ukraine for 2021- 2023).	Average growth in agriculture until 2027: 1,5 %	Average economic growth in industry until 2027: 1,3% (sp. Manufacturing industry)	Expected to grow moderately	Expected to grow moderately	Expected to slightly increase	Expected to slightly increase	No changes

Summary Assessments of trends for some Danube countries

Slovakia

Agriculture:

Main objectives and priorities of the agricultural policy for the next period include: *sustainability of Slovak agriculture, food self-sufficiency* and *development and implementation of strategic plan.* However, the relevant documents currently being prepared by the management of the agricultural sector, linked to the CAP, will not be ready until next year (2021). Based on all previous knowledge optimal solutions should be applied.

The agro-sector identified *increasing the food self-sufficiency of Slovakia* as the main priority and committed itself to *developing a long-term strategy for agriculture and the food industry*. (In May 2020, the European Commission presented two key strategies that will have a major impact on the agricultural sector: the Biodiversity Strategy to 2030 and the Farm-to-Table Strategy).

The goal is also changes in payment settings - e.g. not to support only the area itself, but producers of specific foods, i.e. to support production and farmers who want to contribute to the food basket (without division into small and large farmers). The aim is to link financial support from the 1st and 2nd pillars of the CAP to specific production. E.g. the 1st pillar itself has three parts: area payments, eco-schemas and the tying of money to production (coupled payments). Eco-schemas settings are also important, as they can also be linked to production. Tying money to production is a way to recover Slovak agriculture, while coupled payments need to be increased from Eurofunds, but own state participation is also necessary to increase the current low percentage of self-sufficiency (approximately 40%). It is desirable to achieve self-sufficiency, especially in basic commodities (poultry and pork, fruits, vegetables, potatoes), so the priority is to support special animal and plant production. There are also measures to support food production in Slovakia in the government's program statement, for which financial support is necessary (approximately EUR 1 billion must be invested in food production in the next five to seven years). It should be supported that the domestic food industry processes all raw materials grown and bred in Slovakia, as financial support for food processing has been underestimated in previous years. All major steps to increase and achieve food self-sufficiency should be included in The Strategic Plan and the so-called *Intervention Strategy*.

Industry:

General statement: Slovak industry is currently not doing well (as in Germany; there is a great link between Slovak industry and Germany - for Slovakia, Germany is the largest trading partner).

The automotive industry has a decisive influence on the Slovak industry.

According to Ministry of Finance's February 2020 macroeconomic forecast, the Slovak economy under foreign influence continued to perform at a slower pace, but was still progressing. Cooling is particularly noticeable in the export-oriented industry. After reaching its peak in 2018, the Slovak economy slowed significantly in 2019 to an estimated 2.3% (Ministry of Finance's forecast, February 2020). The unfavorable development of foreign demand was predominantly reflected in the Slovak export-oriented industry. The February forecast projected a continuation of the economic slowdown in 2020 with GDP growth of 2.2% and expected to support exports through new production at Jaguar Land Rover, whose dynamics were expected to be dampened by weaker external demand.

According to Statistical Office of the Slovak Republic industrial production in April 2020 reached an all-time low since the establishment of the independent Slovak Republic, falling by 42 percent year on year. The decrease was mainly due to a sharp drop in the production of means of transport by 78.9 percent. This situation was significantly affected by the stop or restriction of production at four Slovak car manufacturers, as well as production restrictions at subcontractors throughout the automotive industry, which responded to the measures taken against the spread of COVID-19 in Europe.

According to Eurostat, in May 2020, in a year-on-year comparison, Slovakia recorded the sharpest drop in industrial production within the EU countries, by 33.5 percent.

However, it should be noted that at present all car manufacturers have already carried out a partial resumption or are trying to fully resume production.

Due to the occurrence of the second wave of the pandemic, it is currently not possible to estimate future developments regarding the sector's performance.

The document "Low Carbon Strategy of Slovakia" was approved by the Slovak Government. This Strategy will include effective and cost-effective measures in the sectors of industry, energy, energy efficiency, transport, agriculture and forestry and waste management. The Strategy is a cross-cutting document across all sectors of the economy, which must pursue individual policies so as to complement each other towards the common goal of completely decarbonising Slovakia by 2050. Energy:

With an estimated 1.23% year-on-year growth, electricity consumption in Slovakia will reach 36.4 TWh in 2030. In terms of electricity demand coverage, the focus will be on the completion of Units 3 and 4 of the Mochovce Nuclear Power Plant (2x471 MW). As mentioned above, by putting these units into operation, the balance between production and consumption of electricity in the ES SR should be changed to export. The export balance of Slovakia should be maintained even after the termination of operation of the Nováky thermal power plant (2x110 MW) in 2023 due to the termination of support for electricity production from domestic coal.

Bosnia and Herzegovina

By increase in capacity of the urban waste water treatment through construction and reconstruction of the WWTPs the water quality should be positively affected.

Also in Bosnia and Herzegovina there is in strategic document planned to increase development of hydropower –electricity production and it is planned till 2021 to grow agricultural sector.

Germany

No new analysis of future anthropogenic developments was performed for the period until 2027 as the analysis for the period 2015-2021 remains broadly valid. The development of the different sectors remains widely interconnected though economic growth and use of resources, like water, are decoupled in an economy largely based on the provision of services. Even though interactions clearly exist, changes of economic parameters don't necessarily induce direct changes of ecologic parameters, e.g. concerning the use of water resources and the hydrological balance.

Overall, the pressure situation due to the observable trends in anthropogenic activities in the considered timeframe can be expected to remain on the current level. More detailed information on the driving forces affecting pressures on water bodies and, consequently potentially affecting water status as well as updated figures on the provision of water services, can be obtained in the River Basin Management Plan for the German share of the Danube Basin.

<u>Austria</u>

Agriculture

Owing to the studied indicators of potential water pollution (livestock or landuse) and accordingly to the prognosis of the Austrian Institute of economic research (WIFO) in the background document for the Economic Analysis 2019 the following things are predicted till 2030:

• in regions with favourable conditions for the expansion of milk production a slight increase of the application of organic fertilizer will take place;

• an overall slight decrease of the agricultural area will happen;

• the reason for regional differences in the river basins of Rhine and Danube will be led back to structural facts in these regions.

The reason for the expected increase in beef production results from the increase of milk production. The impact of climate change could enhance an intensification in the coming decades. However, the agri-environmental program and conditions of the 1st pillar of the CAP weaken these trends.

Industry, Production of goods

Given the observed development of water intensity and the expected production growth, it should be expected, that industrial water consumption will slightly decline until 2030.

It is assumed that the amount of waste water will continue to develop in line with water use; a moderate reduction of amount of waste water is to be expected in the period to 2030.

Electricity generation

The electricity generation by hydro power (excluding Pumped storage power plants) will increase till 2025 by an annual average of 0.9% from 132 PJ (2010) to 152 PJ. The share of hydropower (excluding Pumped storage power plants) in domestic generation falls during this period from 54% to 52%. The share of fossil fuel power decreases from almost a quarter to 17%. The share of electricity produced from renewable energy sources (wind, photovoltaic, biomass) increases from 7% to almost 15%.

Due to WFD requirements it was assumed that production losses in small hydropower and run-of-river power (> 10 MW) occur from 2011 and increase linearly until 2027. The losses in storage power plants on the other hand will be limited until 2027. Furthermore, it was assumed that at the same time the existing potential for plant optimization for existing small hydro- and run-of-river power plants is used. Thus, the (2005) calculated losses are largely compensated.

Czech Republic

Water abstraction and waste water discharge for/from agriculture and industry in the Czech Republic are not expected to increase and the likely scenario (in abstraction and discharge) for the two sectors is stagnation. On the other hand, water abstraction and waste water discharge are expected to increase in case of households. Number of inhabitants supplied with water from water supply systems and inhabitants connected to sewerage systems and WWTPs is also expected to increase. Water quality should be positively affected by construction and improvements of WWTPs.

<u>Romania</u>

The trend of water demand for all water users has been assessed having in view the 2030-time horizon (with 2011 as the reference year). A specific methodology has been developed as basis for the 2^{nd} and 3^{rd} RBMPs.

The methodology comprises of prognosis methods of water demand for population, industry, aquaculture, livestock farms, animal breeding and irrigation. It is based on 3 scenarios (base scenario-medium, minimal and optimistic scenario):

The prognosis of water demand for population considered the population trend at national/county/local level. The prognosis of water demand for irrigation considered the abstraction water for irrigation based on future irrigated area and irrigation specific values according to the type of crops. The prognosis of water demand for livestock considered the water demand based on different livestock specific values of water consumption. The prognosis of water demand for aquaculture considered the related aquaculture surface and related volume.

Trends values Medium Scenario:

- Total demand: 12300 mil. cm;
- Population: 2100 mil. cm;
- Industry: 7400 mil. cm;
- Irrigation: 1700 mil. cm.

Trends values Optimistic Scenario:

- Total demand: 15500 mil. cm (an increase of 26% compared to the medium scenario trend);
- Industry: increase of 34% compared to the medium scenario;
- Irrigation: increase of 25% compared to the medium scenario;
- For population, livestock and aquaculture the optimistic scenario indicates a relatively stable demand compared to the medium scenario.

Hungary

Agriculture: By the Governmental Decision 1335/2017 (VI. 9.), the Government approved Hungary's Food Economics Concept for 2017–2050.

With 5.4 million hectares of agricultural land and 2 million hectares of forest, Hungary has a food production potential that is far from being exploited. According to professional estimates, the Hungarian food economy has a 60% higher production potential by more efficient organization of domestic production and the market, by increasing processing and by purposefully responding to the solvent demand in the world. Hungary's strategic goal is a competitive, economically, environmentally and

socially sustainable food economy, which actively contributes to the development of the national economy and the growth of jobs in rural areas through the continuous growth of its performance and added value, guarantees the country's secure food supply and maintains GMOs. -protect our natural values, preserve biodiversity, protect the environment and manage natural resources in a sustainable way. In the course of its development, agriculture must preserve the natural values of our landscapes, the fertility of the soil, the purity of water resources, protect forests and other important ecosystems, and maintain the ecological balance. Increased state involvement and intervention are needed in the management and conservation of key scarce natural resources, such as land and water.

In the case of consistent adherence to the directions formulated in the Concept and the implementation of the set tasks, there is a reasonable expectation that in 2050 the added value of agribusiness sector within the national economy will reach 25%.

According to the Concept, the conditions for efficient agricultural irrigation must be created in Hungary, thus increasing the proportion of irrigable areas, partly by reducing the damage related to water scarcity, partly by the safety of growing water-intensive, high value-added crops (seeds, field vegetables, fruits) and for more efficient farming in areas with good and medium production conditions but often exposed to droughts. In addition to the water demand of the given crop type, the water demand of agriculture is determined by the size of the area to be irrigated and the development of the irrigation infrastructure.

According to the Concept, farmers can reduce the negative effects of climate change to the crop production by improving soil water management, soil-friendly farming, selecting the appropriate form of land use according to the current condition of the site, using water-saving and soil-retaining cultivation methods and by using micro-irrigation at a higher rate. In animal husbandry, the same goal can be achieved by developing husbandry technology.

Industry: Hungary's reindustrialization strategy is the "Irinyi Plan" on defining the directions of innovative industrial development. The Plan supports energy and material-efficient production, employment and vocational training, the use of renewable energy sources (mainly biomass and geothermal energy), transport development, and the production of second-generation biofuels. Under the "Irinyi Plan", export capacity should be increased and the development of a higher value-added industrial structure should be encouraged. Domestic raw materials must also be processed with high added value. The Irinyi Plan emphasizes the circular economy with zero waste, which also mitigates the effects of climate change.

As stated in the "Irinyi Plan", significant demand can be generated by state funds for the manufacture of vehicles (public transport), the defense industry, the construction industry, the textile industry and the production of medical devices.

As described in the "Hungary's Convergence Program (2020-2024)", the already announced and implemented in the coming years, with a total value of more than HUF 4,000 billion in corporate investment and manufacturing developments, will grow more dynamically than average the food industry, the chemical industry, metal processing, mechanical engineering (especially the automotive industry).

As a result of the developments, Hungary's export performance may increase by 34-56% after the implementation of the developments, and in the coming years they may add a 12-16 percentage point boost to the growth rate of the Hungarian economy. In addition to large investments, a 30-50% non-repayable investment subsidy was made available by a decree of the Ministry of Foreign Affairs and Trade on the competitiveness-enhancing subsidy required as a result of the coronavirus epidemic. The total value of the investments that have been supported so far and will be completed by 30 June 2021 is HUF 377 billion.

Electricity production: In January 2020, the Government adopted the new National Energy Strategy, which sets Hungary's energy and climate policy priorities until 2030, with a 2040 perspective.

According to the strategy, our final energy consumption - while maintaining dynamic economic growth - in 2030 will not exceed the 2005 level of 785 PJ. After 2030, the source of the increase in final energy consumption can only be a carbon-neutral energy source. The cumulative end-use energy saving obligation for the period from 2021 to the end of 2030 is 331.23 PJ, which assumes a steady saving of 0.8% per year. The share of our renewable energy use within gross final energy consumption will increase to a minimum of 21%.

In Hungary, the installed electricity capacity of hydropower production has been 57 MW since 2013, and according to the latest factual data, its production in 2018 was 234.4 GWh. According to Hungary's

National Energy and Climate Plan (ITM 2020), the electricity generation capacity of hydropower will continue to be 57 MW in 2027, and its production will be 244 GWh / year.

According to the WAM (with additional measures) scenario, the combined capacity of biomass and renewable waste will increase from 519 MW in 2020 to 796 MW by 2027, and its production from 2332 GWh to 3029 GWh. According to the WEM (with existing measures) scenario, there is a forecast only for 2020, 2025 and 2030, but the value for 2020 does not reach the actual data for 2018 below, so we use the WAM forecast.

The Hungarian Energy and Utilities Regulatory Authority "Report on the use of renewable energy in Hungary 2010-2018", the installed electricity capacity of biomass in 2018 was 461 MW (solid 385, biogas 76 MW), its production was 2134 GWh (solid 1799, biogas 335 GWh). The use of geothermal energy is currently typical in the heating sector, with 3.35 MW of installed capacity entering electricity generation in 2017, and with production 1 GWh in 2017 and 12 GWh in 2018. There is no specific target for the application to electricity generation, only with other renewables in total, but according to Hungary's National Energy and Climate Plan, a slight increase in geothermal capacity is expected (with built-in capacity 60 MW by 2030 and 104 MW by 2040).

The spread of electricity-producing geothermal power plants covered by the Swiss-Hungarian Cooperation Program II is planned from 2020 onwards, which may be encouraged by the pilot project for the Geothermal Guarantee Fund.

According to the 2018 report "Medium- and long-term source capacity development of the Hungarian electricity system" of MAVÍR Zrt., the use of geothermal energy is constantly increasing, reaching 4.8 PJ by 2016. By the end of 2016, geothermal energy was used for district heating in 13 settlements in Hungary (which was 56% of geothermal energy consumption). Of this, the agricultural sector mainly utilizes the extracted geothermal energy for heating greenhouses (29%), and the commercial and public service sector for the supply of spas, hospitals and other public institutions (14%).

<u>Ukraine</u>

The forecast of economic and social development of Ukraine for 2021-2023 was approved by the resolution of the Cabinet of Ministers of Ukraine (CMU) from 29.07.2020 No671 "About approval of the Forecast of economic and social development of Ukraine for 2021-2023". The baseline scenario envisages a resumption of the positive trend of economic development after significant losses caused by the global COVID-19 pandemic in 2020, and GDP growth at 4.6% in 2021, 4.3% in 2022 and 4.7% in 2023.

In August 2020 CMU was approved the State Strategy for Regional Development for 2021-2027. The priority tasks of the new regional policy are to accelerate the economic growth of the regions, increase their competitiveness. A number of measures are envisaged in the direction of "Development of the territories of the Ukrainian part of the Danube region and cross-border cooperation". In particular

- taking into account in the sectoral strategies the priorities of the EU Strategy for the Danube Region in the areas of transport sector development, agricultural production, environmental protection, tourism development, promotion and protection of cultural heritage, etc .;
- promoting international technical assistance and international financial organizations to promote regional development, in particular in the Danube River Basin;
- introduction of mechanisms to support cross-border industrial and technological parks, economic and industrial zones on the territory of Ukraine in order to stimulate regional economic development;
- creating conditions for socio-economic and environmental development of the Ukrainian part of the Danube region, which includes, in particular, the development of transport infrastructure with the Danube countries and crossing the state border, addressing the issue of quality water supply and flood protection.

In Danube region the volume indices of industrial and agricultural production (as a percentage of the previous year) will maintain positive dynamics and in 2027 will reach the level of 103.3 and 104.0 interest respectively. Further development of agriculture is envisaged. In the context of smart specialization, a significant effect can be given by strengthening the link between agriculture and the food industry, which will increase the added value of the final product. Agricultural production will grow by an average of 1.5% per year.

The volume of sold industrial products (goods, services) will gradually increase.

The foundations for the formation of a forest cluster on the basis of deep wood processing and increase in value added, furniture production will be laid. Under the implementation of the optimistic scenario with an emphasis on innovative modernization, the volume of industrial production will increase at least 3 times, which will increase jobs 2 times.

High rates of capacity modernization will also be observed in the food industry, sectors related to wood processing.

The growth of the tourism industry is forecast. The revenue from the tourist tax to local budgets will increase significantly - almost 1.7 times.

Significant growth of investments in the region's economy is forecast. Thus, fixed capital investment should more than double, and foreign direct investment by one-fifth.

PROGRESS OF MEASURE IMPLEMENTATION IN URBAN WASTEWATER AND INDUSTRIAL SECTORS

ANNEX 14

				Basic / supplement	ary measures				
			UWWTD in	nplementation			IED and BAT		
Country	Agglomerations <10,000 PE	Agglomerations >10,000 PE	Sensitive areas %	Spent or estimated total costs to reach compliance (mil, Euro)		ng sources . Euro) National	Status of - implementation and trend	P-free detergents	Remarks
DE	Accomplished.	Accomplished.	Art. 5(8), combined with Art. 5(4).	Full compliance reached, no further significant costs.	Will be made available at a later point in time.	Will be made available at a later point in time.	Implemented, continuous improvement corresponding to updating BAT.	P-free detergents are in use.	Basic measures implemented, a minor number of projects still pending.
AT	Accomplished.	Accomplished.	Art. 5(8), combined with Art 5(4).	Full compliance reached, ongoing costs for maintenance and reinvestments.		80 per year for municipal drinking water provision and wastewater treatment/dispo sal (for current period 2017- 2021).	Implemented, continuous improvement corresponding to updating BAT.	P-free detergents are in use.	Basic measures implemented.
CZ	Accomplished.	Accomplished.	Whole territory.	Full compliance reached, ongoing costs for maintenance and reinvestments.			Implemented, continuous improvement corresponding to updating BAT.	P- free detergents are in use Dishwasher agents: P content is not restricted. Detergents with concentration of P lower than 0,5 % weight are in use except in industries and institutions where washing is organized by specially trained persons.	Supplementary measures are planned as part of RBM Plan.
SK	$2,000 \ge$ agglo. <10,000 PE: 2015 - not fully accomplished yet.	2010– not fully accomplished yet.	Whole territory Art. 5(8).	Next 500-800 (for agglo. ≥2,000 PE).	425-680.	75-120.	Implemented, continuous improvement corresponding to updating BAT.	The EU Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry	Basic measures: small number of projects still pending, lack of financial sources Supplementary measures for agglomerations <

Table 1: Measure implementation in the urban wastewater, industrial and detergents sector

				Basic / supplement	ary measures				_
			UWWTD in	nplementation			IED and BAT		
Country	Agglomerations	Agglomerations	Sensitive areas	Spent or estimated total costs to reach		g sources Euro)	Status of - implementation	P-free detergents	Remarks
	<10,000 PE	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend		
								detergents and consumer automatic dishwasher detergents will be implemented.	2,000 PE are planned as part of RBM Plan and SK plan of the public water supply and canalization systems development.
HU	Implemented by 31st Dec 2015 (normal area, 2000-15000 PE).	Implemented by 31st Dec 2015 in 3 steps: 31st Dec 2015 (normal area, 2000-15000 PE) 31st Dec 2010 (normal area above 15.000PE) 31st Dec 2008 in sensitive area 10000-15000 PE.	On the basis of Art 5 (8) 3 sensitive areas were designated. From 2009 Art 5 (4) P and N reduction rate calculation method is using by HU.	2405 (2013-15).	1563* (2013-15).	842* (2013-15).	Implemented, continuous improvement corresponding to updating BAT.	Approx. 90% assumed as P-free by 2014 in household detergent' uses. In 2013 the 259/2004/EK regulation came into force, which will have further positive effect using more P-free household detergent in HU.	*Estimation: app. 35% of the cost is covered from national, and app. 65 % from EU sources.
SI	2010.	2010.	Art. 5 (8); Also: existing UWWTP=>10, 000 PE in Danube Region must upgrade to tertiary treatment till August 2016.	More than 221.	More than 132.	More than 89.	Implemented, continuous improvement corresponding to updating BAT.	Decree on the implementation of the Regulation (EC) of the European Parliament and of the Council on detergents was adopted (Official Gazette of the Republic of Slovenia, Nos. 66/2005 and 5/2015).	Eastern Cohesion Region: 15% of the total cost is covered from national, and app. 85% from EU sources. Western Cohesion Region: 60% of the total cost is covered from national, and app. 40% from EU sources.
HR	2023 (for all of remaining agglomerations above 2000 PE).	2018 (for agglomerations larger than 15.000 PE). 2020 (for agglomerations between 10.000	Decision on sensitive areas was issued in 2010 and renewed in 2015, without	For Danube River RBD: Total construction costs is currently estimated at EUR 1765 million, by means of which the	EU funds: EUR 1067 million.	National funds: EUR 698 million.	Implemented, continuous improvement corresponding to updating BAT.	EU legislation concerning the detergents is transposed into Croatian legislation. No	

				Basic / supplemen	tary measures				
			UWWTD ir	nplementation			IED and BAT		
Country	Agglomerations	Agglomerations	Sensitive areas	Spent or estimated total costs to reach		ng sources l. Euro)	Status of — implementation	P-free detergents	Remarks
	<10,000 PE	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend		
		and 15.000 PE - in sensitive areas).	any changes. Continental part of Croatia belonging to Danube river basin is entirely declared as catchment area of sensitive area due to eutrophication of the Danube Delta. Therefore, more advanced treatment with nitrogen and phosphorus removal is required in all agglomerations larger than 10.000 PE.	Republic of Croatia would comply with the requirements of the Urban Waste Water Treatment Directive. Estimation refers to the period up to the end of 2027. and includes costs for building collecting system and/or WWTP. The greatest investments are expected in the period 2024 – 2027, amounting to slightly more than EUR 315 million per year, depending on the availability of financial, technical and human resources.				production of P – detergents.	
BA					No data available.				
ME					No data available.				
RS	Not accomplished.	Proposed to be implemented by 31 Dec. 2032 for agglomerations of more than 50 000 PE and by 31 Dec 2037 of more than 10 000 PE.	As regards designation of sensitive areas, the UWWTD DSIP proposed that Serbia applies the provisions of Article 5(8), i.e. more stringent treatment on the entire territory.	Estimated by UWWTD DSIP: estimated at approx. 4.3 billion EUR for all agglomerations more than 2000 PE.	Unknown.	Unknown.	46 permits have been issued out of 227 IPPC installations. Drafting of the New law, in correlation with IED, in progress. Slow progress.	P free detergents are in use (Rulebook on detergents, 2015). As of January, 1st 2018, dishwasher detergents shall not be placed on the market if the total content of phosphorus in detergent is equal to or greater than 0,3 grams in the standard dosage as defined in Part 1	The projection of funding sources by UWWTD DSIP: the share of the EU funds equals to approx. 50-60%, national funds (state and local) to20-30% and loans to 20% of the overall investment needs.

Danube River Basin Management Plan Update 2021

	Basic / supplementary measures											
			UWWTD in	nplementation			IED and BAT					
Country	Agglomerations	Agglomerations	Sensitive areas	Spent or estimated total costs to reach		g sources Euro)	Status of – implementation	P-free detergents	Remarks			
	<10,000 PE	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend					
								B of Annex 2, (Rulebook on detergents, 2015).				
BG	2014 for agglomerations between 2000 - 10,000 PE according to the EU Accession Treaty - not fully accomplished yet.	2010 for agglomerations >10,000 PE according to the EU Accession Treaty - not fully accomplished yet.	Art. 5 (1) is applied 100% - whole Bulgarian part of the Danube River District is identified as sensitive areas or catchments of sensitive areas.	Estimated total cost at 31-12-2018 to reach compliance (Report under art 17 of the UWWTD: Investments in sewerage networks – 1235. Investments in WWTP - 282,22.	Investments in sewerage networks - 433,63. Investments in WWTP - 79,17.	Investments in sewerage networks - 801,37. Investments in WWTP - 201,36; (National co- finance for EU Fund, Loans, Other sources).	Implemented, continuous improvement corresponding to updating BAT.	P free detergents are in use The measures implementing EC Regulation $N_{0}648/2004$ are introduced in Chapter Three of the Law on Protection against the Harmful Impact of Chemical Substances and Mixtures, and since 2015 according to Article 25, item 17a of control under this Regulation shall comply with the requirements for the restriction of the use of phosphates and other phosphorus compounds in consumer laundry detergents for automatic dishwashers in accordance with Regulation (EU) (259/2012).				

				Basic / supplement	ary measures				_
			UWWTD in	nplementation			IED and BAT		
Country	Agglomerations	Agglomerations	Sensitive areas	Spent or estimated total costs to reach	Funding (mil. l		Status of - implementation	P-free detergents	Remarks
	<10,000 PE	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend		
RO	2018 for agglomerations between 2000 - 10,000 PE according to the EU Accession Treaty.	2015 for agglomerations >10,000 PE according to the EU Accession Treaty.	Whole territory. Art 5 (2). Art 5 (8).	13,400 (including agglomerations between 2000 -10,000 PE) according to the Accession Treaty. 17,371 (starting with 2007, for all agglomerations, basic and supplementary measures) according to the draft of third National RBM Plan, out of which 5,909 until 2021, 9.741 until 2027 for basic and supplementary measure.	2700 (Cohesion Fund for the period 2007- 2013) in the frame of the Sectoral Operational Program for Environment. 2420 (Cohesion Fund for the period 2014- 2020) in the frame of the Operational Program for Large Infrastructure. 2130 (FEDR for the period 2021- 2027) in the frame of the Operational Program for Sustainable Development. 475 (funds from European Facility for Recovery and Resilience in the period 2021- 2026) in the frame of National Plan for Recovery and Resilience 2021- 2026).	500 (National co-finance for EU Fund 2007- 2013). 1792 (Loans at different International Finance Institutions for the period 2006-2009). 427 (National co-finance for EU Fund 2014- 2020). 376 (National co- finance for EU Fund 2021- 2027). 234 (Loans at different International Finance Institutions for the period 2021-2027). 493 (EU loans).	Under implementation (maximum transition period obtained December 2015). Continuous improvement corresponding to IPPC permits and IED permits.	The decrease in trend of average % of P in AWM detergents is continuing. Romania will implement the provisions of the EU Regulation No 259/2012 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents (deadline 31st December 2016).	In progress.
MD	Not accomplished.	Not accomplished.	Methodology for identification of sensitive areas was approved	1.Develop and approve new design and construction rules for small-scale sanitation systems (up	1. 25,000, 2. 25,510, 3. 5,765.		1. In progress, 2. In progress, 3. In progress.	P containing detergents are still in use, legal provisions do not exist.	There exists no national statistics on UWWTP implementation / not applicable.

merations 9,000 PE	Agglomerations	UWWTD in	nplementation			IED and BAT						
	Agglomerations	ry Spent or estimated Funding sources Status of Parallele										
,000 PE		Sensitive areas	total costs to reach (mil. Euro)			Status of – implementation	P-free detergents	Remarks				
	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend						
		by GD # 736/ 2020; sensitive zones are preliminary determined, and its share in the Danube- Prut basin is around 70% of the whole territory. Yet, official designation of sensitive areas is to be occurred simultaneously with approval of the 2nd Danube-Prut River Basin Management Plan by the end of 2021, the	to 2,000 PE), including on-site sanitation/ design and construction of outdoor water supply systems for small settlements with consumption below 200 m3/day; 2. Prepare design documentation and build sanitation infrastructure in Leova, Cahul, Ungheni,Riscani, Falesti, Cantemir districts 3. Prepare design documentation and build sanitation infrastructure in the town of Cantemir (source: Amendments to GD #. 199/2014 on Approval of the Water									
			and its share in the Danube- Prut basin is around 70% of the whole territory. Yet, official designation of sensitive areas is to be occurred simultaneously with approval of the 2nd Danube-Prut River Basin Management Plan by the end	and its share in systems for small the Danube- settlements with Prut basin is consumption below around 70% of 200 m3/day; 2. the whole Prepare design territory. Yet, documentation and official build sanitation designation of infrastructure in sensitive areas Leova, Cahul, is to be Ungheni,Riscani, occurred Falesti, Cantemir simultaneously districts 3. Prepare with approval design documentation of the 2nd and build sanitation Danube-Prut infrastructure in the River Basin town of Cantemir Management (source: Amendments Plan by the end to GD #. 199/2014 on of 2021, the Approval of the Water	and its share in the Danube- Prut basin is around 70% of territory. Yet, official is to be occurredsystems for small settlements with 200 m3/day; 2. Tepare design territory. Yet, documentation and official build sanitation designation of is to be occurred districts 3. Prepare with approval of the 2nd and build sanitation design documentation of the 2nd manuelement sist of the 2nd occurred fralesti, Cantemir simultaneously with approval of the 2nd manuelement (source: Amendments Plan by the end of 2021, the latest.systems for small systems for small systems with approval of the Water latest.and its share in strategy (2014-2028)/systems for small systems with approval of source: Amendments plan by the end of 2021, the latest.systems for small substrates	and its share in the Danube- Prut basin is around 70% of territory. Yet, of 200 m3/day; 2.the whole territory. Yet, official sensitive areas cocurred occurred tis to be occurred testing districts 3. Prepare with approval of the 2nd and build sanitation design documentation official sensitive areas territory. Sensitive and territory. Territory. Sensitive and territory. Sensitive areas territory. Sensitive areas tervitor and tervitor and tervitor and tervitor and territory. Sensitive areas tervitor and the sensitive areas tervitor and the sensitive areas tervitor and tervitor and tervitor and tervitor and te	and its share in systems for small the Danube- settlements with Prut basin is consumption below around 70% of 200 m3/day; 2. the whole Prepare design territory. Yet, documentation and official build sanitation designation of infrastructure in sensitive areas Leova, Cahul, is to be Ungheni,Riscani, occurred Falesti, Cantemir simultaneously districts 3. Prepare with approval design documentation of the 2nd and build sanitation Danube-Prut infrastructure in the River Basin town of Cantemir Management (source: Amendments Plan by the end of 2021, the Approval of the Vater latest. Supply and Sanitation Strategy (2014-2028)/	and its share in systems for small the Danube- settlements with Prut basin is consumption below around 70% of 200 m3/day; 2. the whole Prepare design territory. Yet, documentation and official build sanitation designation of infrastructure in sensitive areas Leova, Cahul, is to be Ungheni,Riscani, occurred Falesti, Cantemir simultaneously districts 3. Prepare with approval design documentation of the 2nd and build sanitation Danube-Prut infrastructure in the River Basin town of Cantemir Management (source: Amendments Plan by the end of 2021, the Approval of the Water latest. Supply and Sanitation Strategy (2014-2028)/				

	Basic / supplementary measures										
			UWWTD ir	nplementation			IED and BAT				
Country	Agglomerations	Agglomerations	Sensitive areas	Spent or estimated total costs to reach	Funding (mil. F		Status of - implementation	P-free detergents	Remarks		
	<10,000 PE	>10,000 PE	%	compliance (mil. Euro)	EU	National	and trend				
UA	Not accomplished.	Not accomplished.	Not designated. Criteria for designation are defined and approved by MENR Order # 6 "On calculating the population equivalent and approving the criteria for identification of sensitive and less sensitive areas".	35,000 million Euro (estimated for whole country).	IBRD are implementing the Second Urban Infrastructure Project -related to the water supply, sewerage and solid waste management 2014-2023. in 11 cities. The budget is 350 million USD.	The National Drinking Water Programme for years 2011- 2021. The programme was adopted 20th of October 2011 N3933-VI). The amount of funding was 9471,7 million UAH. The Drinking Water Programme was constantly underfunded and finally was stopped in 2018. The government approved the concept of a new program "Drinking water of Ukraine" until 2026. The approximate amount of funding for the program will be 28 588.6 million UAH (about 950 mil. Euro).	Annex XXX to the EU-Ukraine Association Agreement; IED transposition deadline – 2016. Concept for the Implementation of the State Policy in the Area of Industrial Pollution (IED Concept), approved by the Cabinet of Ministers of Ukraine on 22 May 2019. Draft IED Law registered in the Parliament.	Resolution of the Cabinet of Ministers of Ukraine of 02 June 2021 # 575 (amendments to the Technical Regulation limiting the content of phosphates and other phosphorus compounds in detergents) New limits from 21.12.2023: Detergent $\leq 0,2$ g/ standard dosage Detergent for industry detergent $\leq 0,1$ % Dishwasher detergent $\leq 0,1$ g/ standard dosage.	In July 2021 the Parliament failed to adopt the draft IED Law (ref. 4167) in the first reading.		

	Total numb agglomerations* which urban wa collection system wastewater tr Country plant*** hav		Total investment costs between		Planned and o	on-going projects			
Country	plant*** ha constructed, ex installed from 2 (completed j	xtended or 2006 to 2021	2006 and 2021****	Planning ongoin 202		Construction ongo of 202	0	Remarks	
	Number of agglomerations	Generated load (PE)	Euro	Number of agglomerations	Generated load (PE)	Number of agglomerations	Generated load (PE)		
DE	1,809	2,284,184	3,665,778,028	166	5,123,247	55	600,700		
AT	1,823	3,260,088 ¹	5,060,221,764					2006-2021: costs for construction, extension and rehabilitation of wwtp and for construction and rehabilitation of collection systems; ¹ additional PE served due to investments	
CZ	231	2,060,000	897,000,000	531+		279+	394,300	Investment 2007-2020, ongoing projects harmonise with planning, + includes all agglomerations (all municipalities)	
SK	327	3,572,300	1,841,183,000					2006-2020 (agglomerations ≥ 2000 PE)	
HU	811	13,876,718	6,667,000,000	158	2,254,273	85	214,466	2006-2016, costs include on-going projects	
SI	68	543,722	424,000,000	1	3,147	4	11,063	Costs: data refer to the total financial expenditures (construction, reconstruction, investment maintenance) for urban wastewater collection from 2013-2018 for agglomerations above 2.000 p.e. Data on agglomerations refer to time period 1.1.2010-31.12.2018 for aggl>2.000 PE. The principle m:n is applied: 1 UWWTP serves more agglomerations and 1 agglomeration could be served by more than 1 UWWTP. Data on planed and on-going projects are from 1.1.2019 on and refer to UWWTP (and not to aggl.)	
HR	240	2,893,044	949,220,717	89	2,147,000	86	2,390,099	Investments with 2020 included; data include agglom. below 2000 PE. No of agglos (column B) and PE (column C) take into account any amount of construction work done on the collecting system and/or WWTP	
BA								No data available	
ME								No data available	
RS	16	1,059,828	151,986,000	18	1,482,300	2	86,500	Total investments shown for the period from 2010 to 2021	
RO	638	12,480,422	7,633,059,011	407	1,024,562	748	7,230,856	Costs include on-going projects	
BG	84	3,113,921	543,788,492	94	2,172,339	6	372,115	The number of "Planning ongoing" is only for the Bulgarian part of the Danube River District from the report under Article 17	
MD	53	89,000	10,324,530	10	8,850				

Danube River Basin Management Plan Update 2021

Basin	6,107	45,363,306	27,860,675,342	1,474	14,215,718	1,307	12,001,102	
UA	7	130,079	17,113,800			42	701,003	
	Number of agglomerations	Generated load (PE)	Euro	Number of agglomerations	Generated load (PE)	Number of agglomerations	Generated load (PE)	
Country	Total number of agglomerations* and PE for which urban wastewater collection system** and/or wastewater treatment plant*** have been constructed, extended or installed from 2006 to 2021 (completed projects)		Total investment costs between 2006 and 2021****Planned an Planning ongoing at the end of 2021		g at the end of	n-going projects Construction ong of 202	0	Remarks

* agglomerations below 2,000 PE may be included

** sewer systems or IAS

** with secondary or tertiary treatment

**** investment costs of the completed projects

Table 3: UWWTD implementation - tertiary treatment plants

Country	Total number of agglomerations* and PE for which wastewater treatment plant with tertiary treatment technology has been constructed, extended or installed from 2006 to 2021 (completed projects)		Total investment costs between 2006 and 2021**	I	Planned and or	n-going projects		Remarks
				Planning ongoing at the end of 2021		Construction ongoing at the end of 2021		-
	Number of agglomerations	Generated load (PE)	Euro	Number of agglomerations	Generated load (PE)	Number of agglomerations	Generated load (PE)	-
DE	182	1,577,919	543,381,055	140	5,027,792	50	576,340	No investment costs for BW available
AT	356	1,597,6211	884,665,551					2006-2021: costs for construction, extension and rehabilitation of wwtp with tertiary treatment; ¹ additional PE served due to investments
CZ	96	1,831,000	685,000,000+			13++	190,500	+ 2007-2020, ++ agglomeration with more than 2000 PE
SK	170 (a)	3,162,000 (a)	1,700,000,000 (b)					(a) 2006-2020; including agglomerations below 10,000 PE having UWWTPs with N removal/P removal/N&P removal; (b) estimation
HU	637	13,161,546	4,254,000,000	135	1,869,777	62	125,631	2006-2016, costs include on-going projects
SI	58	484,514	225,000,000					Data refer to the total financial expenditures (construction, reconstruction, upgrade, investment maintenance) for urban wastewater treatment from 2013-2018 for agglomerations above 2.000 p. e. (both

Country	Total num agglomerations ⁴ which wastewat plant with tertia technology J constructed, e	* and PE for er treatment ry treatment has been	Total investment costs between 2006 and 2021**	1	Planned and o	n-going projects		Remarks		
· ·	installed from 2 (completed j	2006 to 2021		Planning ongoin of 202		the end Construction ongoing at the end of 2021				
	Number of agglomerations	Generated load (PE)	Euro	Number of agglomerations	Generated load (PE)	Number of agglomerations	Generated load (PE)	-		
								secondary and tertiary treatment). Data on agglomerations are estimated and refer to time period 1.1.2010-31.12.2018 for aggl>2.000 PE. The principle m:n is applied: 1 UWWTP serves more agglomerations and 1 agglomeration could be served by more than 1 UWWTP. Data on planed and on-going projects not available separately for tertiary treatment technology; see Table 2 with data for sum of secondary and tertiary treatment.		
HR	10	410,057	72,674,854	22	1,376,662	15	659,957	Costs include tertiary WWTP in agglomerations with load 2000-10.000 PE installed until 2020		
BA								No data available		
ME								No data available		
RS	2	191,748	34,258,207	15	1,101,000	1	70,000			
RO	167	10,810,652	3,223,880,507	9	201,500	32	995,549	costs include on-going projects		
BG	37	2,564,848	507,610,212	11	405,730	1	111,507	Total number of agglomerations with tertiary treatment of nitrogen and / or phosphorus, existing before 2006 and built in the period 2006-2021. The investment costs are for the projects in the period 2006-2021. The planned projects by the end of 2021 are for agglomerations with the need for construction, reconstruction, completion, in which projects have not started by the end of 2021		
MD	0	0	0	0	0	0	0			
UA	0	0	0	0	0	0	0			
Basin	1,715	35,791,905	12,130,470,386	332	9,982,461	174	2,729,484			

* agglomerations below 10,000 PE may be included

** investment costs of the completed projects

Table 4: Fourth treatment stage application

Country	Total number of urban wastewater treatment plants where fourth treatment stage* has been applied from 2006 to 2021	Remarks
DE	22	BY: 2006-2021 BW: total number of plants in July 2020
AT	6	Status as of 2018
CZ	1	
SK	0	2 UWWTPs have membrane biological reactors (membrane separation of activated sludge from permeate)
HU	0	
SI	21	Number of UWWTP on reference date 1.1.2019. Some UWWTP have UV-treatment, some have membrane filter
HR	1	UV treatment
BA		No data available
ME		No data available
RS	0	2006-2021
RO	74	UV treatment - 2006-2020
BG	22	UV treatment (21) and Ozonation (1)
MD	0	
UA	0	
Basin	29 + 118	Fourth stage + specific disinfection

* specific technologies to eliminate emerging chemicals and hazardous substances (e.g. ozonisation, UV treatment, activated carbon filter, membrane filter)

PROGRESS OF MEASURE IMPLEMENTATION IN THE AGRICULTURAL SECTOR

ANNEX 15

Table 1: Nitrates Directive implementation

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	and P application	Restrictions of some agricultural activities on slopes (slope in %)
	status	land)	capacity (monuls)	manure (months)	kg/ha on agricultural land	kg/ha on grass land	activities on slopes (slope in 70)
DE	Implemented.	Whole territory approach according to Article 5 (6) of the ND. In addition areas with a high nitrate contamination of the groundwater are designated ("red areas"): 385 Tha in whole Bavaria 30 Tha in whole Baden- Württemberg.	At least 6 months: Manure and digestate that are produced on the farm have to be stored for a fixed time. Liquid manure and liquid/solid digestate require 6 month storing capacity. Farms with more than 3 LSU/ha or without own application areas have to prove 9 months storing capacity for liquid manure. For solid manure and compost the required storing capacity has to be at least 2 months.	On arable land the prohibition period starts with the harvest of the last main crop and lasts up to including 31st January. If an autumn application is required, the following exception applies for: - catch crops, winter rapeseed and field forage, - winter barley after growing grains These crops can be fertilized until 1st October with up to 30 kg of ammonium-N or 60 kg total- N per ha. On grassland the blocking period starts with 1st November and lasts up to including 31st January.	170 kg N/ha from livestock manure in line with ND.	170 kg N/ha from livestock manure in line with ND.	The minimum distance to water bodies for the fertiliser (N/P) spreading: The width of the fertiliser-free strip depends on the terrain slope and the technique: Areas that have a slope of less than 5% require a distance of 4 meters to the top edge of the embankment. If a boundary spreading device is used the fertiliser-free strip is reduced to 1 meter. On farm- and grassland with an average slope of 5% or more in the first 20 meters form the embankment top edge no fertiliser can be spread closer than 4 meters to the embankment top edge. If a boundary spreading device is used the fertiliser-free strip is reduced to 3 meters. For 10% or more the distance is 5 meters. On farm- and grassland with an average slope of 15% or more in the first 30 meters form the embankment top edge no fertiliser can be spread closer than 10 meters to the embankment top edge.

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	••	Restrictions of some agricultural – activities on slopes (slope in %)
	status	land)	cupacity (monuls)	manure (months)	kg/ha on agricultural land	kg/ha on grass land	activities on stopes (stope in 70)
AT	Fully implemented; revised nitrates action programme in force since 1.1.2018.	Whole territory approach according to Article 5 (6) of the ND. Code of good agricultural practice is therefore included in the Nitrates Action Programme (ca. 3.2 mio. ha).	At least 6 months in general; at least 10 months for farms located in communities of Annex 5 with: - more than 100 kg nitrogen annually from pig slurry; - more than 1.000 kg nitrogen annually from slurry, -if more than 60% of agricultural areas are used for maize production, - if no agricultural areas is used by farm or if more than 250 kg nitrogen per hectare of agricultural area per year is produced.	15th Oct - 15th Feb of the following year on agricultural land in general for mineral fertilizer, slurry, biogas slurry and digestates, the prohibition period starts with 15th Nov, if catch crop or following crop is sawn until 15th October; 30th Nov - 15th Feb of the following year for mineral fertilizer, slurry, biogas slurry and digestates on grassland, 30th Nov - 15th February for farmyard manure, compost; Application limit for mineral fertilizer, slurry, biogas slurry and digestates within the period -from harvest till the beginning of the respective prohibition period and -for grassland from 1st Oct till the beginning of the respective prohibition period with not more than 60 kg of N per hectare.	60 - 240 kg N/ha depending on crop requirement (expected crop yield) and soil potential in total (170 kg N/ha from livestock manure in line with ND).	40 - 280 kg N/ha depending on no. of cuts.	Application of N containing fertilizers including sewage sludge on agricultural fields with average slope of more than 10% within distance of 20m towards surface waters has to comply with the following obligations: -application of more than 100 kg nitrogen per hectare– with the exception of solid manure and compost - has to be split; -for crops with a late growing season measures for reducing soil erosion have to be applied (horizontal sowing stripes with soil covering plants, buffer strips, direct seeding, vegetation over winter period.

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	nd P application	Restrictions of some agricultural - activities on slopes (slope in %)
-	status	land)	capacity (monuis)	manure (months)	kg/ha on agricultural land	kg/ha on grass land	activities on slopes (slope in 70)
CZ	The 5th Action Programme and NVZ revision for 2020–2024 period, valid since 1 July 2020.	Area of NVZ revised for ND in 2019 (valid since 2020), adjusted to land parcels – 1 895 483 ha (arable land – 1 571 907 ha and permanent grassland - 293 070 ha) – 53,30 % of agricultural area according to LPIS. Quality monitoring report in 2020. Code of Good Agricultural practices application is obligatory in the whole agricultural area according to LPIS – area of 3 556 340 ha (35 563,40 km2), in line with ND. ND requirements are obligatory for NVZ defined. For the rest of agricultural areas are implemented on the voluntary bases.	The capacity of storage spaces for manure must be sufficient for storing of manure during the period of ban for the fertilization. The deposition of solid manure and solid organic fertilizers on agricultural land is permissible for 12 months at longest. The deposition at the same place can be repeated after 4 years of land cultivation. The capacity of storage spaces for manure will have to correspond to the need for storage of their six- month production.	Use of fertilizers with a slow releasable N on arable land and permanent grassland is prohibited between 1. 6. – 31. 7. (this provision does not apply in the case of subsequent cultivation of winter crops and catch crops) and in period between 15.12 – 15.2. (15. 12. – 28. 2. in highlands). Use of fertilizers with slow releasable N is prohibited between 15.11. – 15.2. (15. 11. – 28. 2. or 5. 11. – 28. 2., in highlands).	The quantity of total N kg/ha applied annually on agricultural land in organic and combined organic/inorganic fertilizers, livestock manure and sewage sludge cannot exceed on average in total area of agricultural land of farm enterprise 170 kg ha-1, while including agricultural land appropriate for fertilization. For each crop the N limits of effective N has been defined.	Application of N fertilizing substances is restricted to 160 kg of effective N/ha. The calculation of used effective N dose per ha shall be carried out on the basis of data on total N input in organic and combined organic / inorganic fertilizers and livestock manure.	Appropriate N limits and agrotechnical erosion control measures which are in the conformity with site conditions shall be carried out on agricultural plots with arable land on erosion endangered soils, delimited in accordance with main soil unit (limit of 7 or 12 degrees).

4

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	• •	Restrictions of some agricultural - activities on slopes (slope in %)
	status	land)		manure (months)	kg/ha on agricultural land	kg/ha on grass land	
SK	Implemented, without infringement.	NVZs designed according to Articles 3 (2) and 3 (4) of Nitrates Directive. Existing NVZs represent part of agricultural and as of 31.12.2019 it represented 11 891.47 km2. Last revision of NVZs, completed in December 2020, will take effect from January 2022.	Storage capacities for solid or liquid manure should correspond with six-month of their production. In the case of insufficient storage capacity, animal manure can be stored at another subject or upload it for other uses in volume corresponding up to 3 month-storage capacity.	Prohibition period of animal manure N application is differentiated according to a) category of animal manure, b) category of agricultural land – separately for arable land and permanent grasslands, and c) climate and ranges from October 5th to 30th November in autumn to February 15th. The period of N application in fertilizers ranges from October 5th to October 20th in the autumn to February 15th. On agricultural land with slope up to 5°, the inspection body may grant an exemption from the ban for a period of 14 days from beginning of the prohibited period.	Besides ND limit (170 kg N/ha from animal manures) N inputs are limited also via maximum total N input with respect to yield level of individual crops as well as the maximum single N rate in fertilizers. P inputs in fertilizers are regulated especially with regard to available soil P supply and crop demand on specified yield.	Total animal manure N rate is limited by NID limit. Phosphorous application on permanent grasslands is not limited and its input is mainly from animal manure or excreta.	On the slopes are the following restrictions / demands: 1) To use the agricultural land as arable land with a slope above 12°; 2) Apply fertilizer N on slopes above 10° at arable land unless incorporated into soil within 24 hours after application; in the case of permanent grasslands it applies on slopes above 12°; 3) On agricultural land adjacent to water resources with slope below 7°, application of nitrogen fertilizers shall not be used in zone 10-20 m from the bank of water course or flood line of reservoir. 4) On the arable land adjacent to water resources with slopes above 7°, fertilizers containing nitrogen must not be applied in zone 25 m from water courses; in the case of row-crops are cultivated on these spots, additional of defined measures must be taken.
HU	Hungary implements Nitrate Directive under Government Decree No. 27/2006 (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources and under Regulation 59/2008. (IV.29) FVM on the detailed rules of the action programme	HU transposed the ND. The designation entered into force by Government Decree No. 27/2006. (II.7.) on the protection of waters against pollution caused by nitrates of agricultural sources. The designation was carried out according to the ND. The revision of the NVZ's is fulfilled. The rules of the Code of Good Agricultural Practices are obligatory on the NVZ's (6,5 million	In accordance with The Code of Good Agricultural Practice the capacity of the farmyard manure storage facility shall be sufficient for the storage of 6 months' volume of farmyard manure.	No manure shall be applied between 30 Nov and 15 Feb, except for the top dressing of winter cereals where manure application will be permitted from the 1st Feb. The post- harvest application of manure containing readily soluble nitrogen is prohibited if no new crop is sown in autumn. The application of fertilizers is not allowed on frozen soil and on lands saturated with water or covered with snow.	The annual volume of N applied through organic manure on agricultural areas may not exceed 170 kg/ha. Whether it originates from grazing or from livestock farms, the volume of N applied shall be calculated by using the values in the rules of the action programme. On NVZ areas the maximum volume of total (organic + inorganic) N kg/ha allowed for major	No special limit value for grass land in Hungary.	As for plantations on slopes more than 15 %, fertilizers may be applied only if the anti-erosion measures specified in the soil protection plan to be compiled pursuant to separate legislation are fulfilled. The application of slurry will not be allowed on slopes above 6%, except if done with the sliding hose (hose curtain) procedure that may be used on slopes of maximum 12%. If applied on slopes above 12%, the chemical fertilizers shall be promptly incorporated into the soil except for top dressing. The application of fertilizers will not be allowed on slopes above 17%. On slopes more than 2 % for the hindering of erosion such cultivation method shall be used which enhances the absorption of rainwater in the soil due to the conservation of the soil structure and the

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	• •	Restrictions of some agricultural - activities on slopes (slope in %)
	status	land)		manure (months)	kg/ha on agricultural land	kg/ha on grass land	
	required for the protection of waters against pollution caused by nitrates from agricultural sources and on the procedures for data provision and registration. The Hungarian Action Programme was published for the first time in 2001.	otection ofNVZ's, the agriaters againstenvironmentalllution causedmeasures assist thenitrates fromimplementation ofriculturalGAP on voluntaryurces and onbasis.e procedureser dataovision andgistration. Theingariantionogramme wasblished for thest time inin		crops during the vegetation period by soil category and soil nutrient supply is set.		hindering or elimination of soil compaction.	
SI		Whole territory approach according to Article 5 (6) of the ND. Code of good agricultural practice is therefore included in the Nitrates Action Programme namely the Decree on the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (Uradni list RS, št.113/09, 5/13, 22/15 in 12/17 hereinafter: Decree).	The capacity of manure storage is set out in Article 12 of the Decree. It is set out that the capacity of storage facilities for livestock manure shall be adjusted to the number and species of animals on an agricultural holding and shall provide sufficient capacity for at least six months' storage. The minimum necessary capacity levels for livestock manure storage facilities are set out in Table 3 of Annex 1 of the mentioned Decree.	Liquid organic fertilisers between 15 Nov. and 1 March. Exceptions concerning liquid organic fertilisers: a) from 15 Nov. to 15 Feb. in the case of the preparation of land for the sowing of spring cereals, grasses and grass– clover mixtures or the spring fertilisation of winter cereals and seeded grassland. b) in cadastral municipalities listed in Annex 2 of the Decree on agricultural land with green cover from 15 Dec. to 15 Jan. and on agricultural land without green cover from 1 Dec. to 15 Febr. c) in cadastral municipalities listed in Annex 2 of the Decree from 1 Dec. to 31 Jan. on agricultural land without green cover in the	Livestock manure: 170 kg N/ha of agricultural land in use at the level of the agricultural holding. The annual land application of nitrogen from livestock manure shall be calculated on the basis of data on the number of animals on the agricultural holding and the annual quantity of nitrogen in livestock manure produced by individual species and categories of livestock and which is shown in Table 1 of Annex 1 of the Decree. The annual application of	From livestock manure: 170 kg N/ha of agricultural land in use at the level of the agricultural holding. The annual land application of nitrogen from livestock manure shall be calculated on the basis of data on the number of animals on the agricultural holding and the annual quantity of nitrogen in livestock manure produced by individual species and categories of livestock and which is shown in	On steeply sloping land that incline towards surface waters, the doses of organic and mineral fertilisers that contain nitrogen shall be divided into several parts so that one-time dose of applied nitrogen does not exceed 80 kg/ha. In addition to the requirements, one of the following measures must be ensured in fertilisation on fields that lie on steeply sloping ground inclined towards surface waters: the field must be bounded by transverse green zones, or there must be a belt of land at least 15 m wide, with green cover or containing other agricultural crops, or the field must be worked transversely to the slope, or the field must have green cover throughout the winter.

MEASURES									
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	s) applying fertilizer and manure (months)	Limitation of N and P application kg/ha on kg/ha on grass		 Restrictions of some agricultural activities on slopes (slope in %) 		
	status	land)			agricultural land	land			
				case of the preparation of land for the sowing of spring cereals, grasses and grass- clover mixtures. Solid manure, compost or digestate, where the latter contains more than 20 percent of dry matter. from 1 Dec. to 15 Febr. and in cadastral municipalities listed in Annex 2 of the Decree from 15 Dec. to 15 Jan. Mineral fertilisers containing nitrogen: from 15 Oct. to 1 Mar. a) winter cereals: from 1 Dec. to 15 Febr. b) in cadastral municipalities listed in Annex 2 of the Decree on agricultural land with green cover from 15 Dec. to 15 Jan. and on agricultural land without green cover from 1 Dec. to 31 Jan. c) In the period from 1 Sep. to the beginning of the prohibition period, the input of nitrogen into the soil in the form of mineral fertilisers must not exceed 40 kg N/ha.	nitrogen from organic fertilisers per single unit of agricultural land use may not exceed 250 kg N/ha. Limit value kg N/ha and expected yields are indicated in Table 4 of Annex 1 to the Decree. Limit values of nitrogen input to the soil represents the amount of nitrogen that can be introduced into the soil for individual plants in the form of mineral and organic fertilizers and when irrigating plants, taking into account the expected crops, in the period from soil preparation for sowing to harvest and for permanent crops and meadows for a period of one calendar.	Table 1 of Annex 1 of the Decree. The annual application of nitrogen from organic fertilisers per single unit of agricultural land use may not exceed 250 kg N/ha. Limit value kg N/ha and expected yields are indicated in Table 4 of Annex 1 to the Decree. Limit values of nitrogen input to the soil represents the amount of nitrogen that can be introduced into the soil for individual plants in the form of mineral and organic fertilizers and when irrigating plants, taking into account the expected crops, in the period from soil preparation for sowing to harvest and for permanent crops and meadows for a period of one calendar.			
R		NVZ in Croatia are established through the	According to the III Action Programme the	According to the III Action Programme application of	The application limit is 170 kg N/ha/year.	Limits for application of	According to the Ordinance on Cross compliance, OG 113/19, agricultural		

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibition periods for applying fertilizer and manure (months)	Limitation of N a	nd P application	Restrictions of some agricultural - activities on slopes (slope in %)
	status	land)	capacity (monus)		kg/ha on agricultural land	kg/ha on grass land	
		Governmental Decision on designation of vulnerable zones, OG 130/12. Vulnerable zones in Croatia cover 9 % of land territory (75 local municipalities and cities). The Brochure Codes of Good Agricultural Practice has been issued in 2009 by Croatian Ministry of Agriculture in cooperation with Croatian Advisory Service. The Brochure consists of Codes of Good Agricultural Practice in usage of Land, Air, Water and Animal Welfare.	requirement for storage capacity is 6 months.	manure is prohibited from 15th of November until 15th of February. Also the application of fertilisers and manure is prohibited on water saturated, flooded, frozen or snow covered agricultural land.	Moreover, in the Action Programme the limits for application of nitrogen according to the agricultural plant species are prescribed.	nitrogen on grassland is 170 kg N/ha.	activity on slopes with inclination 15 % or more must be conducted perpendicular to the slope.
ВА		According to Water Law, there is obligation for detections, methodologies, obligations and restrictions of activities in NVZ and monitoring of NVZ, which will be proclaimed by Ministry of agriculture, forestry and water management in cooperation with Ministry in charge of ecology, but no by-law or decision, yet.	According to: Basic principles of good agricultural practice in the use of fertilizers, which are prescribed by the Rulebook on conditions, manner and methods for testing the fertility of agricultural land and determining the amount of mineral fertilizers and pesticides ("Official Gazette of Republika Srpska" No. 26/14), recommended: fertilizer storage on a six-month basis: 1LU solid manure storage	There is no regulation in Federation of B&H that prohibits the periodic applying of fertilizers on agricultural land during the year. There is Law on Agricultural Organic Production ("Official Gazette of FB&H" No. 72/16). Regarding the good agricultural practises there is nothing mentioned in any a valid law or bylaw related to agriculture. According to: Basic principles of good agricultural practice in the use of fertilizers, which are	In FBiH it's not adopted regulation regarding Codes od Good Agricultural practice or any other low or bylaw related to agriculture which regulates limitations of N and P in fertilizer application. Only Law on agricultural organic production ("Official Gazette of FB&H" No. 72/16) mention that plant production is considered organic	According to: Basic principles of good agricultural practice in the use of fertilizers, which are prescribed by the Rulebook on conditions, manner and methods for testing the fertility of agricultural land and determining the amount of mineral fertilizers and pesticides	No data available.

				MEASURES			
Country	Nitrates Directive implementation status	NVZ designation method and NVZ area (ha agricultural land)	Manure storage capacity (months)	manure (months)	Limitation of N and P application		Restrictions of some agricultural activities on slopes (slope in %)
	status				kg/ha on agricultural land	kg/ha on grass land	activities on slopes (slope in 70)
		The implementation of ND and harmonization with Codes of Good Agricultural practice is not finished Federation B&H: Rulebook on Determining Areas Susceptible to Eutrophication and Sensitive to Nitrates (Official Gazette of FBiH No. 71-09) Rulebook on monitoring in areas subject to eutrophication and nitrate sensitive (Official Gazette of FBiH No. 71-09).	capacity 8 m3, 1 LU liquid manure storage capacity 2 m3, and 1 LU slurry manure 10 m ³ .	prescribed by the Rulebook on conditions, manner and methods for testing the fertility of agricultural land and determining the amount of mineral fertilizers and pesticides ("Official Gazette of Republika Srpska" No. 26/14), - liquid and semi-liquid manure fertilization on all agricultural valuable areas regardless of the cover, from 1 December to March 1, - liquid and semi-liquid manure fertilization by distribution top without entering all agricultural areas, from 1. May to 1 September, - solid manure fertilization on all agricultural rails, from 1 May to 1 September, - fertilizers with nitrate nitrogen on all agricultural land, from 1 November to 1 February and the use of urea, ammonium nitrate per harvest residues, - from harvest to 1 December by fertilizing mineral fertilizers; - the use of fertilizers in areas reserved for the protection of drinking water sources is prohibited.	production under provided that in addition to the general rules of production of this law in organic plant production apply other rules and one of them emphasized that the use of mineral nitrogen fertilizers is prohibited. According to: Basic principles of good agricultural practice in the use of fertilizers, which are prescribed by the Rulebook on conditions, manner and methods for testing the fertility of agricultural land and determining the amount of mineral fertilizers and pesticides ("Official Gazette of Republika Srpska" No. 26/14), During one calendar year, an agricultural areas with manure up to the following nitrogen application limit values (N): - 210 kg / ha of nitrogen (N), permitted application in the	("Official Gazette of Republika Srpska" No. 26/14), During one calendar year, an agricultural farm can fertilize agricultural areas with manure up to the following nitrogen application limit values (N): - 210 kg / ha of nitrogen (N), permitted application in the first four annual period after the initial fertility analysis was performed and - 170 kg / ha of nitrogen (N), permitted application after four annual period.	

				MEASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ	Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a	nd P application	Restrictions of some agricultural – activities on slopes (slope in %)
Ŭ	status	area (ha agricultural land)		manure (months)	kg/ha on agricultural land	kg/ha on grass land	- activities on stopes (stope in %)
					first four annual period after the initial fertility analysis was performed and - 170 kg / ha of nitrogen (N), permitted application after four annual period.		
ME				No data available			
RS		Draft version is prepared 2016 through the cooperation Project with Swedish EPA (Designation of sensitive and vulnerable zones according to the ND and UWWD - ENVAP II), but need revision, will be adopted in accordance with the new Water Law. Draft version of the Code of Good Agricultural Practice is also prepared through the ENVAPII project. It is now in the process of updating.	Legal framework for manure storage capacity is in preparation. Recommendation for storage capacity is 6 months and will be implemented via transposition of ND.	There is no regulation in Serbia which prohibits the periodic applying of fertilizers on agricultural land during the year. Traditionally, fertilizers are not applying on a frost or snow-covered land.	n/a	n/a	According to the Law on Agricultural land (2018) agricultural area with a slope greater than 10% has to be cultivated parallel to contour lines and area with a slope greater than 25% should not be used as arable land. Responsibility for implementation these restrictions is under local government.

					ME	ASURES			
Country	Nitrates Directive implementation	NVZ designation method and NVZ area (ha agricultural	Manure storage capacity (months)	Prohibit applying			Limitation of N a	••	Restrictions of some agricultural activities on slopes (slope in %)
	status	land)	capacity (monuls)	manu	re (mon	ths)	kg/ha on agricultural land	kg/ha on grass land	activities on slopes (slope in 70)
RO	Ongoing.	For the first Action Program (2005 – 2008), a surface of 16,000 skm (6.7 % from the total surface) was designated as NVZ. Since December 2008, the NVZ surface increased at 137,500 skm (13,750,000 ha), which was representing 57.7 % from the total surface. Since 2013 Romania adopted whole territory approach - art 3 (5) ND. (23,839 mil. ha, 100% of the total surface). The Action Program (AP) and the Code of Good Agricultural Practices (CGAP) are reviewed every four years. The AP is mandatory at the national level. The CGAP is mandatory be applied for RD voluntary for the rest of farmers, since 2021.	Manure storage capacity will be given by the period of prohibition for the application of fertilizer/ manure to which is added one additional month.	Prohibition field applica are defined period whic nutrient req and the risk runoff is hig So, in the pc conditions of prohibition applying fer manure are on the 30 yc for the time the average below 50C. prohibition application liquid orgar when air ter becomes hig this respect categories w prohibition following: 1 - plain, 2 - hill, 3 - mountai	ation of f by the ti h the cro uirement of leaka gh. edo-clim of Roman periods f trilizer an calculate ars clim interval air temp The end period f of solid ic fertili mperatur gher thar three are vith spec period a: n. Start 15.XI 10.XI	fertilizers me op ts are low ge / atic nia, the for and based atic data which erature is of the or the and zers, is e 1 50C. In e region iffic s End 10.III 20.III 25.III	The maximum amount of nitrogen from organic fertilizers that can be applied on agricultural field must not exceed 170 Kg / ha / year. Also, in the sanitary and hydrogeological safeguard zone, the fertilizers are forbidden to be applied or handled.	The application of organic fertilizers on permanent meadows (pastures and hayfields) complies to the condition to not exceed the amount of 170 Kg N ha / year and not to apply during the prohibition periods.	AP requirements: Agriculture working soil (including sowing) on arable land with a slope greater than 12%, cultivated with weeds, is carried out along the level of curves. On lands with a slope of more than 12%, the fertilization should be done only by incorporating fertilizers into the soil (no later than 24 hours from the time of application).
BG	Ongoing revised nitrates action programme in force since 17.03.2020.	The NVZ was designated by the Order № RD- 660/28.08.2019 of the Minister of Environment and Water.	The capacity of the facilities must be sufficient to store manure as follows: 1. of solid manure at least:	Do not impo fertilizers (o mineral / in- crops, perer orchards, m permanent p following p	organic a organic) inial croj eadows a pastures	nd for field ps, and	In all crops the amount of imported nitrogen compounds from organic and mineral fertilizers during the year should not exceed	In all meadows and permanent pastures the amount of imported nitrogen compounds from organic and	On terrains with a slope of 6° to 12°, some of the following measures must be applied: 1. in arable land: Anti-erosion crop rotations, where applicable, tillage across the slope, cutting with walking formation, construction of

				MEASURES			
Country	Nitrates Directive implementation		Manure storage capacity (months)	Prohibition periods for applying fertilizer and	Limitation of N a		Restrictions of some agricultural - activities on slopes (slope in %)
	status	land)		manure (months)	kg/ha on agricultural land	kg/ha on grass land	
		The NVZ for the Bulgarian part of the Danube River Basin is 2,153 million ha; for the whole country NVZ is 3,835 million ha. The rules of the Code of Good Agricultural practices are obligatory within the NVZ, for the Bulgarian part of the Danube River Basin it is 2,153 million ha; for whole country is 3,835 million ha. Measure "NI_1_10 - Application of the adopted rules for good agricultural practice outside nitrate vulnerable zones" is included in the RBMP 2016-2021.	 4 months for grazing animals, 6 months in stable livestock farming. 2. of the liquid manure 6 months, including the period of prohibition for use of nitrogen- containing fertilizers. In the case of biogas production, the capacity of the fresh and processed manure storage facility, it is necessary to provide storage volumes for the period of prohibition, according to the capacity of the biogas production facility. 	 from November 1 to February 25 for Northern Bulgaria (municipalities and parts thereof, defined as nitrate vulnerable zones and falling in the districts: Varna, Vratsa, Veliko Tarnovo, Vidin, Gabrovo, Dobrich, Lovech Montana, Pleven, Razgrad, Ruse, Silistra, Targovishte and Shumen). from 1 November to 5 February in areas with annual crops sown in autumn (autumn). from November 1 to February 25 on free areas prepared for sowing and planting of agricultural crops. from November 15 to February 25 when creating new orchards. Do not fertilize with nitrogen-containing fertilizers on frozen soil, as well as on soil completely or partially covered with snow. Do not apply nitrogen fertilizers during rainfall and thereafter until the soil is too wet. Do not import nitrogen fertilizers on naturally wet soils and flooded soils (except rice fields). 	170 kg of nitrogen per ha/year.	mineral fertilizers during the year should not exceed 170 kg of nitrogen per ha/year	facilities for drainage or retention of surface water, introduction of soil improvers intrasoil. Belt agriculture (contour or transverse of the terrain), grass buffer belts, terracing, application of soil improvers intrasoil. 2. in perennials terracing across the slope, grassing between rows, mulching, drainage facilities, application of soil improvers intrasoil. 3. in pasture lands drainage furrows, drainage retaining shafts, introduction of soil-improving substances intra-soil is allowed. In areas with a slope greater than 12°, the application of soil improvers is prohibited.
MD	In progress.	Methodology for identification of sensitive areas was approved by GD # 736/ 2020; sensitive zones are preliminary	According to GD no. 149 of 2006, the stocking rates livestock farming are is defined for indoor and outdoor	No legal provisions, just recommendations provided in Code of GAP as follows: 1.Arable lands autumn agri- plants – 01.11-01.03	Not exceeding 170 kg N/ha/year.	This provision is not included either in regulations or new Code of GAP.	restriction of agricultural activities on slopes but just recommendations provided in Code of GAPs The optimal ratio between agricultural crops on slopes, in% Row-crop:

MEASURES								
Country	Nitrates Directive	NVZ designation method and NVZ area (ha agricultural	Manure storage	Prohibition periods for applying fertilizer and	Limitation of N a	nd P application	Restrictions of some agricultural	
0	implementation status	area (na agricultural land)	capacity (months)	manure (months)	kg/ha on agricultural land	kg/ha on grass land	 activities on slopes (slope in %) 	
		determined, and its share in the Danube- Prut basin is around 40% of the whole territory. Yet, official designation of NZAs is to be occurred simultaneously with approval of the 2nd Danube-Prut River Basin Management Plan by the end of 2021, the latest. New Code of Good Agricultural Practice developed in accordance with European normative acts and Moldovan legislation was approved by Ministerial Order # 160/ 2020.	facilities, except pastures, as follows: 1)Cattle: indoor - from 1,5 to 5 m2 per capita with minimum 100 kg per 1,0 m2; outdoor – from1,1 to 3,7 m2 per capita with minimum 100 kg per 0,75 m2 2)Milk caws: indoor – 6 m2 per capita; outdoor – 4,5 m2 per capita 3) Bulls: indoor – 10 m2 per capita; outdoor – 30 m2 per capita 4)Pork: indoor – 10 m2 per capita; outdoor – 30 m2 per capita 4)Pork: indoor – from 0,8 to 7,5 (for sow) m2 per capita; outdoor – from 0,6 to 8,0 (for fattening pigs) m2 per capita Solid fraction of manure can be processed by both passive (traditional) and active (accelerated) methods. When using the passive method, the manure is placed and processed as follows: under the positive temperature it is placed in the earth beads (poultry manure is mainly stored in open anaerobic lagoons/ ponds), mixed with composting material (straw, etc.), and kept within 2-3 months.	2. Arable lands: other agri- plants – 01.10-15.03 3.Pastures – 01.10-15.03.			<10-50-60 1-30-40-50 3-50-30-40 5-70-20-25 >70 Dense crop: <10-25-30 1-30-30-35 3-50-35-45 5-70-45-50 >70-30-35 Perennial herbs: <10-100 1-30-69 3-50-73 5-70-83 >70-93	
UA		NVZ has n't yet designated. Designation is	Manure storage is regulated by the Law about waste. According	There is no legal restriction for applying of manure. Norms of fertilizers are	Doses of fertilizers depend on soil, crop and a plant-fore	Nitrogen 80- 120kg/ha, phosphorus 45-60	There exist no legal provisions for restriction of agricultural activities on slopes but just recommendations.	

				MEASURES			
Country	Nitrates Directive implementation status	NVZ designation method and NVZ area (ha agricultural land)	Manure storage capacity (months)	Prohibition periods for applying fertilizer and manure (months)	Limitation of N as	kg/ha on grass	Restrictions of some agricultural activities on slopes (slope in %)
		expected till 2024. Methodology for NVZ designation was adopted in 2021. Draft of Good agricultural practice was developed. The adoption of the legislative act is expected at the end of 2021. Scientific bases and technology of optimum cultivation of separate cultures are developed. It is not a mandatory document just a set of recommendation.	this Law manure storage is allowed in specialized storage places, authorized in conformity with an established procedure. The large agricultural enterprises store manure both liquid and solid forms. Household manure storage are only as solid. The capacity of manure facilities must be at least 6 months. The total amount of produced manure in Ukraine was 19 772 thousand ton in 2020.	established depends on the content of N or P in soil and volumes of application of organic fertilizers. Appropriate recommendation nitrogen fertilizers are applied only in spring (if soils are sandy or sandy loam – directly before planting). 20 % of phosphorus are recommended to apply in spring and 80 % – in autumn. For NVZ nitrogen fertilizers application is regulated by the 2nd annex of the Code of Good Agricultural Practice. In Ukraine it will be named "Rules for ensuring soil fertility and the use of certain agrochemicals". The draft Order of the Ministry of Economy has been adopted and is currently undergoing interdepartmental approval. Adoption of the Order is expected by the end of 2021. The prohibition period depends on natural zone and type of mineral fertilizer. On average, the use of mineral fertilisers is prohibited during 1st December – 1st February (or March) and 1st June – 31th August (or September). Application of organic fertilisers is prohibited from 1st June till 31July and 15 November – 15 Match for solid form and 15 November – 15 March for liquid form.	agricultural land crop. Dose is defined by 3 methods: calculation, field, complex. Limitation: Nitrogen 30 - 180 kg N/ha per year, Phosphorus – 45-90 kg P/ha her year, Manure – 20- 60 t/ha.	land kg/ha. In year 2020 had been applied nitrogen fertilizers: Tizsa basin – 2106.7 t (189.3 kg/ha); Prut basin – 18 337.9 t in Ivano- Frankivska region (105.4 kg/ha) and 7093 t in Chernivetska region (82.1 kg/ha); Lower Danube part – 9 624 t (97.7 kg/ha) in Odeska region.	Restrictions on agricultural work on the slopes in the NVZ are contained in Annex 4 of "Rules for ensuring soil fertility and the use of certain agrochemicals". Agricultural activities depends of slope: < 3% - cultivation of all cultures is allowed; 3–9 % - soil-protective crop rotations are applied; >9–15 % - the contour-strips organisation of territory and soil- protective crop rotations are applied; >15% - only grass is allowed. By the general estimations about 31,7 % of the lands are eroded in Ukraine. Amount of eroded lands annually increases by 80-90 thousand ha.

Table 2: Agri-environmental measures

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
DE	100 % according to fertilizer ordinance (DüV). Nutrient flow balances (Stoffstrombilanz)for farms: >50 LSU or >2,5 LSU per hectare.	Germany: Whole territory: 5 m (rivers and lakes); on application of fertilisers containing N or P, the direct discharge of nutrients into surface waters has to be avoided, and the run-off into surface waters has to be prevented. Bavaria: optional with financial support of the Bavarian state: on arable land buffer stripes with a width of 7 - 30 m to the water pollution control and soil conservation. Baden- Württemberg: according to the legal obligations the riparian strip in the area outside of settlements is 10 m, where trees and shrubs must be preserved. Up to a distance of 5 m no fertilizers and pesticides may be applied, in addition, the use as arable land is prohibited there with a few exceptions.	Optional (financial support) Bavaria (Danube River Basin) 2019: ca. 148.000 ha (10,5 % of arable land); Optional (financial support) Baden-Württemberg (Danube River Basin) 2019: ca. 22.000 ha (catch crops, fallow greening, soil cultivation with strip till). German Danube River Basin: 170.000 ha.	215.900 ha in Bavaria (Danube River Basin) are managed according to the criteria of organic farming (2019) 44.169 ha in Baden-Württemberg (Danube River Basin) are managed according to the criteria of organic farming (2019). German Danube River Basin: 260.000 ha.	In Bavaria and Baden- Württemberg exist various programs funding agri- environmental measures: cultural landscape program (KULAP - Bavaria), support program for agri-environment, climate protection and animal welfare (FAKT - Baden-Württemberg) and contractual nature conservation program (VNP): Extensive grasslands: 467.600 ha. Natural landscape elements: 799 ha, in Danube River Basin in 2019 (Bavaria). Extensive grasslands:107.700 ha in Danube River Basin in 2019 (Baden- Württemberg). German Danube River Basin: Extensive grasslands: 575.300 ha in 2019.	woodland areas increased by 1 % since 1980 without legal obligations.	No data available.	Farm advice for the protection of water and the implementation of the WFD by the offices for agriculture and forestry (ÄELF in Bavaria BY) or the county offices and Regierungspräsidien in Baden-Württemberg.
AT	Nutrient balances with obligatory documentation within the nitrates action programme (NAP) on • farm level: for all farms with >15 ha agricultural land, >2	- Whole territory: : with NAP obligatory erosion- minimizing cultivation measures on agricultural areas with average slope >10%; minimum distances for fertilizer application near surface waters in case of cultivated buffer strips	Obligatory erosion- minimizing cultivation measures on agricultural areas with average slope >10% within NAP; beyond legal requirement financial support for voluntary measures of the	669.921 ha (26%) not including alpine pastures (= 20 % of the utilised agricultural area) – are managed according to the criteria of organic farming (2019). No legal obligation.	 about 295.277 hectares of grassland (25% of permanent grassland) has been used extensively (2019) natural landscape elements were implemented on 7.325 ha (2020). 	No legal obligation; wooded area increased by 8 % since 1961; during the last years the area was almost	Rural development programme provides the basis for specific measures to enhance nature protection and	Farm advisory services are available at different regional levels and by different means: • for all farms in frame of rural development programme (based on Art. 12 of EU- Regulation 1306/2013)

				MEASURES (situation in 202)	1)			
	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmer trained)
_	ha vegetables or if less than 90% of agricultural area is used as grassland; documentation includes amount of nitrogen fertilizer (including manure) produced and applied, nitrogen demand of cultivated crops • field level: for farms located in communities listed in Annex 5 of NAP and with >5 ha arable land or >2 ha vegetables; documentation in addition to farm level on date, amount and field of fertilizer application, dates of sowing and harvest as well as yield; beyond legal requirements nutrient balances are an integral part of regional groundwater protection measures in frame of agri- environmental programme, participation on voluntary basis (12.414 farms (12%) with 320.146 ha (14%) in 2019).	between 2.5m and 20m depending on type of surface water (river, lake) and average slope of adjacent agricultural area (< or > 10%);beyond legal requirements buffer strips (width 12m minimum) are integral part of regional measures of agri- environmental programme, participation on voluntary basis (about 800 farms (0.8%) with 1.000 ha (2019)).	agri-environmental programme, i.a.: • cultivation of catch crops on at least 10% of arable area of farm (24.937 farms (23%) with 273.784 ha (12%) in 2019) • permanent cultivation of catch crops on at least 85% of arable area of farm (13.294 farms (12%) with 200.230 ha (9%)) • dedicated soil conservation and erosion-minimizing measures (11.137 farms (10%) with 137.469 ha (6%))) • dedicated erosion prevention measures for fruit, wine and hop production (5.692 farms (5%) with 42.345 ha).			constant. 4,0 million ha woodland, 48 % of the state territory.	to improve ecological status of freshwaters and water retention in rural catchments; however, data on recently established wetlands is not available yet; inventory of floodplains is currently updated.	with consideration of regional and agricultura circumstances • chamber of agricultura provides farm advisory services on provincial level in cooperation wit provincial governments • participation of education and advisory services is integral part of selected measures of the agri-environmental programme.

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
CZ	100% keeping records on fertilizer consumption is an obligation for all farmers (base on the national legislation – using also for RDP controls) Act No. 156/1998 Coll., on fertilizers, as last amended. Since economical year 2020/2021 the calculation of nitrogen balance is obligation for farms above 30 ha, farmed in NVZ.	For reasons of soil protection from erosion and waters from pollution, wide-row crops (maize, sunflower, soya, bean, potatoes etc.) cannot be cultivated on agricultural plots with the slope above 7 degrees and in the distance less than 25 m. There are 74 815,743 ha of arable land with slope over 7 degrees nearby watercourses or water bodies. The water protection and protection against erosion is also under GAEC covered by special protection technologies. The protection activities are also implemented under AEM in RDP implemented.	Agricultural plots threatened by soil erosion must be cultivated in accordance with GAEC practice. Plots protected under ND requirements. Over 7°- 718 846,55 ha of NVZ. There are also some measures under RDP concerning the problematic of erosion in AECM. M10.1.5 Conversion of arable land to grassland 13340 ha M10.1.6 Bio – belts 4204 ha.	556 921,97 ha (29,95 % from agri area of NVZ; or 15,66 % from agri area of the whole CZ). The percentage of area overlapping reflects the geographical position of land plots designated or in organic farming evidence.	90 098,27 ha (4,8 % from agri area of NVZ for extensive grassland; or 2,53 % from agri area of the whole CZ).	In 2021, it was not possible to apply for a subsidy for the establishment of a woodland under Government Regulation 185/2015 Coll., on the conditions for granting subsidies under the afforestation of agricultural land measure. It was only possible to apply for a care subsidy for established cover and for the cessation of farming activities on commitments from previous years. In 2020, 13 applications were submitted for establishing 12,1 ha of forest cover.	Negligible in CZ Permanently waterlogged and peat land meadows – 3 284,34 ha under special management of AECM commitment.	Ministry of Agriculture www.eagri.cz Regional agencies for agriculture and countryside. The Network of Ministry of Agriculture has been built on providing necessary information to agricultural practice. Accredited consultants are taking part in regular courses and training to help farmers, not only in practical matters, crops, livestock and forestry, but today mainly related to subsidies. There is close cooperation with all researches' institutes. www.nitrate.cz, www.vuv.cz www.vuv.cz www.vuv.cz www.vuv.cz Private sector participation.

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
SK	At present, the calculation of nutrient balances is not obligatory for farmers.	Grassed buffer strips on arable land along water courses are not applied as systemic anti-erosion measure.	Besides the application of anti-erosion measures related to GAEC 5 and measures for row-crop cultivation on slopes over 7° on arable land in Nitrates Directive Action Plan, multifunctional bio- belts at the edge of the fields (if allocated near steams) can contribute to minimization of the soil erosion occurrence. Catch crops represent the optional component when meeting the GAEC 4 requirement, which can be achieved either winter, perennial or inter/catch crops. 40% coverage of arable land on slopes above 12° in the period from 1 November to 1 March is required. Specific numbers are not available at present.	The area under organic farming (including the conversion to OF) in December 2020 was 222896 ha (11.66% of whole UAA).	As extensive grasslands are classified those which fall into following categories: permanent grasslands in NATURA 2000, protected habitats of semi-natural and natural grasslands, and permanent grasslands within organic farming. Final area of extensive grasslands in 2020, after overlapping of respective GIS layers, is 303 883 ha. Area of natural landscape elements, which can be used for fulfilling the greening requirements, was in 2020 2654 ha.	At present it is no longer significant.	Negligible.	Pursuant to Article 14, farmers are regularly trained in the field of water protection within the meaning of the Nitrates Directive. The decisive part of these measures is provided by the Agroinstitute Nitra. In addition, these trainings are also organized by the regional offices of the Slovak Chamber of Agriculture and Food. With regard to advisory services (Article 15), the Agroinstitute Nitra also provides training for the advisors themselves. Information on the number of advisory services to farmers to help them to solve specific problems (including water issues) is not available.
HU	At the time of planning the nutrient management of agricultural areas, the volume of nutrients to be applied shall be calculated in view of the nutrient supply of the soil and the nutrient demand of the crop that is necessary for a crop yield adjusted to the conditions of the	The establishment of buffer stripes has been legislated, the implementation starts from the 1st of Jan 2012.	900 thousand hectares of arable lands are supported by Rural Development Programmes (Agri- environmental Program and Agroecology Program) between 2017-2021, where sustainable farming practices shall be applied. For example catch crop/manure/organic fertiliser must be applied at least once in 5 years in these areas and saturated soil mustn't tillage.	organic farming utilised agricultural area in 2019: 303 190 ha; percentage of total utilised agricultural area in 2019: 5,71%; agricultural producers in 2019: 5,136.	n.a.	During the period 2007/2020, the average afforestation in HU was in ha/year 2007: 18.948 2008: 7332 2009: 5168 2010: 5096; 2011: 2803; 2012: 4537; 2013: 2531;	The Rural Development Programme M4.4.2. aims to prevent water pollution, promote water retention, combat climate change challenges to improve biodiversity	Regulation 16/2079. (IV.29) AM on agricultural and rural development advisory services and the agricultural advisory system rules the operation of agricultural advisory systems in Hungary. The application of agricultural advisory service is also supported by the Rural

Danube River Basin Management Plan Update 2021

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
	actual. Soil analysis in every 5 year is an important element of this assessment.					2014: 1287; 2015: 318; 2016: 158; 2017: 626; 2018: 1301; 2019: 1587; 2020: 2458;	and save water quantity and quality. Target areas: A) - Establishment and development of water facilities for territorial water retention in deep areas, B) - Establishment and development of erosion protection facilities, C) - Establishment and development of a buffer zone for coastal water protection, D) - Establishment of wetlands.	Development Programme.
SI	All farmers who use mineral fertilizers are obliged to make nutrient balances and farmers who participate in Agri- Environment Climate Measures.	Buffer stripes for Rivers 1st order 15 m of width and Rivers 2nd order 5 m of width.	The Agri Environmental Program between 2014 – 2021.	The organic utilised agricultural area in 2020 amounted to 52.078,48 ha (Republic of Slovenia Statistical Office; https://www.stat.si/StatWeb/en/ News/Index/9671); data refers to the whole SI territory.		Year 2014: 23.391 ha (Dejanska raba MKGP, Kmetijsko zemljišče v zaraščanju - 1410).	Most actions (projects) for keeping existing wetlands with sustainable management, for example: ZaDravo (project 2019- 2023).	Slovenian chamber for agriculture and foresty (KGZS) organizes trainings and advisory through regional units. Farmers who apply for Agri-Environment Climate Measures must attend training.

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
HR	Farmers are not obliged to do the nutrient balance on their farms.	Buffer stripes are designated through 1st Action Programme and are as follows: – at 20 m distance from the outer edge of a lake bed, or other standing water,– at 3 m distance from the outer edge of water course beds having a width of 5 meters or more,– on slanted terrains along the water courses, having a slope greater than 10% within a distance of less than 10 m from the outer edge of the water course bed. Buffer stripes are also obligatory GAEC 1 according to the Ordinance on Cross compliance.	Problems with soil erosion should be settled through minimal soil cover. On agricultural parcels with slopes of 15% or more, ploughing should be performed only perpendicular to the slope. All GAEC standards prescribed in Ordinance are obligatory for farmers in use of direct payments in Croatia.	In 2013 there were 1609 agricultural producers doing organic production on 3,12% of agricultural land in Croatia.		Ministry of Agriculture does not collect data on afforestation of agricultural land.	In 2012. there is 74.000 ha of wetlands and this number is slightly increased (+2.000 ha) from 1990.	The Agricultural Advisory Service in Croatia employs 239 employees, mostly Agricultural Engineers. It has offices in each Croatian county and Zagreb.
BA		According to Water Law of Federation B&H (an erosion-prone area is an area permanently or temporarily subject to the impact of surface, deep or lateral water erosion, and which is: 1. the source of floods (erosion focus), 2. under the influence of torrents, 3. made up of soil subject to piping, 4. under the influence of sea waves. In FBiH According to Water Law: The scope of protection from harmful	No data.	No valuable data. (till the date of filling in this table).	No data.	No data regarding afforestation of agricultural land.	There is no organized establishment of new or revitalization of old wetlands in Republika Srpska.	No data.

Danube River Basin Management Plan Update 2021

	MEASURES (situation in 2021)							
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
		effects of waters and the necessary measures shall be defined by the following plans: specials flood and ice protection plans, erosion protection plans, erosion protection plans. The Federation Government (Ministry of agriculture, forestry and agriculture) shall, on proposal by the Federal Minister, adopt a regulation on the types and contents of the plans referred to the previously mentioned. In BA RS: According to Water Law: The Ministry of agriculture, forestry and agriculture implements measures and actions on the preparation of documentation determining erosive areas, with types of erosion, intensity and other characteristics. According to Agricultural Land Law:: protection of agricultural land from the harmful effects of erosion and torrents, anti-erosion measures are taken in the erosive area are: (1) Anti-erosion measures in terms of this Law are: a) temporary or permanent ban on plowing meadows and pastures and						

Danube River Basin Management Plan Update 2021

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
		other areas for their conversion into arable land with annuals crop; b) introduction of crop rotation, c) cultivation of perennial plantations, g) construction of specific buildings, d) method of land cultivation, f) raising and cultivating field protective forest belts or planting perennial woody plants, e) prohibition of grazing livestock for a certain period of time or limitation of the number throats that can be released on certain surfaces, h) prohibition of felling of forests and forest plantations above endangered plots z) and other measures.						
ME				No data available.				
RS	About 150 farmers (who owns at the most 50 000 ha and 18 to 1000 cows) went through training for nutrient balances implementation. The number of farmers who went through the training is	Measures against erosion are organised locally. Buffer strips are not regulated by low.	Technical measures against erosion are applied on ~ 160000 ha/year and biological measures on ~120000 ha/year. Due to extremely developed erosion, every biological work was done simultaneously with the technical work and administrative measures against erosion are applied on ¼ of Serbian territory.	Area of organic production covers 17.779,35 ha.		Wooded area (Stat. Office of RS, 2017) 2.237.511ha - 29% of the territory of RS, 2014- 28%.	There is no organized establishment of new, or revitalization of old wetlands in Serbia.	In accordance with the Low on the performance of advisory and professional work in the field of agriculture (OG.RS 30/10) agricultural advisory and extension services are organised in 34 municipalities.

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
	presented in pro mille.							
RO	Romanian farmers have obligations related to implementation of the nutrient balances only in certain conditions, as using irrigation system or if farmers apply chemical fertilizers above fertilizers above fertilizers according to the Management Plan for fertilizer at farm level. There are not available data about the % of farmers to do the nutrient balances.	No additional agri- environment measures against erosion (buffer stripes), but there are in force mandatory measures under Nitrate Directive - AP requires additional buffer strips besides the ones stipulated in Romanian Water Law 107/1996 with further amendments (where the buffer strips must have a width between 2 m to 50 m, depending by the width of water courses, type and use of water resources or hydrotechnical works). The additional buffer strips must have a width: a) 3 m for land with slope < 12%; b) 5 m for land with slope > 12%.	Applied being considered an important measure for prevention of soil erosion. In 2020 the surface of reclaimed land with technical works for erosion control was 158,869 ha, representing around 1.2% of arable land (source: Ministry of Agriculture and Rural Development). This measure is also found in Action Plan: - covering the sloping lands with agricultural crops during the winter period; - maintaining a minimum amount of vegetation to cover the land during rainy, snowy or frosty periods.	In 2021, the area of organic production covered 484719 ha, representing over 3% of the agricultural area (source: Ministry of Agriculture and Rural Development).	In 2021 the surface with extensive grasslands, natural landscape elements was 750513 ha, representing over 5% of the of the agricultural area (source: Ministry of Agriculture and Rural Development). These represent the surfaces with commitments for agri-environmental for extensive grassland management under EU financing National Programme for Rural Development – Pilar II CAP (grasslands with high natural value, important grasslands for birds and butterflies, important agriculture land as feeding areas for the Lesser Spotted Eagle (Aquila Pomarina) and bustard (Otis Tarda).	According to the data of Ministry of Agriculture and Rural Development the afforestation has registered a slight increasing less than 1% (2013-2019).	There are measures and studies proposed in the Program of Measures of the updated River Basin Management Plan, which were implemented particularly in the second and will continue to be implemented in the third planning cycle. Project Danube Floodplain areas – 102549 ha (Danube flood plains with the reconnection potential). Flood Risk Management Plan, and RBMP measures – 3600 ha (natural water retention measures - wetlands).	Ministry of Agriculture and Rural Development trained 5235 persons in the topic of implementation of agri- environment obligations. Number of farmers trained by knowledge and training providers on Code of Good Agricultural Practices (male/female disaggregated) - 6057 farmers received a one- day training. Out of them 4181 farmers received a second one- day training. 280 discussions groups were set-up, supported by 180 champion farmers and 50 communal platforms hosting manure management good practices and demonstrations.
BG	Statutory management	The National Standards for Good Agricultural and	National standard 5. To limit the erosion of sloping areas:	The total areas on which the methods of organic production	Area of extensive grasslands in 2020, is	The total area of forests and	Project Danube Floodplain	Activity of the National Agricultural Advisory

		MEASURES (situation in 2021)											
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)					
	requirement (SMR) 1 includes the obligations of farmers in accordance with the Program of measures to limit and prevent pollution with nitrates from agricultural sources in vulnerable areas according to Order № RD 09-222 / 27.02.2020 of the Minister of Agriculture, Food and Forestry and Order № RD -237 / 17.03.2020 of the Minister of Environment and Water. SMR 1 applies to holdings and agricultural activities within nitrate vulnerable zones. In order to avoid the risk of excess nitrates in plants and soil, fertilization recommendations shall be made on the basis of a balance between the amount of nitrogen required for crop development and the nitrogen that can be supplied to crops from the soil and by fertilization, taking into account :	Environmental Condition (GAEC) of the land are mandatory for implementation by all farmers, owners and / or users of agricultural land who are beneficiaries of: - direct payments; - the following measures from the Rural Development Program (2014-2020): Agri- environment and climate; Organic farming; Payments under NATURA 2000 and the Water Framework Directive; Payments for areas with natural or other specific constraints. National standard 1. It is prohibited to use mineral and organic nitrogen fertilizers in the buffer strips: - with a width of at least 5 meters on flat areas, along surface water bodies (rivers, streams, canals, lakes, dams, sea), except for rice cells; - with a width of at least 10 meters on flat areas when fertilizing with a liquid fraction of manure; - with a width of at least 10 meters when fertilizing areas with a sharp slope.	- for arable land - tillage is carried out perpendicular to the slope or horizontally; - for permanent crops - strengthening of the inter- rows by partial / complete grassing, or sowing / planting with other crops, and / or the tillage is carried out perpendicular to the slope or horizontally.	are applied (areas in transition and organic areas) in 2019 amount to 226 thousand ha - by 39.2% more than in 2018. Their share in the total utilized agricultural area in the country reached 4.5%, compared to 3.2% in the previous year. (source: Ministry of Agriculture and Rural Development, Agricultural Report 2020).	143095 ha. Area of natural landscape elements after overlapping of respective GIS layers, was in 2020 3966 ha.	forest territories as of 31.12.2020 is 4,270,995 ha, of which afforested area 3,919,888 ha. The area of the forest territories is 3 952575 ha (92.54%). The area of agricultural territories with the characteristics of a forest within the meaning of Article 2 of the Forest Act ("forests on agricultural territories") is 318,420 ha (7.46%). As the way of reporting the areas in 2019 and 2020 is different, for comparability of the data the analysis is made on the basis of the total area (forest and agricultural territory).	areas – 24738 ha (BG part of Danube flood plains with the reconnection potential) and 12219 ha (Yantra River flood plains with the reconnection potential).	Service NAAS under measure 2 "Consulting services, farm management services and farm replacement services" of the RDP 2014 - 2020 According to sub- measure 2.1.2. The NAAS provides free of charge to small farms six main advisory packages, contributing both to the economic development of small farms through modernization and technological renewal, and to improving environmental protection and combating climate change. The total number of submitted applications for receiving a consulting package under sub-measure 2.1.2 in 2019 is 2,470.					

Danube River Basin Management Plan Update 2021

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
	 the amount of nitrogen contained in the soil before planting / sowing; the amounts of nitrogen coming from the mineralization of the organic matter; imported in the soil nitrogen compounds from organic fertilizers; imported in the soil nitrogen compounds from mineral fertilizers. Nitrogen fertilization rates are determined after performing agrochemical analysis of the soil and analysis of organic fertilizer, using software to calculate the nitrogen balance. 					- The total area (forest and agricultural territory) has increased by 6665 ha - from 4264330 ha to 4270995 ha. This increase is mainly due to the development of previously undeveloped areas occupied by forests in the inventories for the year. The area of the forest territories has decreased by 196776 ha - from 4149351 ha to 3952575 ha. The area of forests on agricultural territories has increased by 203441 ha - from 114979 ha to 318420 ha. Source: Annual Report for 2020 of the		

				MEASURES (situation in 202	1)			
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)
						Executive Forest Agency, Ministry of Agriculture, Food and Forestry.		
MD	There exist no legal provisions to keep the Nutrient Balance by farmers.	From 2009 till 2012, area under forest protection strips has decreased by 3%. In August 2014, GoM ratified Program for Soil Fertility Improvement and Increase 2011-2020 which stipulates applying of mitigation measures against erosion. In January 2014, GoM approved National Plan on extending the forest vegetation areas for 2014- 2018. The proposed measures provide for afforestation of the degraded lands, the strips for the protection of rivers and water basins, as well as the strips for protection of farmlands over an area of at least 13,000 hectares. The national plan also aims at protecting the soil against erosion and improving the water balance. The estimated cost of the actions envisaged in the plan amounts to about 295 million lei, with the money earmarked from the state budget, National	Systems are being applied, but precise data are unavailable. Estimate data 433000 ha of arable land in the MD part of the Put River basin).	Inn 2006, the organically farmed area amounted from 11000 to 12.392 hectares. By 2015, area under organic farming has to increased up to 31.100 ha. The production volume shall be increased to about 75.000 tons (mainly, wine, sunflower oil, walnuts, lavender oil, honey, and dried and frozen fruits) – these data were provided by three certification bodies.		A total of 592,3 ha of afforestation of agricultural land for the period 2007- 2012 was realized within the Bulgarian part of the Danube River District. According to the annual report of the Executive Forest Agency for 2013 the total area of the forest territories for the whole county has increased with 16 706 ha in 2013 compared to 2012. Afforested area increased with 15 788 ha in 2013	Ca. 200 ha (Middle & Low Prut).	Agricultural extension services are well developed through a network of non-state institutions, private companies, technical assistance projects, and farmer organizations. The foundations for the extension system are offered by the non- governmental organization National Rural Development Agency (ACSA), which includes a network of 35 Regional Centres Service Providers, 425 consultants (350 local, and 75 regional). On an annual basis, the network provides over 250 thousand advisory services, including around 3500 seminars and training programs, approximately 3000 written recommendations, 2500 round tables and meetings, over 45 thousand on-site visits and approximately 200 thousand individual

	MEASURES (situation in 2021)												
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)					
		Ecological Fund and external donations.				compared to 2012.		consultations. From 2010 till 2014, total number of trained farmers is ca. 4000 (all MD).					
UA	There exist no legal provisions to keep the Nutrient Balance. According to the "Rules for ensuring soil fertility and the use of certain agrochemicals" for the nutrient management in the NVZ the volume of nutrients to be applied shall be calculated in view of the nutrient supply of the soil and the nutrient demand of the crop that is necessary for a crop yield adjusted to the conditions of the actual. Soil analysis in every 5 year is an important element of this assessment.	According the Item 87 of the Water Code buffer stripes for small rivers are 2.5 m of width, for middle rivers – 50 m, for big rivers – 100 m. On slopes the width of buffer strips doubles. Other measures against erosion: crop rotation, crop nutrient management with soil testing, the use of organic fertilizer, avoiding of deep ploughing, strip cropping, livestock grazing practices, etc.	Environment-friendly practices which included erosion-minimizing cultivation system (crop rotation, crop nutrient management with soil testing, the use of organic fertilizer, avoiding of deep ploughing, contour ploughing, strip cropping,) are stimulated by State (financial support).	According to various estimates the organically farmed area amounted 280 000 hectares. The Law on organic manufacture is accepted on 21 April 2011. Besides, the Law about safety and quality of food operates in the country. The Government Programme on development of organic farming is accepted. According to the monitoring conducted by the Ministry of Economy, in 2019 the total area of agricultural land with organic status and transition period amounted to 467,980 ha (1.1% of the total area of agricultural land in Ukraine). At the same time, there were 617 operators of the organic market, 470 of them were agricultural producers. According to the International Independent Scientific Research Institute of Organic Agriculture (FiBL), in 2017 Ukraine ranks eleventh in Europe over the total area of agricultural land certified as organic. Certification bodies have been created with the help of Switzerland. A new program "Organic Trade for Development in Eastern Europe" (OT4D) was launched		Forestation area: 2016: 63 231; 2017: 64 713; 2018: 51 519 2019: 48 837; 2020: 44 798. Including forest planting and sowing: 2016: 2 783; 2017: 2 072; 2018: 2 239 2019: 2 180; 2020: 2 272.	Black See region of Ukraine has 600 thousand ha of wetlands. One has the status of the international importance (Danube plavni). Programs of rehabilitated systems in Lower Danube (irelands Tatarin, Ermakov, lakes Katlabukh, Saf'yany) are ongoing in cooperation with Wild World Fund. About 12 000 ha (33 objects) will be restored at performance of the Tizsa RBMP.	The Low on Farm Advice activity has been adopted on 17.06.2004, some changes have been brought in 2010. The three-level system of advisory services is created. Public National association of Advisory services has been registered: www.dorada.org.ua. Agricultural extension services are well developed through a network of non-state institutions, private companies, technical assistance projects, and farmer organizations. The foundations for the extension system were established with the technical assistance of a number of the European countries. In Tisza basin (Zakarpatska region) operate 3 Regional Centres, in Prut basin - 7 Regional Centres.					

		MEASURES (situation in 2021)												
Country	Nutrient Balances (% of farmers obliged to do the nutrient balances)	Measures against erosion: buffer stripes (river in km, m of width)	Erosion-minimizing cultivation systems and catch crops (ha of arable land)	Area with organic production (ha)	Extensive grasslands, natural landscape elements (ha)	Afforestation of agricultural land (ha)	Establishment of wetlands (ha of new wetlands or rehabilitated ones)	On Farm Advice/Extension Services (no of farmers trained)						
				in 2021 with the support of the Swiss State Secretariat for Economic Affairs (SECO).										

Table 3: Indicators for measure implementation

	Nitrates Dire Vulnerab		Common Agr	icultural Policy* cross-	compliance	Common Agri	cultural Policy* ag measures	ri-environmental	_
Country	2006	2021	Determined area for direct support in 2006	Determined area for direct support in 2021	Direct payments in the period of 2006-2021	Area with Rural Development Programme support for agri- environmental measures in 2006	Area with Rural Development Programme support for agri- environmental measures in 2021	Rural Development Programme payments*** for agri- environmental measures in the period of 2006- 2021	Remarks
	% of total area**	% of total area**	% of total utilised agricultural area	% of total utilised agricultural area	EUR	% of total utilised agricultural area	% of total utilised agricultural area	EUR	-
DE	100.0	100.0	100.0	100.0	BW: 1,450,000,000 BY: 11,200,000,000 German DRB: 12,650,000,000	69.0	70.0	651,000,000	*Estimated costs from 2010 - 2021
AT	100.0	100.0	73.0	86.6	9,854,746,000	94.2	80.4	6,986,222,000	2006 and 2019 respectively; total payments for period 2006-2019
CZ	39.9	42.0	99.5	99.49	10,658,370,000	34.4	27.3	1,710,640,571	Direct payments – These are national ceilings for two periods i.e. 2007 - 2013 and 2014 - 2020
SK	75.4 (% of UUA)	62.2 (% of UUA)	95.5	96.0	5,640,330,000	19.7	14.5	381,613,739	NVZ = % of total UAA in 2020; all payments are to 2020. Only measures corresponding with Art. 28, 29, 30 (of RDP 2014-2020) or relevant measures in RDP 2004- 2006 (Agri-environment and animal welfare), and RDP 207-2013 (Axis II without LFAs) are considered
HU	47.0	70.0	86.1	90.2	15,945,995,200	23.4	12.4	2,372,219,618	2006 and 2021
SI	100.0	100.0	92.2	96.2	2,023,512,710	44.0	20.00	447,965,672	Data refer to whole Slovenia. Data on % of total utilised agricultural area: year 2020. Data on direct payments: time period 2006 – 2020. Data on agri-environmental measures: time period 2007-2020

Basin	31	63	44	69	78,592,671,497	19	22	17,827,950,962	
UA	0.0	0.0	0.0	0.0	0	0.0	0.0	0	The Nitrates Directive is now in the process of implementation. Methodology for NVZ delineation and the Best Agricultural Practice have already developed
MD	0.0	0.0	0.0	0.0	0	0.0	2.1	925,000	
BG	36.1% (of the area of the whole country)	34.6% (of the area of the whole country)	74.4	76.1	6,483,190,076	11.6	29.2	1,888,565,982	Total payments for period 2007- 2020
RO	6.7	100.0	0	64.1	14,142,793,381	0	9.5	3,154,230,699	Payments for period 2006-2021, 2021 direct payments are not complete (partially – July situation); agri-environment payments do not include the amount that it is planned in 2021 under mechanism for recovery and resilience
RS	0.0	0.0	0.0	0.0		0.0	0.0		Not relevant
ME									No data available
BA									No data available
HR		9.0		38.1	1,193,734,129		20.3	234,567,680	Croatia is an EU member since July 2013
	% of total area**	% of total area**	% of total utilised agricultural area	% of total utilised agricultural area	EUR	% of total utilised agricultural area	% of total utilised agricultural area	EUR	
Country	2006	2021	Determined area for direct support in 2006	Determined area for direct support in 2021	Direct payments in the period of 2006-2021	Area with Rural Development Programme support for agri- environmental measures in 2006	Area with Rural Development Programme support for agri- environmental measures in 2021	Rural Development Programme payments*** for agri- environmental measures in the period of 2006- 2021	Remarks
	Nitrates Dire Vulnerabl		Common Agr	icultural Policy* cross	-compliance	Common Agri	cultural Policy* ag measures	ri-environmental	_

* or similar national mechanism

** if the whole territory approach is applied, use 100%

*** e.g. investments (art. 17), agri-environment-climate operations (art. 28), organic farming (art. 29), Water Framework Directive payments (art. 30), advisory services (art. 15), knowledge transfer and information (art. 14), or cooperation actions (art. 35), LEADER local action groups (art. 42)

PROGRESS ON MEASURES ADDRESSING HYDROMORPHOLOGICAL ALTERATIONS

ANNEX 16

This Annex includes information on progress in measures implementation for the following hydromorphological alterations for each country and on the basin-wide scale:

- Hydrological alterations Impoundments
- Hydrological alterations Water abstractions
- Hydrological alterations Hydropeaking
- Interruptions of river and habitat continuity
- Morphological alterations River morphology
- Morphological alterations Disconnection of adjacent floodplains / wetlands

It provides further detailed information on data already provided in the JPM Chapter 8.1.5 of the DRBM Plan – Update 2021.

For particular measures involving construction or building works (e.g. a fish pass, a river restoration project, etc.), the following status-classes were reported, whereby the implementation status refers to the status expected at the end of 2021.

- Not started means the technical and/or administrative procedures necessary for starting the construction or building works have not started.
- Planning on-going means that administrative procedures necessary for starting the construction
 or building works have started but are not finalised. The simple inclusion in the RBMPs is not
 considered as planning in this context.
- **Construction on-going** means the construction or building works have started but are not finalised.
- **Completed** means the works have been finalised and the facilities are operational (maybe only in testing period in case e.g. a waste water treatment plant).

Explanations for table

JPM = Joint Program of Measures DRBM = Danube River Basin Management

1 Hydrological alterations - impoundments

			Measure	es on in	npound	ments						
	NUMBER OF IMP BE IMPROV		IMPLEMENTATION STATUS (reference to measures as agreed on national level)									
COUNTRY	As indicated in the JPM of the	Updated information as	Not s			on-going	Construction on- going		Completed			
	2nd DRBM Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]		
DE	1	1	0	0	0	0	0	0	1	100		
AT	36	29	22	76	2	7	1	3	4	14		
CZ	0	0	0	0	0	0	0	0	0	0		
SK	0	0	0	0	0	0	0	0	0	0		
HU	1	1	0	0	0	0	0	0	1	100		
SI	0	0	0	0	0	0	0	0	0	0		
HR	0	0	0	0	0	0	0	0	0	0		
BA	0	0	0	0	0	0	0	0	0	0		
ME	0	0	0	0	0	0	0	0	0	0		
RS	0	0	0	0	0	0	0	0	0	0		
RO	3	1	0	0	0	0	0	0	4	100		
BG	0	0	0	0	0	0	0	0	0	0		
MD	0	0	0	0	0	0	0	0	0	0		
UA	0	0	0	0	0	0	0	0	0	0		
TOTAL	41	32	22	63	2	6	1	3	10	29		

2 Hydrological alterations – water abstractions

		Me	easures	on wat	er abstr	actions							
		OF WATER IONS TO BE D BY 2021		IMPLEMENTATION STATUS (reference to measures as agreed on national level)									
COUNTRY	As indicated in the 2nd DRBM	Updated information as	Not started		Planning on-going		Implementation on- going		Completed				
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]			
DE	8	8	0	0	4	50	3	37,5	1	12,5			
AT	13	8	1	13	6	75	0	0	1	13			
CZ	0	0	0	0	0	0	0	0	0	0			
SK	0	0	0	0	0	0	0	0	0	0			
HU	0	0	0	0	0	0	0	0	0	0			
SI	0	0	0	0	0	0	0	0	0	0			
HR	0	0	0	0	0	0	0	0	0	0			
BA	0	0	0	0	0	0	0	0	0	0			
ME	0	0	0	0	0	0	0	0	0	0			
RS	0	0	0	0	0	0	0	0	0	0			
RO	1	2	0	0	1	50	0	0	1	50			
BG	0	0	0	0	0	0	0	0	0	0			
MD	0	0	0	0	0	0	0	0	0	0			
UA	0	0	0	0	0	0	0	0	0	0			
TOTAL	22	18	1	6	11	61	3	17	3	17			

3 Hydrological alterations – hydropeaking

			Measur	es on h	ydropea	aking						
	NUMBER OF H SECTIONS TO B 20		IMPLEMENTATION STATUS (reference to measures as agreed on national level)									
COUNTRY	As indicated in the 2nd DRBM	information as		Not started		Planning on-going		tation on- ing	Completed			
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]		
DE	4	4	0	0	2	50	1	25	1	25		
AT	0	0	0	0	0	0	0	0	0	0		
CZ	0	0	0	0	0	0	0	0	0	0		
SK	0	0	0	0	0	0	0	0	0	0		
HU	0	0	0	0	0	0	0	0	0	0		
SI	0	0	0	0	0	0	0	0	0	0		
HR	0	0	0	0	0	0	0	0	0	0		
BA	0	0	0	0	0	0	0	0	0	0		
ME	0	0	0	0	0	0	0	0	0	0		
RS	0	0	0	0	0	0	0	0	0	0		
RO	0	0	0	0	0	0	0	0	0	0		
BG	0	0	0	0	0	0	0	0	0	0		
MD	0	0	0	0	0	0	0	0	0	0		
UA	0	0	0	0	0	0	0	0	0	0		
TOTAL	4	4	0	0	2	50	1	25	1	25		

4 Interruptions of river and habitat continuity

	Meas	ures on res	toration	n of rive	r contir	nuity for	fish mi	gration		
		EASURES TO BE TED BY 2021				MPLEMENTA measures as)	
COUNTRY	As indicated the 2nd DRBM	Updated information as	Not s	tarted	Planning	on-going		ction on- ing	Comp	leted
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]
DE	22	22	0	0	14	64	0	0	8	36
AT	85	43	28	65	4	9	3	7	8	19
CZ	8	8	0	0	0	0	0	0	8	100
SK	19	41	0	0	22	54	2	5	17	41
HU	8	9	6	66	2	22	0	0	1	11
SI	0	0	0	0	0	0	0	0	0	0
HR	0	0	0	0	0	0	0	0	0	0
BA	0	0	0	0	0	0	0	0	0	0
ME	0	0	0	0	0	0	0	0	0	0
RS	1	1	0	0	0	0	0	0	1	100
RO	5	7	2	29	3	43	0	0	2	29
BG	10	8	1	13	2	25	3	38	2	25
MD	0	0	0	0	0	0	0	0	0	0
UA	0	0	0	0	0	0	0	0	0	0
TOTAL	158	139	37	27	47	34	8	6	47	34

5 Morphological alterations – river morphology

		Measures	for imp	roveme	ent of riv	ver mor	phology	,		
	NUMBER OF MEASURES TO BE			IMPLEMENTATION STATUS						
	IMPLEMENT	TED BY 2021			(reference to	measures as	agreed on r	national level)	
COUNTRY	As indicated the 2nd DRBM	Updated information as	Not s	tarted	Planning	on-going		ction on- ing	Completed	
	Plan	agreed on national level	[No.]	[%]	[No.]	[%]	[No.]	[%]	[No.]	[%]
DE	40	40	2 ¹	5	4	10	21	52,5	13	32,5
AT	25	17	3	18	0	0	0	0	14	82
CZ	7	7	0	0	6	86	0	0	1	14
SK	0	0	0	0	0	0	0	0	0	0
HU	37	37	37	100	0	0	0	0	0	0
SI	0	0	0	0	0	0	0	0	0	0
HR	0	0	0	0	0	0	0	0	0	0
BA	0	0	0	0	0	0	0	0	0	0
ME	0	0	0	0	0	0	0	0	0	0
RS	0	0	0	0	0	0	0	0	0	0
RO	2	1	31)2)	100	0	0	0	0	0	0
BG	3	3	0	0	3	100	0	0	0	0
MD	0	0	0	0	0	0	0	0	0	0
UA	0	0	0	0	0	0	0	0	0	0
TOTAL	114	105	42	40	13	13	21	20	28	27

¹ Measures were no longer necessary as good ecological potential was already reached.

² Conflicts with land reclamation owners due to technical solutions proposed

6 Morphological alterations – disconnection of floodplains/wetlands

	Measu	res on disc	connec	cted ad	djacen	t flood	lplains	/ wetla	ands -	AREA				
	WETLAN	OODPLAINS / DS TO BE BY MEASURES - 2021		IMPLEMENTATION STATUS (reference to measures as agreed on national level)										
COUNTRY	As indicated in the 2nd DRBM Plan	Updated information as agreed on national level	Not s	Not started		anning on- Cons going		Planning on- going		Construction on- going		/ re-	oleted total	
	[h	a]	[ha]	[%]	[ha]	[%]	[ha]	[%]	conne [ha]		[ha]	ected %		
DE	2,926	2,926	0	0	0	0	2,926	100		0	0	0		
AT	9,554	9,554	0	0	0	0	1,600	17	7,954	83	0	0		
CZ	0	0	0	0	0	0	0	0	0	0	0	0		
SK	1,716	1,716	0	0	0	0	0	0	1,139	66	577	34		
HU	0	0	0	0	0	0	0	0	0	0	0	0		
SI	0	0	0	0	0	0	0	0	0	0	0	0		
HR	0	0	0	0	0	0	0	0	0	0	0	0		
BA	0	0	0	0	0	0	0	0	0	0	0	0		
ME	0	0	0	0	0	0	0	0	0	0	0	0		
RS	0	0	0	0	0	0	0	0	0	0	0	0		
RO	2,650	5,615	0	0	5,615	100	0	0	0	0	0	0		
BG	0	0	0	0	0	0	0	0	0	0	0	0		
MD	0	0	0	0	0	0	0	0	0	0	0	0		
UA	0	0	0	0	0	0	0	0	0	0	0	0		
TOTAL	16,846	19,811	0	0	5,615	28	4,526	23	9,093	46	577	3		

ECOLOGICAL PRIORITISATION APPROACH RIVER AND HABITAT CONTINUITY RESTORATION

ANNEX 17

Table of Contents

1.	Intro	duction	1
2.	Obje	ective	1
3.	Distr	ribution of long- and medium-distant migrants in the Danube River Basin	3
3	.1	Methodology (LDM and MDM in the DRB)	3
3	.2	Results (LDM and MDM in the DRB)	4
4.	Upda	ate of the prioritisation approach of the Danube River Basin	6
4	.1	Methodology	6
4	.2	Results	10
5.	Refe	prences	13

1. Introduction

In order to enable a sound estimation of where to target measures most effectively at the basin-wide scale, an *ecological prioritisation of measures to restore river and habitat continuity* in the DRBD has been carried out. A respective study has already been performed for the first DRBMP in 2009 and was further developed updated for the DRBMP Update 2015.

At the Danube Ministerial Meeting 2010, the Danube Declaration was adopted, inter alia reconfirming the commitment "to further develop and make full use of the ecological prioritisation approach for measures to restore river and habitat continuity in order to ensure that they are ecologically most efficient". The Danube Ministerial Declaration of 2016 underlines "the need to focus on priority measures taking into account the results of the ecological prioritisation approach for continuity restoration". In order to take a step in the further development of the approach, discussions have been conducted in the frame of the ICPDR, considering different criteria and rankings. Following data provisions for the DRBMP Update 2021 and further input from Danube countries, the prioritisation index was updated.

2. Objective

All fish species of the Danube River Basin (DRB) are migratory to some extent, however, the importance of migrations for the viability of fish populations considerable vary among species. Migrations are different in terms of migration distances, migration direction (upstream, downstream, lateral), spawning habitats, seasons, life stages, etc. In general, in the DRB migratory requirements are more distinct in lowland than in head water fish communities (

Figure 1).

Long-distance-migrants (LDM) such as the Beluga sturgeon (*Huso huso*) migrated up to several thousand kilometres from the Black Sea to the Barbel zone in the DRB. Medium-distance-migrants (MDM, so called potamodromous fish species) like nase (*Chondrostoma nasus*) and barbel (*Barbus barbus*) migrate within the river over distances of 30 to 200 km (Waidbacher & Haidvogl 1998). A significant number of lowland fish species depend on floodplain spawning habitats during spring season. Contrarily, headwater fish species migrate comparable short distances as living and spawning habitats are mostly not far away. To ensure the achievement or the maintenance of the good ecological status on a long term, all species need an open continuum for e.g. recolonization after catastrophic events and genetic exchange.

The Vision stated in the DRBMP Update 2021 envisages the "Construction of fish migration aids and other measures at existing migration barriers to achieve/improve river continuity in the Danube River and in respective tributaries to ensure self-sustaining sturgeon populations and specified other migratory fish populations". The overall goal of continuity restoration in the DRBD should be free fish migration routes within the entire DRB. However, due to the high number of barriers and limited resources a prioritisation of measures is necessary. The ecological prioritisation approach provides indications on a step-wise and efficient implementation of restoration measures on the basin-wide scale. The approach provides useful information on the estimated effects of the national measures in relation to their ecological effectiveness and could serve as a supportive tool for future measure implementation. Therefore, it also supports the

feedback from the international to the national level and vice versa in the DRB. The ecological prioritisation approach represents an important component for River Basin Management Planning and could constitute an important basis for discussions on measures addressing river and habitat continuity interruptions within the Joint Programmes of Measures (JPM).

Figure 1: Fish zones and abiotic conditions in running waters (adapted from Jungwirth et al. 2003)

Fish zones and biocoenotic regions Grayling Trout Barbel Bream Flounder Hyporhithral Epi-/Metarhithral Epipotamal Metapotamal Hypopotamal constrained braided meandering delta Relative proportion Age of water wave Biological and chemical oxygen demand Summer temperature Silt substrate Gradient Atmospheric oxygen input River kilometre Headwater Lowland river

3. Distribution of long- and medium-distant migrants in the Danube River Basin

3.1 Methodology (LDM and MDM in the DRB)

Historic upstream occurrence of long-distance migrants (LDM) of riverine fish in the DRB is dominated by sturgeon species as those species are known to have migrated long distances within the Danube catchment. A sturgeon migration map provided by the ICPDR was compared and updated with recent literature reviews and results of the EU-project EFI+ (Evaluation and improvement of the European Fish Index, <u>http://efi-plus.boku.ac.at</u>) (Schmutz & Trautwein 2009).

The potential distribution (habitat) of MDM was modelled using data from the EU-project EFI+ including data from the DRB and other catchments in Europe. Within the frame of the EU-project EFI+ most of the European fish species have been classified according to their migratory behaviour, i.e. long-distance-migrants (LDM see Table 1), medium-distance-migrants (MDM see Table 2) and resident species (RS). Out of the 58 fish species classified as MDM 9 key species were selected occurring in the DRB (Tab. 2) (Schmutz & Trautwein 2009).

Nr.	Sientific name	English name
1	Huso huso	Great stugeon, beluga
2	Acipenser guldenstaedti	Russian sturgeon
3	Acipenser nudiventris	Ship sturgeon
4	Acipenser stellatus	Stellate sturgeon
5	Alosa caspia	Caspian shad
6	Alosa immaculate (pontica)	Pontic shad

Table 1: Examples for long distance migrants (LDM) in the DRB (based on EFI+ guild classification, see http://efi-plus.boku.ac.at)

Table 2: List of medium-distance migrants (MDM) in the DRB (based on EFI+ guild classification, see http://efi-plus.boku.ac.at) used for modelling habitat of MDM in the DRB

Nr.	Scientific name	English name
1	Abramis brama	Common bream
2	Abramis sapa	Danubian bream
3	Acipenser ruthenus	Sterlet
4	Aspius aspius	Asp
5	Barbus barbus	Barbel
6	Chondrostoma nasus.	Nase
7	Hucho hucho	Danube salmon
8	Lota lota	Burbot
9	Vimba vimba	Vimba

The consolidated EFI+ database comprises about 10,000 sites all over Europe. About 1,000 sites are located in the DRB. Unfortunately, the number of sites from the Danube catchment with occurrence of MDM is small (379 sites) and not sufficient for model calibration. Therefore, data from additional European catchments comparable with the DRB was used. By restricting the selection of data to Illies's ecoregions 3

to 16 we tried to avoid a bias from Mediterranean (Iberian) and Nordic (Scandinavia) influences, as the distribution of MDM might follow different rules in those areas. Out of the resulting 3,800 sites Schmutz & Trautwein (2009) selected all sites (1,268 sites) where MDM were recorded and randomly a similar sized set of data from sites where MDM did not occur. In total, about 2,500 sites were used to calibrate the model.

Regression Tree techniques were used for modelling MDM occurrence as this technique allows using also non-normally distributed data. All modelling was done with the open source software $R^{\text{(B)}}$. The Regression Tree function of $R^{\text{(B)}}$ (rpart) includes an internal validation as the variable selection and splitting process is repeated 500 times. The results were additionally validated by using only data from the DRB (Schmutz & Trautwein 2009).

For calculating predictive environmental variables such as catchment size, elevation and river gradient the CCM river model was used developed by the JRC in Ispra (Vogt et al. 2007) which had been also used for the EFI+ project. The CCM is a modelled river network and hence there are slight deviations between the modelled river courses and the real ones. This is mainly true in the headwaters where the CCM sometimes selects different tributaries compared to other maps. Another problem may occur in lowland rivers with very low gradient in plain terrain where the actual and modelled river course may deviate. The deviations do not significantly affect the results as environmental variables used for the modelling are quite stable against river course deviations.

3.2 **Results (LDM and MDM in the DRB)**

Information on the natural distribution of LDM sturgeon species in the DRB served as a basis (Hensel & Holcik, 1997). According to additional data from the EFI+ project and information received from national fish experts of the DRB contacted via the ICPDR slight changes of the original ICPDR maps have been made for the first approach (Schmutz & Trautwein 2009): The occurrence of sturgeon species in the Isar river (Bavaria) was restricted to the lower part of the river. LDM sturgeon occurrence has been added to the lower Inn river and lower Salzach river (Austria). For the DRBMP Update 2021, the lower part of Zagyva river was changed from LDM to MDM.

The modelled distribution of the MDM in the DRB using Regression-Tree analyses shows that the presence and absence of medium-distance migrants (MDM) is mainly determined by the size of the catchment (Figure 2). River segments with upstream catchment areas (AREA_ctch) less than 284 km² have a very low probability of MDM. In addition, river segments with an upstream catchment size of less than 1,401 km² and a mean elevation of the upstream catchment (ELEV_MN_du) of more than 819 m have also a low probability of MDM. All other river segments have a high probability of occurrence of MDM. The model explains the variability of probability of occurrence by about 42 %. Applying the model to the data, presence and absence can be explained by about 82 % and 78 %. Applying the model to the data from the DRB reveals similar predictions of presence (78 %) and absence (81 %) approving the applicability of the model to the DRB. Figure 2 clearly shows the separation between the habitat of the LDM, MDM and the head waters above the MDM in the DRB. Results of modelled MDM habitat were checked by the countries of the DRB and only minor deviations from the real conditions were reported and included in the final map (Schmutz & Trautwein 2009). For the DRBMP Update 2021, the upper part of Zagyva river was changed from MDM to headwater. Furthermore, since Sio felso (downstream of lake Balaton) is intermittent it is not considered as relevant for MDM species.

The MDM habitat, however, was only modelled for rivers with a catchment >4000 km². It is most likely that the MDM habitat extends also in smaller rivers. Therefore, if this criterion is applied on a national level considering also smaller rivers, all MDM-habitats have to be identified.

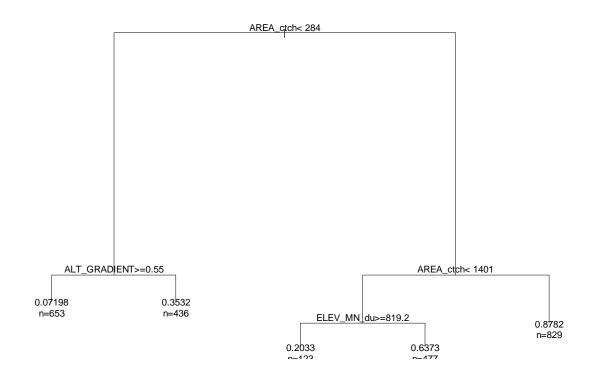


Figure 2: Regression-Tree model for medium-distance migrants using data from the EFI+ project: Probability of occurrence and number sites of each branch (upstream catchment areas: AREA_ctch, mean elevation of the upstream catchment: ELEV_MN_du, gradient of river segment: ALT_GRADIENT) (Schmutz & Trautwein 2009).

4. Update of the prioritisation approach of the Danube River Basin

Although the application of different methodologies (GIS approach, optimisation approach) was discussed, the scoring and ranking method (as used in the DRBM 2009 Schmutz & Trautwein 2009) and in the DRBMP Update 2015 (Mielach & Schmutz 2015) was extended by hydrological pressures and again applied in the updated version. It has the advantage of transparency and comprehensibility and allows a direct comparison with the results included in previous DRBM Plans.

Besides ecological criteria, also the inclusion of other economically/ technical criteria was discussed with the result, that such criteria can be incorporated on a national level but the basin-wide prioritisation approach should focus on ecological criteria.

4.1 Methodology

The following chapters describe the process of barrier selection and the calculation of individual criteria for considered barriers. The following datasets were used for the updated approach.

Table 3: Used criteria and datasets

Used data	Dataset (name)
Continuity interruptions Barriers*	Longcontinterr_pv
River network river water bodies >4000km ^{2*} LDM-/MDM-habitat*	DRBMP2021_RWBody4000_I_v
Protected areas water-relevant habitat protection areas (FFH)* water-relevant bird protection areas* other Nature protection areas for water-dependent species and water-related habitats (WFD Art. 5)*	pa_habitat_pv pa_bird_pv pa_other_pv
Hydro-morphological pressures segment with impoundment** segment with hydro peaking** segment with water abstraction**	Hydroaltimp_pv rwbody4000_hydroaltpeak_pv rwbody4000_hydroaltabs_pv

* Original criteria already used for the DRBMP 2009

** Criteria added for DRBMP Update 2021

4.1.1 Continuity interruptions

The dataset (longcontinter_pv) includes a total of 967 longitudinal continuity interruptions. At the moment, barriers within the LDM-habitat are, if at all, only equipped with fish passes supporting migrations of MDM-species. While these barriers are passable for MDM-species, it has to be assumed that they are still impassable for large sturgeons. Therefore, these barriers were included in the prioritisation index calculation and highlighted in the map to show their current status (i.e. MDM-fish pass in LDM-habitat). Since there are no standardised fish pass solutions for LDM-species, individual measures have to be taken. The adaptation of existing fish passes in Austria and Germany to allow the passage of large sturgeons will be necessary when these species are able to reach the respective barriers, which means, when the Iron Gates

and Gabčikovo are passable. A respective step-wise approach for continuity restoration is described in the DRBMP Update 2021.

Consequently, all barriers within the LDM-habitat (i.e. 96) and all impassable barriers (i.e. without fish pass) within the MDM (390) were defined as relevant for the prioritisation approach (see Table 4).

	No fish migration aid (values 0; 8; G, N, U)	Fish migration aid (value Y)	Total
LDM Danube	14*	7*	21
LDM tributary	55*	20*	75
MDM	390*	251	641
Headwater	196	34	230
Total	655	312	967

Table 4: Identification of barriers relevant for the Prioritisation Index calculation

* barriers relevant for Prioritisation Index calculation (n = 486)

4.1.2 Main migration routes

The main migration routes of long and medium-distant migratory species as modelled for the prioritisation approach included in the 1st Danube River Basin Management Plan (see chapter 3) were adopted for the updated version. The LDM- and MDM-habitat information was furthermore transferred to the river body network of the ICPDR (RW-Body4000).

The prioritisation principle follows the idea that LDM within the Danube receive the highest priority followed by LDM within the tributaries. MDM receive less priority and head waters which are typical habitats for short distance migrators are excluded from the prioritisation process. Therefore, priorities are considered as follows:

- Long distance migrants habitat in Danube (rating = 4)
- Long-distance migrants habitat in Danube tributaries (rating = 2)
- Medium-distance migrants habitat (rating = 1)
- Short-distance migrants (head waters) (rating = 0)

4.1.3 Location of the barrier (distance from mouth)

Since long- and medium distance migratory fish usually migrate from downstream to upstream, obstacles at the mouth of a river receive higher priority than upstream obstacles and giving more emphasis on the main river (e.g. Danube) than on the tributaries. The more distant an obstacle is located from the river mouth the less priority is given to the obstacle. The two criteria "obstacle in first river segment upstream of river mouth" and "distance from mouth" were already included in the 1st approach. By adding up the individual rankings, the criteria were combined in the updated approach and show the following rankings:

- Obstacle in first fragmented river segment in the Danube upstream of Danube delta (rating = 5)
- Obstacle in first river segment upstream of mouth (rating = 4)

- Obstacle in second river segment upstream of mouth (rating = 2)
- Obstacle in third river segment upstream of mouth (rating = 1)
- Obstacle in segment upstream of third river segment (rating = 0)

River segments are defined as the river stretch between two tributaries. Segments classification in the Danube-tributaries is based on the CCM-river network, which are calculated on the basis of a DEM with 100m resolution¹ (Vogt et al. 2007). The highest priority is given to the barriers at Iron Gate, since these barriers represent the most downstream barriers within the Danube itself.

4.1.4 Reconnected habitat length

In order to achieve the highest ecological effects, higher weight is given to river stretches that are less fragmented by continuity interruptions. The reconnected habitat for each barrier was calculated by adding up the distance to the next up- and downstream barrier, whereby only relevant barriers (i.e. all barriers in the LDM- and all impassable barriers in the MDM-habitat) were considered. The distance was only calculated within the LDM-/ MDM-Habitat and the river, where the barrier was located. For the most downstream barrier within a tributary or the Danube (e.g. Iron Gate), the distance to the confluence/delta was used instead of the distance to the next downstream barrier.

For this criterion different river length classes for the Danube and the tributaries were defined. Based on experiences in the Danube, the following thresholds were defined by expert judgement:

- >50 km (>100 km Danube) (rating = 2)
- 20-50 km (40 100 km Danube) (rating = 1)
- <20 km (<40 km Danube) (rating = 0)

4.1.5 Protected site (Natura2000) or national protection site

Apart from the WFD relevant criteria, additional criteria stemming from EU legislation like Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora was used, requiring to achieve a favourable conservation status in Natura 2000 areas. Considering that fish species and habitats are also part of the Natura 2000 goals it is reasonable that the protection status also should be considered in the prioritisation approach.

Obstacles within a distance of 500 m of water-relevant Natura 2000 areas which are important for fish receive higher priority as it is more likely that those river segments are maintained in good habitat status or will be restored earlier than unprotected river segments, thus providing good habitat quality. For non-EU member states, other protected areas are used as a substitute for Natura 2000 areas. Therefore, higher priority is given to barriers located within or close (i.e. <500 m) to a water-relevant protection site.

- Barrier within/close to water-relevant Natura 2000 or other protected area (rating = 1)
- Barrier with greater distance to protected areas (rating = 0)

4.1.6 Anthropogenic pressures

In 2015, the prioritisation approach was extended by an additional criterion representing anthropogenic pressures. With regard to impoundments, hydropeaking and water abstraction, it was assessed whether a water body is impacted by these pressures or not. Since more detailed information (e.g. the exact location

¹ River segments are available for download here: https://ccm.jrc.ec.europa.eu/

and length of the respective pressures) is not available for all pressures, the number of pressures were summed up per water body and then transferred to the barriers within the water body.

Although also "morphological alterations" were considered as relevant for the prioritisation approach, there is no uniform morphology classification scheme available in the Danube catchment at the moment. While some countries classified the morphological condition of their river water bodies with "1" (i.e. high) and "2-5" (i.e. good-bad) others used a more detailed classification of "1-2" (i.e. high-good), "3" (i.e. moderate) and "4-5" (i.e. poor-bad). Therefore, only three pressure types (i.e. impoundments, water abstraction and hydro peaking) were used for the prioritisation index calculation.

In summary, the following criteria and ratings were used for the calculation of the new prioritisation index.

Table 5: Criteria and their ratings for the Prioritisation Index calculation

	Criteria	Rating
1. N	/ligratory habitat	
-	Long-distance migrants habitat (Danube) Long-distance migrants habitat (tributary) Medium-distance migrants habitat Short-distance migrants habitat (head waters)	4 2 1 0
2. F	River Segment	
-	First river segment in Danube First river segment upstream of mouth (tributary) Second river segment upstream of mouth Third river segment upstream of mouth River segments upstream of third river segment	5 4 2 1 0
3. L	ength of reconnected habitat (Danube/tributary)	
-	>100 km / >50 km (tributary) 40-100 km / 20-50 km (tributary) <40 km / <20 km (tributary)	2 1 0
4. F	Protected site	
-	Yes No	1 0
5. F	Pressures	
-	0 pressures 1 pressure 2 pressures 3 pressures	3 2 1 0

The selection of prioritisation criteria for continuity restoration was mainly based on the migratory behaviour of LDM and MDM in the DRB. The prioritisation principle follows the idea that LDM within the Danube receive the highest priority (weight 4) followed by LDM within the tributaries (weight 2). MDM receive less priority (weight 1) and head waters are excluded from the prioritisation process (weight 0). Within this prioritisation framework obstacles at the mouth of a river receive higher priority than upstream obstacles whereby a special focus is given to the most downstream barriers in the Danube. The more distant an obstacle is located from the river mouth the less priority is given to the obstacle. In order to give higher weight to river segments that are less fragmented by continuity interruptions, the length of the reconnected habitat depending on the length of river segments was weighted. For this criterion different river lengths

classes for the Danube and the tributaries were defined to consider the river size. The final criterion is related to the protection status. Obstacles within water-related protected areas of the NATURA2000 network and other protected areas for non-EU Member States receive higher priority as it is more likely that those river segments are maintained in good habitat status and will be restored to a larger degree than unprotected river segments. Finally, the new prioritisation index also considers anthropogenic pressures, whereby barriers in less impacted water bodies (0-1 pressures) received higher ratings than barriers in impacted water bodies (2-3 pressures).

Again, the criteria were combined by computing the prioritisation index (PI) by weighting the first criterion (migratory habitat) by the cumulated weight of the other criteria.

 PI_{new} = migratory habitat x (1 + barrier location + reconnected habitat length + protected site + anthropogenic pressures)

4.2 Results

The downstream – upstream prioritisation concept is clearly visible in the map of prioritisation (see Map 40 in the DRBMP Update 2021). In total, out of 967 barriers, 481 were excluded since they were located in headwaters or already equipped with a suitable fish pass (i.e. MDM fish pass in MDM-habitat). The remaining 486 barriers were considered as relevant for the prioritisation index calculation. It has to be considered, that some barriers were reported twice (i.e. where the river represents the national border between countries), whereby the barrier with the higher prioritisation index (if this applies) is shown on-top of the other. Further harmonization is required, to eliminate related errors.

The results show that according to the defined prioritisation criteria continuity disruptions in the Lower Danube (Iron Gates, 2 barriers with 2 entries) receive the highest priority with values \geq 40. Those barriers are considered of utmost priority for LDM species. Also, in the Upper Danube two barriers with utmost priority for LDM- and MDM-species are found. Furthermore, 16 barriers are considered of very high, 22 of high, 114 of medium and 328 of low priority.

4.2.1 The ecological prioritisation approach and sturgeon habitats in the Danube River Basin

The results of the prioritisation index are also reflected in the habitat assessment of the Danube sturgeons within the MEASURES project. The connectivity of the current habitat of LDM in the Lower Danube and vast potential habitats in the Middle Danube are of utmost priority for the conservation and restoration of these species. The prioritisation approach as presented here, clearly supports the coordination of the complex topic of sturgeon conservation on a basin-wide scale. The MEASRUES project identified river continuity as one of the most urgent priorities to establish ecological corridors. Especially the barriers at the Iron Gates and at Gabčikovo separate the Upper, Middle, and Lower Danube into unconnected sections.

The following table shows the results of the classification. The maximum possible value of the prioritisation index is 44 and the minimum is 0 (for barriers in head waters or passable barriers). The prioritisation index was grouped into 6 classes: utmost priority for LDM (>30), utmost priority (21-30), very high priority (16-20), high priority (11-15), medium priority (6-10), low priority (1-5).

Priority	Prioritisation Index I	barriers (total)	thereof with MDM-fish pass in LDM habitat
utmost priority for LDM	44	4(2)	
utmost priority			
dimost phonty	24	2	
	20	11	6
very high priority	18	1	
	16	4	1
high priority	12	22	8
	10	25	4
	9	1	
medium priority	8	18	5
	7	13	
	6	57	3
	5	100	
	4	141	
low priority	3	69	
	2	15	
	1	3	
Not applicable	-	1	
no priority	-	480	
with fish pass	-	229	
total		967 (965)	27

Table 6: Results of the updated prioritisation index

		Criteria rating					
	5	4	3	2	1	0	
Habitat	-	LDM Danube	-	LDM Trib.	MDM		
number of barriers		21		75	390		
Segment	1 Danube	1 Trib.	-	2 Trib.	3 Trib.	>3 Trib.	
number of barriers	4	11		4	6	461	
Recnonnected length Danube	-	-	-	>100 km	40-100 km	<40 km	
number of barriers				10	14	27	
Reconnected length Tributary	-	-	-	>50 km	20-50 km	<20 km	
number of barriers				85	97	253	
Protected site	-	-	-		yes	no	
number of barriers					303	183	
Pressures	-	-	0	1	2	3	
number of barriers			129	289	53	15	

Table 7: Number of barriers per criterion (only barriers with a prioritisation index > 0)

5. References

- Hensel K. & Holcik J. (1997): Past and current status of sturgeons in the upper and middle Danube River. Environmental Biology of Fishes 48: 184-200.
- Jungwirth, M., Haidvogl, G., Moog, O., Muhar, S., Schmutz, S. (2003): Angewandte Fischökologie an Fließgewässern. p552; Facultas Universitätsverlag, Wien; ISBN 3-8252-2113-X.
- Mielach C. & Schmutz S. (2015): Update of the ecological prioritisation approach to restore habitat continuity in the DRBD. Annex 13 of the Danube River Basin Management Plan Update 2015: 15p.
- Schmutz S. & Trautwein C. (2009): Ecological prioritization of measures to restore river and habitat continuity in the DRBD, Annex 18 of the DRBMP.
- Vogt, J., Soille, P., de Jager, A., Rimaviciute, E., Mehl, W., Foisneau, S., Bodis, K., Dusart, J., Paracchini, M.L., Haastrup, P., Bamps, C. (2007): A pan-European River and Catchment Database. European Commission - JRC, Luxembourg, (EUR 22920 EN) 120 pp.
- Waidbacher, H. & Haidvogl G. (1998): Fish migration and fish passage facilities in the Danube: Past and present. -In: Jungwirth, M., Schmutz, S. & Weiss, S. (eds.): Fish Migration and Fish Bypasses. Oxford, -Fishing News Books: pp.85-98.

DETAILED LIST OF HYDROLOGICAL ALTERATIONS

ANNEX 18

Hydrological alterations include pressures that are causing changes to the hydrological regime, i.e. quantity and dynamics of water flow and connection to groundwater bodies, whereby impoundments, water abstractions and hydropeaking were recognized as the main pressure types.

The provoked alterations and applied criteria used for the assessment are provided in the Table.

Hydrological pressures, impacts and criteria for the significant pressure assessment

Hydrological pressure	Impacts	Criteria for significant pressure assessment			
Impoundment	Alteration/reduction in flow velocity and flow regime of the river sections caused by artificial transversal structures, alteration of connection to groundwater bodies	Danube River: Impoundment length during low flow conditions >10 km Danube tributaries: Impoundment length during low flow conditions >1 km			
Water abstraction /residual water	Alteration in quantity and dynamics of discharge/flow in water, alteration of connection to groundwater bodies	E-flow to achieve GES (according to CIS Guidance No. 31) is not guaranteed or flow below abstraction point <50% of mean annual minimum flow ¹ in a specific time period (comparable with Q95)			
Hydropeaking	Alteration of flow dynamics/discharge pattern in river and water quantity, alteration of connection to groundwater bodies	Water level fluctuation >1 m/day, the ratio of low flow to high flow is higher than 1:5, or less fluctuations in the case of known/observed negative effects on biology			

Since one hydrological alteration can impact more than one water body and since one water body may be impacted by more than one hydrological alteration, they are listed separately.

Explanation of abbreviations for the tables

AWB = Artificial Water Body GEP = Good Ecological Potential GES = Good Ecological Status HMWB = Heavily Modified Water Body n.a. = Not Applicable NWB = Natural Water Body RWB = River Water Body

¹ A pressure provoked by these uses is considered as significant when the remaining water flow below the water abstraction (e.g. below a hydropower dam) is too small to ensure the existence and development of self-sustaining aquatic populations and therefore hinders the achievement of the environmental objectives. Criteria for assessing the significance of alterations through water abstractions vary among EU countries. Respective definitions on minimum flows should be available in the national RBM Plans.

List of impoundments

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT007BAB5A-4C1B-48B6-AB66- 3360F9FE04E4	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT016BA3D2-0D89-47EB-A00A- 75A76533B0D3	7.4	Enns	ATOK411250025	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT01ABFFD8-1A79-4DDF-9A4C- BA91734B5786	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT0320EA39-EB95-49D9-B61F- 9E6BFE4113A8	0.6	Raab	ATOK1001040105	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT037410C0-0D9C-451A-A3DB- 528BA25206C7	6.3	Drau	ATOK900470061	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT04769C89-1AC6-4654-9960- 48E902043849	1.1	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT09501331-AD50-494F-82B3- A48AEA8923C8	1	Mur	ATOK802710002	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT099FCC03-E3B9-4D03-AA64- 05107EE0E7E9	0.6	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT0A244B57-C606-4E1B-89B5- 3199801C7F89	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT0C409E0C-46F9-4E19-9E9A- 24C24E168ED4	5.6	Enns	ATOK411250016	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT0EC1F431-A78B-4D55-8A76- BA8B3AC5A540	1.4	Enns	ATOK411250008	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT0F258C31-0FC8-4FAC-8390- CE6A11B694DD	1.7	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT0FAB00AC-9CCB-45FE-93BA- BBB15A05647F	0.4	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	AT1099B080-2051-46ED-B14F- 7C3C1A1119B9	0.3	Salzach	ATOK305350004	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT11B5594D-7DEF-4350-A8BD- AFE316BBC8EE	0.5	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT12A54BBC-D1AC-40EE-8E68- 0886E0E5E63E	2.4	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT136CEC1A-01C3-41D2-B51B- 6A3443DF7C38	3	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT1AE623A0-B191-4431-BAD7- 74FD396FAFE0	0.2	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	AT1C3C04FA-D0B1-46A7-9256- 1E8DE51131E6	0.6	Mur	ATOK802720005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT1C5C764C-4B3A-4B01-9095- 13A74435838E	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT1F430DB6-FD91-42E8-850C- 037E0BB81630	1.5	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT1FB8EE8A-851E-4B96-A58F- 8FE5BF712DB0	4	Salzach	ATOK305350004	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT219FE306-35C3-449E-B3C1- 388F3E52B6EA	0.1	Traun	ATOK411980002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT227E1796-AA42-42F5-8272- 1A6C8DD1A311	12.1	Inn	ATOK305340009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT2382C436-6140-4E82-9E59- E865204B057F	0.1	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT24243381-33DF-40DB-90EB- CC5D32373DB5	1.3	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT25C2BFB3-68AD-4260-A4A9- E50E433D5A76	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT27AFD996-67AC-4362-BF73- 90BB7A56518D	0.8	Mur	ATOK802720001	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT27BB34D8-2A4E-4EDD-839D- AAF289D9420F	1.2	Raab	ATOK1001040105	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT2B12C29C-4534-48D5-BC57- FF9CC3B4E7A0	3	Enns	ATOK411250006, ATOK411250036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT2B4B46BD-B1A7-4A60-BB43- E25C9A51D0A2	3.8	Mur	ATOK802710012	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT2B86D98A-BF00-4ECD-9B33- FADB2BCF994A	7.3	Inn	ATOK307030000	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT2E180A15-8637-4D76-A310- F0DF35B19955	0.6	Thaya	ATOK500010031, ATOK500010038	HMWB, NWB	Not yet	Implemented by 2027	Unknown
AT	AT2F000441-9D78-49E4-A586- 75C80BFF109A	0.3	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT30B7FC96-EE00-4363-B77E- 4AB61DAF1437	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT3386D4BE-D1DB-49F1-AB0E- 8F6EC3B4D325	16.4	Inn	ATOK305340005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT382F1560-E942-47B5-BF0E- A8C9FCD351B1	5.3	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT390D2AE6-3A40-427A-9058- 4A3C482303B6	3.1	Enns	ATOK411250012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT3B24D32A-EAE5-430A-AD5E- 0CB19669AA39	0.9	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT3DF4C81B-53FA-4B55-AFEB- 2CB39EC5B5EF	26.9	Donau	ATOK410360007	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT4075D148-829C-4C5A-AB33- CA091F36A08F	2.4	Mur	ATOK802720003	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT41392463-4F94-4E6B-9E79- BF2301608D6F	2.8	Enns	ATOK411250012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT41A44A64-D0F4-4EC4-84A1- 74C53B66A1B5	1.2	Mur	ATOK802710002	HMWB	Yes	Already implemented by 2021	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT43970952-CB52-4725-9592- 139130595453	0.8	Traun	ATOK412090020, ATOK412090024	HMWB, NWB	Not yet	Implemented by 2027	Unknown
AT	AT453EE84A-F214-4FCE-8649- 7B1BD4866B23	1.2	Thaya	ATOK500010031	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT457BAB1B-BB2F-41F3-8EC0- 56457C1B15DC	1.1	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT4622D3C3-477E-48B4-B474- E34815448E99	1.5	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT4D405CBD-DCF9-4469-948D- B2D4A28297E6	0.6	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT4E3795A7-329E-4895-B90B- C24A74AF0671	7.5	Inn	ATOK305340010	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT4F4748B8-5864-4637-B7BA- 23AB8D69F68D	7.6	Traun	ATOK412090016	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT50B66DA6-7AA2-49CD-846E- 8F1ED206DDA8	4.1	Salzach	ATOK305350001, ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT511088C0-5250-4057-A97C- 01373ECE0233	39.9	Donau	ATOK303070000, ATOK410360003	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT52CE2AB3-8B5B-46D6-9982- 16F88275CDD6	0.3	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT548C0E32-86F9-484B-BF1C- BA7E6FF633E0	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT56FE6DBE-DD05-457B-BD16- 46D2177FC6BD	1.6	Thaya	ATOK500010031	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT57FE85F8-FF4C-4A79-B651- 7B3412E122BC	0.4	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT580ECA2A-54EC-4C5D-88FC- AAF63F20E6C1	25.9	Donau	ATOK409040011, ATOK409040012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT59348639-7D11-4DB9-A739- C570FC1C51AF	23.8	Donau	ATOK410360009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT59A7B06D-276D-403C-BE36- 405923B6A1FB	1.1	Traun	ATOK412090030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT59B0266D-620E-4F71-8FBE- 5962B9BE2561	0.3	Mur	ATOK801180008	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5AB2D8E3-4048-47CF-82A5- 34ABEC828892	0.3	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5B24F9D3-AC5B-4B87-9611- D8F4263DA0C5	1.3	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5B49977B-0887-4B6E-A098- B1280A549C07	1.2	Traun	ATOK412090032	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5B97B038-7514-4A4F-8DD6- A703D1B0EA06	2.7	Inn	ATOK307210002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5D2352B0-2DB0-45E2-9E9F- EE06A6DB9A78	12.4	Inn	ATOK305340007	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5D619D09-40D8-44D6-A7CF- CEA1ACCFEBBF	0.5	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown

5

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT5DE96A5A-171E-4706-8D54- A7BC68CEB3D0	1.7	Traun	ATOK412100002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5EA03FA9-D42D-423A-A7B0- 6147E7B47797	27.1	Donau	ATOK409040013	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5EBADECE-CB46-478B-934C- 634D28FE031C	0.2	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	AT6021FA96-F34B-4749-AC6E- B937EE61DE9B	0.9	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT603D53CE-DB6B-494B-8BDF- 312D67E77FCF	8.7	Enns	ATOK411250018, ATOK411250020	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT61277085-86ED-4875-98BC- 0A280587A273	3.1	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT6223E68C-11FA-449C-B9F1- FBD6FF31143F	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT634383E0-6445-45EE-BFEA- E3C6AAA2FE92	0.5	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT6486239D-A062-4AC0-9BD6- D1D1431C2C3B	0.5	Mur	ATOK801180007	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT64DF40C1-F179-43A9-B7DF- 9FE7DEE7CE1F	0.2	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT65EC9A86-C703-4173-987B- D7A83D276B5E	1.4	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT69EE9BAA-F6E3-408B-A010- F22C8413EC6D	0.1	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT6A4C9AF6-CBBB-4659-BBC1- 8903A6C64C61	1.8	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT6CD6561D-7CC2-4ECE-B1ED- 04D9FF292D61	2.7	Mur	ATOK802710015	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT6D68A93E-263D-4955-B2DF- BDC5BECF3ADD	7.2	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT6F12C754-C8EB-4306-9876- 6485EA645153	5	Salzach	ATOK307200001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT6FF5917E-6640-42E5-ADF5- 0798B911A60D	0.6	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT701AE2C2-2628-4B24-BD91- 8F9A8B3558E3	2.8	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT71679324-08FB-4B52-89D1- 67C051543851	12.6	Enns	ATOK411250029	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT718CC288-56D1-47ED-BF70- 4FA429604894	30.1	Donau	ATOK409040011, ATOK409040013	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT74448A36-CBB6-4585-8E2E- 54F72DFA7D8C	0.3	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7883CAF1-07FC-48AC-8D91- F7BB73EB40F4	22	Donau	ATOK410360002, ATOK410360012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT78C152F6-90D7-4925-BEA6- 03271A2A0F45	0.5	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT78C9BCA1-DBA2-49DC-9DCB- CEB11ACBA786	0.2	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	AT7900E8ED-C338-4FBF-884A- A0B0E8C1697E	14.3	Inn	ATOK305340012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT796586FC-399B-4D05-8EE7- D7A1D2D9457E	0.2	Raab	ATOK1001040108	NWB	Not yet	Implemented by 2027	Unknown
AT	AT79F345B6-AA1F-4475-A7CA- B8DD6011EE69	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT7A5FD0A3-38CB-4178-9713- AE99AE020E53	0.9	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7B4805F3-2F4A-454E-9279- B9987DB9DBDA	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	AT7C741EC2-204A-4B57-A157- 40419792CE46	2.7	Inn	ATOK304980003	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT7D767453-BC59-404D-893A- EC6D0336A1F6	10.3	Drau	ATOK900470069, ATOK900470071	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7E2F2A8F-7F5B-42A8-8423- 3ADC93BCFD9C	1.3	Raab	ATOK1001040105	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7F3C7DB2-FD56-4BDC-9BBE- 36545D0B6E6D	0.8	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT81CE3CDD-B0F2-4C81-8203- B5F9BADC46CF	15.7	Donau	ATOK410360003, ATOK410360005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8352A1F7-E0DB-47F4-AE30- 59034593E06C	4.8	Enns	ATOK411250014, ATOK411250036, ATOK411250037	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT845DFA45-5211-4C63-A6CB- 2F084DC964D1	0.8	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8605AE15-E065-4632-B8FF- 69DA56EAFED6	0.8	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT863CDDD4-AC98-40BE-82A9- 6D1947DB487C	2.4	Salzach	ATOK305350003, ATOK305350006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8884F50E-20B7-4582-8061- C6B2981BFCBB	0.2	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT88A1E606-BA96-44AE-9161- 4A5E023AA6C7	0.1	Raab	ATOK1000960019	NWB	Not yet	Implemented by 2027	Unknown
AT	AT895670FA-A9FE-4E0A-847A- 1717BAFC1607	3.2	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8B7F24ED-D2DC-4896-BEA9- 70439610EE16	1.5	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8D3A035A-D81F-4856-9387- 71635699E0CD	1	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT8F89BA64-AB32-4786-9E31- 6926C8607033	1	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	AT9276B696-9851-442A-BAA9- 4C108599A2B4	13.7	Drau	ATOK900470056, ATOK900470071, ATOK900470072	HMWB, NWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT93F54126-FDD4-4824-BC2F- D3C7C9EC136C	0.8	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT94DA41AB-891D-4282-9519- AA82A7785E2C	3.5	Traun	ATOK412090027, ATOK412090028	HMWB, NWB	Not yet	Implemented by 2027	Unknown
AT	AT952C555E-FF82-40D3-878A- FDCA1E714AA9	0.2	Traun	ATOK409920005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9543CF55-ABA0-477A-B8A4- DA52B0DD493F	1.3	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT97889EFC-42A9-42EC-BAAF- DC2D7D280139	34.3	Donau	ATOK410360009, ATOK410360012	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT978AA4AF-9BF7-475A-9A0D- DAFAE8E20CBC	0.9	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT982BA4B0-E7B4-4963-8E87- 92132AD5C906	4.4	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT993ADBA2-34BE-499F-8AC0- 674AE83C003B	2.3	Mur	ATOK802710008, ATOK802710012	HMWB	Yes	Already implemented by 2021	Unknown
AT	AT9AF11E95-76EB-4F07-8ADF- 2285F91CD05C	1.8	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9B4EE28B-75E1-4334-9B9B- AC18230D601D	1.2	Raab	ATOK1001040121	NWB	Not yet	Implemented by 2027	Unknown
AT	AT9C2D7D64-479C-4065-B1CC- 89662487F6DA	2.1	Raab	ATOK1001040105	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9DEDB864-AFDE-42B8-96B8- CE1456AEACC6	5.3	Salzach	ATOK305350006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9EB36E8B-C4F1-4AE4-9591- F7262252266D	4.6	Mur	ATOK802720005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9EF2FBA3-23C3-4B1B-9354- 21033F08A492	4.2	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT9F862E09-4406-4161-AF7B- 5526CD25B8EC	1.8	Lech	ATOK302370007, ATOK302370010	HMWB, NWB	Not yet	Implemented by 2027	Unknown
AT	ATA047D015-5A7C-46BC-92CE- 9C6A15C2CFFD	0.4	Raab	ATOK1001040108	NWB	Not yet	Implemented by 2027	Unknown
AT	ATA1911C67-37F4-4E86-AC4A- 7FD41953769B	0.2	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA1993814-53AB-4748-80DC- C8FF332DEBFC	12.2	Inn	ATOK304980003, ATOK307030000	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATA293DD81-56D5-4160-8157- B2C8DF433F07	3.4	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA3BD596F-B07B-4581-986A- 658DC99663B0	1.8	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA440E65C-FD87-4800-B940- 3DD7F1257BF0	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATA4FEDBDF-B0DC-42AE-96E0- 077575239A91	0.9	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA63F9EBB-1B08-4B0E-90D7- 5DF861AD237C	1.5	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	ATA71531B9-5750-4915-8DAC- 7A23EB2234AF	5.3	Enns	ATOK411250014	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA79429B9-BC1F-48CA-96F8- 9E635F875AEA	5.3	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA81311B6-8D8B-4B73-A8DF- 808D91FC8790	0.5	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA93A52D7-E55D-4D64-8F60- 7B4C4BF5CFE5	0.1	Thaya	ATOK500010031	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATAA033890-80DA-4F10-AB93- FD5D6D53FD87	3	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATAA03A39C-C098-44BE-9C56- 7F35D3BE3CA5	1.2	Salzach	ATOK304690262	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATABA30667-9593-44B8-9246- 3B03A0A3A1F7	0.9	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATAD8FFCA8-7929-4560-A917- 8C3CABCEEDF8	1.6	Mur	ATOK801180029	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATAE504DE1-0E31-4BFB-9586- A2924F1DF2AC	1	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB15FC3A4-6E2E-4E97-BCA8- A23A9C42C651	5	Traun	ATOK412090013	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB3BE207D-3129-49C9-B4E0- B23AB6DE0F18	2.5	Mur	ATOK801180029	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB47275D1-18C1-41D3-8715- DC576917DDB1	9.8	Drau	ATOK900470061, ATOK900470076, ATOK900470077	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATB60AA07F-2C8B-4B38-8833- E62B78F79F84	0.7	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	ATB6AC7CEA-7300-45E1-A04B- 60E3CE963F27	17.2	Drau	ATOK900470075	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB8618037-1E1A-4592-9CD7- D77040056AE3	0.8	Raab	ATOK1001040122	NWB	Not yet	Implemented by 2027	Unknown
AT	ATB9C0A421-2ECB-40D7-898D- DFCBFF51E8B9	1.7	Salzach	ATOK305350003	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB9C2B78A-7564-4649-BE5F- E6E743D4C322	2.7	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATBAD326F3-DBEE-4C54-A8B4- C614796A67A0	1.2	Mur	ATOK802710002	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATBC2A5F78-7972-40DB-BE2A- 0F35E7FA32BF	2.3	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATBD3D4A31-845B-4DA1-9A44- AA5BEF7B72C2	1.1	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATBF1D4A32-F439-4A28-8B14- 61DDBC6FF6FE	1	Raab	ATOK1001040121	NWB	Not yet	Implemented by 2027	Unknown
AT	ATC0C04DB9-701C-4E57-AD84- 69EE293DED24	0.1	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	ATC15AECD8-ED2C-4934-A7F1- B93383AAE153	24.2	Drau	ATOK900470068	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATC278A4B5-0BC0-44AB-A473- 0806D1DC3026	3.5	Salzach	ATOK305350002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATC2E65C52-4D45-44F8-ACD1- C7C7FF5FABFE	1	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATC34B4428-19AE-4F5E-B986- 092C239845A0	0.4	Raab	ATOK1000960015	NWB	Not yet	Implemented by 2027	Unknown
AT	ATC55FA429-CDA5-4A3B-967B- BF164BA76656	1.1	Traun	ATOK401220016, ATOK401220017, ATOK409920005	HMWB, NWB	Not yet	Implemented by 2027	Unknown
AT	ATC57DC470-87A2-421B-B701- 442FF043798E	0.6	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	ATC649AB33-2E13-4961-8F1E- A8E5ECF04D4C	16.6	Drau	ATOK900470064, ATOK900470065	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATC8474795-EDEC-4BFD-B649- AA925FD09816	10	Traun	ATOK412090014	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATCB190E1B-1BAF-4D23-A553- 7458B6E96A54	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATCB8431FF-D7F9-43D7-8109- 1414D3FD3BDA	1.7	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATCD36BE15-96B8-4F2B-9333- 700633C25842	0.4	Traun	ATOK411980001	NWB	Not yet	Implemented by 2027	Unknown
AT	ATD029EB60-F6F2-41C4-A53A- FC0346A6BDBE	0.2	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	ATD0CD028C-390E-4D99-8305- 6A31C763F4A2	1.2	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD150B73D-0840-48F0-8B5E- D4EEE5D592DA	3	Traun	ATOK412090031	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD1C9A62E-89B9-4325-9BEF- 620E62C1739E	1.2	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD4CA67BD-DA83-43F7-AE83- 99E5925EF87E	1.2	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD5151239-66D2-449F-80C2- CF4A927FA505	20	Donau	ATOK303070000	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD622F2F5-3C14-4E18-92FB- F3C9EE97A4F0	7.3	Enns	ATOK411250023	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATDB73CA95-D6EA-4117-AEEC- E574C9DE1AD0	4.5	Salzach	ATOK304690262	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATDC7BD9C6-5D14-4D6A-B55D- CB8AE78AB404	0.1	Traun	ATOK411980001	NWB	Not yet	Implemented by 2027	Unknown
AT	ATDCCAB743-AAFE-4EC5-A180- E37CBF92B151	0.1	Enns	ATOK400240106	NWB	Not yet	Implemented by 2027	Unknown
AT	ATE07FDAD4-A183-4535-B9ED- 4D266F798678	10.3	Drau	ATOK900470076	HMWB	Yes	Already implemented by 2021	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	ATE0AE24B8-BE26-43F5-8736- 7646AE4E9419	9	Enns	ATOK411250031	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE2D00FA6-71BF-4B78-8604- 67515F9C3832	3.6	Mur	ATOK802710014	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE2D7EDFE-95B0-4C69-BE15- 4BB83FFC59B7	2.6	Enns	ATOK411250008, ATOK411250012	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE5623BFC-35F4-405C-92BB- B8CDE7F45C9D	3.1	Mur	ATOK802720005	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE6505AE9-D590-4F91-832F- BD9A4BCEC6D8	1.1	Thaya	ATOK500010031	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE7C6EE31-9C05-437B-B880- 5FDC651C3394	3.1	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE9B2617C-0BE3-4BD6-B283- 24EF5F12F6F2	1.1	Thaya	ATOK500010043	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATEA543FAB-6B4F-4109-9337- C8C0337C88CB	0.2	Traun	ATOK412090042	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATEA64571C-03EF-4D63-99BA- CBE976A277A9	0.1	Traun	ATOK411970000	NWB	Not yet	Implemented by 2027	Unknown
AT	ATEAE80C15-1C83-43E2-8C6D- 24AFA69262F5	0.3	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATEB1FE373-492A-4EAF-A997- E15B4B0D9771	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATEC675936-0CAE-4A4A-B457- 861C2D639B56	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATEE158E89-A2E3-4D0A-9398- 9127E0D65591	0.7	Mur	ATOK802710002	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATEEC7F1CF-5253-41A9-946E- 39A2E0676F05	0.6	Mur	ATOK802710002	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATEEE013C9-2835-4287-B863- D7AD05DAED47	1.6	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATEEE33E71-0166-461A-8D3B- E7C3F638A436	0.1	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	ATEF150111-EF6A-4733-A058- 70C6360792D4	5.1	Mur	ATOK802710009	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATEF5C2307-EFCD-4849-A1CC- F9580C14FA10	3.6	Mur	ATOK802710015	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATEF647B9A-357B-4328-AD53- E1E8ED80293F	5	Enns	ATOK411250021	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATF003E678-F5A1-44D5-B7D8- C270B1A8924E	8.6	Enns	ATOK411250027	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATF351C60D-3132-478F-B2FD- FE786B04B1CF	4.5	Enns	ATOK411250012, ATOK411250031, ATOK411250035	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATF406AE44-90BB-483B-9AD7- DC68E93237DF	0.1	Raab	ATOK1000960019	NWB	Not yet	Implemented by 2027	Unknown

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	ATF6DEC6DB-D961-4141-9FF1- CBE454B720CB	6.5	Inn	ATOK304980003	HMWB	Yes	Already implemented by 2021	Unknown
AT	ATF70E2A75-D811-42CE-B1D1- FC99D96ED084	14.3	Drau	ATOK900470068, ATOK900470069	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATF97612D3-041B-4585-A85C- 921CC1E39891	0.2	Thaya	ATOK500010038	NWB	Not yet	Implemented by 2027	Unknown
AT	ATFAC5C7D6-E8DF-412A-81A5- 0A49378DD348	1.3	Thaya	ATOK500010030	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATFBD53526-C303-485E-BF75- 49185ECBF162	1	Raab	ATOK1001040042	NWB	Not yet	Implemented by 2027	Unknown
AT	ATFBDEDE34-7009-4DAE-9C96- 44DBC0DC045D	1.1	Thaya	ATOK500010036	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATFC122FCE-E9C2-44ED-9E57- ED3F08867AC4	0.2	Thaya	ATOK500040002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATFF1E58E5-714E-41A6-8CAD- E131D15A902A	3.3	Inn	ATOK305850011	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATFF5BDF74-A068-49BE-8E8A- BD3C6B186602	6.3	Drau	ATOK900470064	HMWB	Yes	Already implemented by 2021	Unknown
BG	BG1_IMP_100792_2007	1.5	Iskar	BG1IS135R1226	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_100979_2005	3.4	Iskar	BG1IS135R1126	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140040_2009	1.1	Iskar	BG1IS135R1226	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140042_2009	1.6	Iskar	BG1IS135R1126	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140090_2010	1.1	Ogosta	BG10G307R1213	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140093_2010	2.5	Iskar	BG1IS135R1226	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140101_2011	1.2	Iskar	BG1IS135R1326	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140102_2011	2.2	Iskar	BG1IS135R1326	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140103_2011	1.9	Iskar	BG1IS135R1326	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140104_2011	1.4	Iskar	BG1IS135R1326	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_11140113_2011	1.2	Yantra	BG1YN900R1015	NWB	Not yet	Implemented by 2027	No
BG	BG1_IMP_11140117_2011	1.3	Iskar	BG1IS135R1226	NWB	Yes	Already implemented by 2021	No
BG	BG1_IMP_12140019_2009	3.1	Ogosta	BG10G307R1013	NWB	Yes	Already implemented by 2021	No
CZ	CZ500011723	30.9	Dyje	CZDYJ_0155_J	HMWB	Not yet	Not implemented by 2027	Yes
CZ	CZ500011854	8.6	Dyje	CZDYJ_1205_J	HMWB	Not yet	Not implemented by 2027	Yes
CZ	CZ500011915	10	Dyje	CZDYJ_0295_J	HMWB	Not yet	Not implemented by 2027	Yes
CZ	CZ500011919	7.7	Dyje	CZDYJ_1195_J	HMWB	Not yet	Not implemented by 2027	Yes

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
CZ	CZ500026036	8.7	Svratka	CZDYJ_0485_J	HMWB	Not yet	Not implemented by 2027	Yes
CZ	CZ500026562	6.7	Svratka	CZDYJ_0345_J	HMWB	Not yet	Not implemented by 2027	Yes
DE	DEBY_IMP_1_F030_BW	32	Donau	DERW_DEBY_1_F030_BW	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Unknown
DE	DEBY_IMP_1_F062	44.4	Donau	DERW_DEBY_1_F062	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Unknown
DE	DEBY_IMP_1_F074	15.4	Donau	DERW_DEBY_1_F074	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F122	19.7	Lech	DERW_DEBY_1_F122	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F127	9.8	Lech	DERW_DEBY_1_F127	NWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F128	14.7	Lech	DERW_DEBY_1_F128	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F131	23.5	Lech	DERW_DEBY_1_F131	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
DE	DEBY_IMP_1_F132	44.6	Lech	DERW_DEBY_1_F132	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
DE	DEBY_IMP_1_F163	53.5	Donau	DERW_DEBY_1_F163	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Unknown
DE	DEBY_IMP_1_F223	26.2	Donau	DERW_DEBY_1_F223	HMWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F226	34.3	Main-Donau- Kanal	DERW_DEBY_1_F226	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F273	97.6	Naab	DERW_DEBY_1_F273	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F348	59.5	Donau	DERW_DEBY_1_F348	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F375	23.5	Isar	DERW_DEBY_1_F375	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F376	8	Isar	DERW_DEBY_1_F376	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F429	67.6	Isar	DERW_DEBY_1_F429	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_IMP_1_F430	10.6	Isar	DERW_DEBY_1_F430	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F478	23.8	Donau	DERW_DEBY_1_F478	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Unknown
DE	DEBY_IMP_1_F509	4.6	Inn	DERW_DEBY_1_F509	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F556	16.2	Inn	DERW_DEBY_1_F556	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Unknown
DE	DEBY_IMP_1_F557	32.5	Inn	DERW_DEBY_1_F557	NWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F558	56.4	Inn	DERW_DEBY_1_F558	HMWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F633	23.3	Donau	DERW_DEBY_1_F633	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
DE	DEBY_IMP_1_F640	6.5	Salzach	DERW_DEBY_1_F640	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
DE	DEBY_IMP_1_F654	48.8	Inn	DERW_DEBY_1_F654	HMWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F655	14.4	Inn	DERW_DEBY_1_F655	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
DE	DEBY_IMP_1_F656	13.5	Inn	DERW_DEBY_1_F656	HMWB	Yes	Already implemented by 2021	Unknown
DE	DEBY_IMP_1_F657	19.5	Inn	DERW_DEBY_1_F657	HMWB	Yes	Already implemented by 2021	Unknown
HR	HRLINHAIMP00001	9	Drava	HRCDRN0002_017	HMWB	Not yet	Not implemented by 2027	Yes
HR	HRLINHAIMP00002	11	Drava	HRCDRN0002_015	HMWB	Not yet	Not implemented by 2027	Yes
HR	HRLINHAIMP00003	3.6	Drava	HRCDRI0002_020	HMWB	Not yet	Not implemented by 2027	Yes
HU	HU1	75.5	Tisza	HUAEQ059	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
HU	HU100	1.1	Zagyva-patak	HUAEQ138	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU106	1.5	Répce	HUAEP921	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU14	22	Sió	HUAEP959	AWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU15	6.7	Rába	HUAEP900	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU2	116.1	Tisza	HUAIW389	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
HU	HU4	26.7	Kettős-Körös	HUAEP668	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
HU	HU5	57.8	Hármas-Körös	HUAOC779	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
HU	HU64	42.3	Sebes-Körös	HUAEP954	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
HU	HU65	2.8	Sebes-Körös	HUAEP953	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU66	3.5	Zagyva	HUAEQ139	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU67	3.7	Zagyva	HUAEQ139	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU68	7.6	Duna	HUAEP443	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU69	4.8	Mosoni-Duna	HUAEP812	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU70	4.9	Rába	HUAEP899	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU71	1.5	Rábca	HUAEP904	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
HU	HU72	1.5	Rábca	HUAEP904	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU73	2.1	Rábca	HUAEP904	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU74	1.5	Répce	HUAEP920	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU76	3.7	Rába	HUAEP900	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU77	5.2	Rába	HUAEP903	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU78	2.8	Rába	HUAEP903	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU79	1.1	Rába	HUAEP903	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU81	2.4	Fehér-Körös	HUAEP471	AWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU90	6	Hernád	HUAEP579	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU91	3.9	Hernád	HUAEP580	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU92	4.9	Hernád	HUAEP580	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU93	2	Hernád	HUAEP580	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU94	2	Sajó	HUAEP932	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU95	1.3	Sajó	HUAEP931	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU97	1.5	Zagyva-patak	HUAEQ137	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
HU	HU98	0.8	Zagyva-patak	HUAEQ138	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
ME	MEDPHE1i	38.1	Piva	MEPIV_2	HMWB	Not yet	Not implemented by 2027	Yes
RO	ROHA01.14.1.0.0.0.0.0	146.2	Dunarea	RORW14-1_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHA02.14.1.0.0.0.0	82.3	Dunarea	RORW14-1_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.10.1.0.0.0.0	11	Arges	ROLW10-1_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.11.1.0.0.0.0.0	2.7	Ialomita	ROLW11-1_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.12.1.0.0.0.0	11	Siret	ROLW12-1_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.12.1.53.0.0.0	25.4	Bistrita	ROLW12-1-53_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
RO	ROHAI01.12.1.82.0.0.0.0	7.8	Buzau	ROLW12-1-82_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.13.1.0.0.0.0.0	19.1	Prut	ROLW13-1_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.2.1.0.0.0.0.0	0.2	Somes	RORW2-1_B3	HMWB	Not yet	Implemented by 2027	Yes
RO	ROHAI01.3.1.44.0.0.0.0	2.3	Crisul Repede	ROLW3-1-44_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI01.4.1.0.0.0.0.0	2.8	Tarnava Mare	ROLW4-1-96_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI01.5.1.0.0.0.0	2.4	Bega	RORW5-1_B2	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI01.5.2.0.0.0.0	1.9	Timis	ROLW5-2_B1	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI01.7.1.0.0.0.0	0.8	Jiu	RORW7-1_B4	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI01.8.1.0.0.0.0.0	31.1	Olt	RORW8-1_B2	HMWB	Yes	Already implemented by 2021	No
RO	ROHAI02.10.1.0.0.0.0.0	6.1	Arges	ROLW10-1_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.12.1.0.0.0.0.0	6.3	Siret	ROLW12-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.12.1.53.0.0.0.0	2.4	Bistrita	ROLW12-1-53_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.12.1.82.0.0.0.0	4.1	Buzau	ROLW12-1-82_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.13.1.15.0.0.0.0	5.2	Jijia	ROLW13-1-15_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.3.1.44.0.0.0.0	5.1	Crisul Repede	ROLW3-1-44_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI02.5.1.0.0.0.0	0.9	Bega	RORW5-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.5.2.0.0.0.0	2.3	Timis	RORW5-2_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.7.1.0.0.0.0	4.4	Jiu	ROLW7-1_B26	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI02.8.1.0.0.0.0	63.8	Olt	ROLW8-1_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI03.10.1.0.0.0.0.0	8.3	Arges	ROLW10-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI03.12.1.0.0.0.0.0	5.4	Siret	ROLW12-1_B6	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI03.12.1.53.0.0.0.0	3.2	Bistrita	ROLW12-1-53_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI03.5.1.0.0.0.0	5.3	Bega	RORW5-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
RO	ROHAI03.5.2.0.0.0.0	3	Timis	RORW5-2_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI03.7.1.0.0.0.0	2.9	Jiu	ROLW7-1_B26	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI03.8.1.0.0.0.0	84.2	Olt	ROLW8-1_B9	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI04.10.1.0.0.0.0.0	7.8	Arges	ROLW10-1_B4	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI04.12.1.0.0.0.0.0	13.8	Siret	ROLW12-1_B6	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI04.12.1.53.0.0.0.0	2.1	Bistrita	ROLW12-1-53_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI04.3.1.44.33.0.0.0	2.3	Barcau	ROLW3-1-44-33_B4	HMWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI04.5.1.0.0.0.0	8.4	Bega	RORW5-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI04.7.1.0.0.0.0	8.1	Jiu	ROLW7-1_B56	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI04.8.1.0.0.0.0.0	111.5	Olt	ROLW8-1_B10	HMWB	Yes	Already implemented by 2021	No
RO	ROHAI05.10.1.0.0.0.0	5.5	Arges	ROLW10-1_B5	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI05.11.1.0.0.0.0.0	2.4	Ialomita	ROLW11-1_B2	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI05.12.1.0.0.0.0	15.8	Siret	ROLW12-1_B6	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI05.5.1.0.0.0.0	14.6	Bega	RORW5-1_B4	AWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI05.7.1.0.0.0.0	3.6	Jiu	ROLW7-1_B120	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI05.8.1.0.0.0.0	29.3	Olt	ROLW8-1_B11	HMWB	Yes	Already implemented by 2021	No
RO	ROHAI06.10.1.0.0.0.0.0	6.9	Arges	RORW10-1_B4A	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI06.11.1.0.0.0.0.0	13.6	Ialomita	ROLW11-1_B3	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI06.12.1.0.0.0.0.0	7.7	Siret	ROLW12-1_B8	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI06.12.1.53.0.0.0.0	2	Bistrita	ROLW12-1-53_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI06.5.1.0.0.0.0	15.1	Bega	RORW5-1_B4	AWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI07.10.1.0.0.0.0	11.8	Arges	ROLW10-1_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI07.12.1.0.0.0.0	2	Siret	ROLW12-1_B8	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
RO	ROHAI07.12.1.53.0.0.0.0	4.3	Bistrita	ROLW12-1-53_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI07.5.1.0.0.0.0.0	15.1	Bega	RORW5-1_B4	AWB	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHAI08.12.1.53.0.0.0.0	2.5	Bistrita	ROLW12-1-53_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RO	ROHAI09.12.1.53.0.0.0.0	0.6	Bistrita	ROLW12-1-53_B7	HMWB	Not necessary	Not necessary for achievement of GES/GEP	Yes
RS	RSBEG_ust_Stajicevo	25.3	Begej	RSBEG	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSD_02_ak_DjerdapII	80.3	Dunav	RSD_02	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSD_03_ak_DjerdapI	137.6	Dunav	RSD_03	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSD_04_ak_DjerdapI	43.8	Dunav	RSD_04	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSD_05_ak_DjerdapI	114.1	Dunav	RSD_05	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSD_06_ak_DjerdapI	60.8	Dunav	RSD_06	NWB	Not yet	Not implemented by 2027	No
RS	RSD_07_ak_DjerdapI	63.8	Dunav	RSD_07	NWB	Not yet	Not implemented by 2027	No
RS	RSDR_2_ak_Zvornik	21.3	Drina	RSDR_2	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSDR_4_ak_BBasta	23.6	Drina	RSDR_4	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSIB_5_ak_Gazivode	26.7	Ibar	RSIB_5_B	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSIB_5_ak_Pridvorica	5.2	Ibar	RSIB_5_A	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSLIM_3_ak_Potpec	14	Lim	RSLIM_3	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSNIS_2_ust_Sicevo	2.4	Nišava	RSNIS_2	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSNIS_3_A_ust_Vrgudinac	1.4	Nišava	RSNIS_3_A	NWB	Not yet	Not implemented by 2027	No
RS	RSSA_1_ak_DjerdapI	30.7	Sava	RSSA_1	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTAM_1_ust_Pancevo	42.3	Tamiš	RSTAM_1	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTAM_2_ust_Opovo	43.9	Tamiš	RSTAM_2	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTAM_3_ust_Tomasevac	12.5	Tamiš	RSTAM_3	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTAM_4_ust_Tomasevac	11.1	Tamiš	RSTAM_4	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTAM_5_ust_Tomasevac	13.2	Tamiš	RSTAM_5	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTIM_3_ak_Sokolovica	6.4	Timok	RSTIM_3	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTIS_1_ak_Djerdap_I	41.1	Tisa	RSTIS_1	NWB	Not yet	Not implemented by 2027	No
RS	RSTIS_2_ak_Djerdap_I	26	Tisa	RSTIS_2	NWB	Not yet	Not implemented by 2027	No

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
RS	RSTIS_3_ak_Novi_Becej	25.2	Tisa	RSTIS_3	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTIS_4_ak_Novi_Becej	22.5	Tisa	RSTIS_4	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSTIS_5_ak_Novi_Becej	54.6	Tisa	RSTIS_5	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSVMOR_1_ak_Djerdap_I	22.3	Velika Morava	RSVMOR_1	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSZMOR_2_C_ak_Parmenac	2	Zapadna Morava	RSZMOR_2_C	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSZMOR_3_A_ak_Parmenac	3.2	Zapadna Morava	RSZMOR_3_A	NWB	Not yet	Not implemented by 2027	No
RS	RSZMOR_3_B_ak_Medjuvrsje	11.8	Zapadna Morava	RSZMOR_3_B	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSZMOR_3_C_ak_Ovcar_Banja	4.2	Zapadna Morava	RSZMOR_3_C	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSZMOR_3_D_ak_Ovcar_Banja	1.7	Zapadna Morava	RSZMOR_3_D	HMWB	Not yet	Not implemented by 2027	Yes
RS	RSZMOR_3_E_ak_Ovcar_Banja	3	Zapadna Morava	RSZMOR_3_E	HMWB	Not yet	Not implemented by 2027	Yes
SI	SI01	16.5	Sava	SI1VT739	NWB	Not yet	Implemented by 2027	No
SI	SI02	4.3	Drava	SI3VT197	HMWB	Not yet	Implemented by 2027	Yes
SI	SI03	65.2	Drava	SI3VT359	HMWB	Not yet	Implemented by 2027	Yes
SI	SI04	5.4	Drava	SI3VT5172	HMWB	Not yet	Implemented by 2027	Yes
SI	SI05	13.2	Sava	SI1VT170	HMWB	Not yet	Implemented by 2027	Yes
SI	SI06	10.6	Sava	SI111VT7	HMWB	Not yet	Implemented by 2027	Yes
SI	SI07	2.9	Drava	SI3VT950	HMWB	Not yet	Implemented by 2027	Yes
SI	SI08	16.9	Sava	SI1VT713	HMWB	Not yet	Implemented by 2027	Yes
SI	SI09	22.3	Sava	SI1VT913	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
SK	SKBIMP004	1.2	Laborec	SKB0142	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKBIMP005	1.6	Laborec	SKB0144	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKDIMP001	17.4	Dunaj	SKD0017	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKHIMP001	1.4	Hornád	SKH0003	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKHIMP002	20	Hornád	SKH1001	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKHIMP003	2.6	Hornád	SKH1001	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKHIMP004	1.2	Hornád	SKH0004	NWB	Not yet	Not implemented by 2027	Yet to be determined

Country	Impoundment code	Length in km	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
SK	SKIIMP001	3.7	Ipeľ	SKI1001	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP002	3.2	Ipel'	SKI0136	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP003	6.5	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP004	5.8	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP005	6	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP006	9.1	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP007	9.1	Ipel'	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP008	6.2	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKIIMP009	7	Ipeľ	SKI0004	NWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKNIMP001	4	Nitra	SKN0004	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKNIMP002	6.3	Nitra	SKN0004	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKNIMP003	7.1	Nitra	SKN0004	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKNIMP004	12.2	Nitra	SKN0004	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKRIMP001	4	Hron	SKR0223	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKRIMP002	4	Hron	SKR0223	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKRIMP003	2.5	Hron	SKR0223	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP001	8.4	Váh	SKV1001	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP002	2.8	Váh	SKV1001	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP003	3.7	Váh	SKV0006	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP004	7.3	Váh	SKV0007	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP005	10	Váh	SKV0007	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP006	10	Váh	SKV0473	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP007	7.6	Váh	SKV0473	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP008	4.4	Váh	SKV0474	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP009	5.9	Váh	SKV1002	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP010	11.8	Váh	SKV1003	HMWB	Not yet	Not implemented by 2027	Yet to be determined
SK	SKVIMP011	19.2	Váh	SKV0027	HMWB	Not yet	Not implemented by 2027	Yet to be determined

List of water abstractions

Country	Abstraction Code	River	RWB Code	RWB Type	First Usage	Second Usage	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT06EB8028-A7E3-4F5B- A920-15B2EFDD7D2E	Salzach	ATOK304690006	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT06EB8028-A7E3-4F5B- A920-15B2EFDD7D2E	Salzach	ATOK304690078	NWB	Hydropower	n.a.	Yes		Unknown
AT	AT0AB9EDFF-404F-498F- 80D8-504F528C45FB	Traun	ATOK412090042	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT0F3C8D0E-F6C0-48E7- 9121-BC6576662A00	Raab	ATOK1001040108	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT1D1260CB-15C1-438A- 9A16-B37DDCD66E24	Traun	ATOK411980001	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT1E7771E1-9C03-4D68- 9A81-463E9C16AB66	Traun	ATOK412090042	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT210C0543-5FA2-425D- 89F7-944B08AE0546	Thaya	ATOK500010036	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT2D692767-E219-4A25- B4B9-29A26AB1B206	Salzach	ATOK304690001	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT2D692767-E219-4A25- B4B9-29A26AB1B206	Salzach	ATOK305360001	NWB	Hydropower	n.a.	Yes		Unknown
AT	AT2D692767-E219-4A25- B4B9-29A26AB1B206	Salzach	ATOK305360002	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT322DAF04-E753-4C01- A5C3-DC36B4AF434C	Traun	ATOK411980002	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT3D8F9DEE-FF83-485D- A8EF-6D92498994DD	Raab	ATOK1000960015	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT3D8F9DEE-FF83-485D- A8EF-6D92498994DD	Raab	ATOK1002160000	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT3ECEA338-4F58-4D78- 8FAA-6A0B7E230148	Mur	ATOK801180007	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT4681E59B-3FCA-4FB6- 938D-3816DD36381D	Mur	ATOK801180008	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT5C52E50D-0BE5-4E46- 8839-290796D62D98	Mur	ATOK802710002	HMWB	Hydropower	n.a.	Yes		Unknown
AT	AT5F55A0AC-BFFD-4081- A3B5-0B16D0B1D410	Thaya	ATOK500010031	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT666C624A-7D7A-4977- A036-0ACEC99AC028	Raab	ATOK1000960019	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT66ABB6F1-8A37-4561- 9064-349C1296F905	Thaya	ATOK500010043	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT66E57869-61DE-4065- A65B-2F4E147BB163	Enns	ATOK411250012	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT7E04FA14-BEBB-4CC8- 82D1-B8DF57F1EBE0	Mur	ATOK802720005	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown

Country	Abstraction Code	River	RWB Code	RWB Type	First Usage	Second Usage	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT818D6271-2013-4839- 9E00-C30F7FE3222D	Mur	ATOK802710008	HMWB	Hydropower	n.a.	Yes		Unknown
AT	AT818D6271-2013-4839- 9E00-C30F7FE3222D	Mur	ATOK802710009	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT851F483C-CDD7-457C- 84FA-91B640F642AE	Raab	ATOK1000960020	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT891ECA8B-38DE-4DC8- 996F-30C4DEA06FA3	Traun	ATOK412090013	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT891ECA8B-38DE-4DC8- 996F-30C4DEA06FA3	Traun	ATOK412090028	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT891ECA8B-38DE-4DC8- 996F-30C4DEA06FA3	Traun	ATOK412090027	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT8C9DA7BE-7DD1-487D- 840A-6CF6FFE48587	Mur	ATOK802710002	HMWB	Hydropower	n.a.	Yes		Unknown
AT	AT8E083EAC-3F3F-4A15- 9D72-847DCC40118F	Thaya	ATOK500010043	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT91CE1EA9-0115-44EC- A8A2-1F20F2AB33AF	Drau	ATOK903540003	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	AT939AC56B-6905-4642- A6A1-E0609E01A2FB	Thaya	ATOK500010030	HMWB	Agriculture, forestry and fishing (including fish farms) canals	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATA45174B7-EF7C-4AB5- 85AB-CD98709307E4	Mur	ATOK802720006	NWB	Hydropower	n.a.	Yes		Unknown
AT	ATA45174B7-EF7C-4AB5- 85AB-CD98709307E4	Mur	ATOK802720005	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATB55059DD-D0C9-49C6- 8C48-45B91ADC4447	Raab	ATOK1000960019	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATC818BA23-4A0F-47A9- 85E1-634A52E4C3BC	Mur	ATOK802720005	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATC82ABC5F-3C15-4EAA- AD38-57776D2026CA	Enns	ATOK411250012	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATE5B35378-1B1E-4E81- 9853-0EC5D50FA179	Traun	ATOK411980001	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATEDEE2554-FB4A-4EC0- B69A-F0FE148DC5D4	Mur	ATOK802710009	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATFA53BF52-77F1-4F3F- 892C-E67F772A40D1	Mur	ATOK802710009	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
AT	ATFDCD0C6C-76AC-4870- BD83-8D354E0CD5FA	Enns	ATOK411250012	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBW_WA_6-01	Donau	DERW_DEBW_6-01	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	No
DE	DEBW_WA_6-02	Donau	DERW_DEBW_6-02	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	No
DE	DEBW_WA_6-03	Donau	DERW_DEBW_6-03	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	No

Country	Abstraction Code	River	RWB Code	RWB Type	First Usage	Second Usage	Restored 2021	Measure 2027	Decisive Impact HMWB
DE	DEBW_WA_6-04	Donau	DERW_DEBW_6-04	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	No
DE	DEBW_WA_6-05	Donau	DERW_DEBW_6-05	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Yes
DE	DEBY_WA_1_F124	Lech	DERW_DEBY_1_F124	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F128	Lech	DERW_DEBY_1_F128	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F132	Lech	DERW_DEBY_1_F132	HMWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F251	Naab	DERW_DEBY_1_F251	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F252	Naab	DERW_DEBY_1_F252	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F253	Naab	DERW_DEBY_1_F253	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F273	Naab	DERW_DEBY_1_F273	NWB	Hydropower	n.a.	Not necessary		Unknown
DE	DEBY_WA_1_F373	Isar	DERW_DEBY_1_F373	NWB	Hydropower	n.a.	Not necessary		Unknown
DE	DEBY_WA_1_F374	Isar	DERW_DEBY_1_F374	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F375	Isar	DERW_DEBY_1_F375	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F402	Isar	DERW_DEBY_1_F402	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F406	Isar	DERW_DEBY_1_F406	NWB	Hydropower	n.a.	Not yet	Implemented by 2027	Unknown
DE	DEBY_WA_1_F430	Isar	DERW_DEBY_1_F430	NWB	Other major abstractions	n.a.	Not yet	Implemented by 2027	Unknown
ME	MEDPHE1abs	Piva	MEPIV_2	HMWB	Hydropower	n.a.	Not yet	Not implemented by 2027	Yes
RO	ROHA01.3.1.44_B2	Crisul Repede	RORW3-1-44_B2	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHA01.8.1.0.0.0.0.0	Olt	RORW8-1_B2	HMWB	Public water supply	n.a.	Yes		No
RO	ROHA02.10.1.0.0.0.0.0	Arges	RORW10-1_B2	HMWB	Hydropower	n.a.	Not yet	Not implemented by 2027	Yes
RO	ROHA02.3.1.44_B4	Crisul Repede	RORW3-1-44_B4	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHA03.10.1.0.0.0.0.0	Arges	ROLW10-1_B2	HMWB	Hydropower	Public water supply	Not necessary		No
RO	ROHA03.3.1.44_B6	Crisul Repede	RORW3-1-44_B6	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No
RO	ROHA04.10.1.0.0.0.0.0	Arges	ROLW10-1_B3	HMWB	Hydropower	Public water supply	Not necessary		No
RO	ROHA05.10.1.0.0.0.0	Arges	ROLW10-1_B4	HMWB	Hydropower	Manufacturing industry	Not necessary		No
SI	SI1	Drava	SI3VT930	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No

Country	Abstraction Code	River	RWB Code	RWB Type	First Usage	Second Usage	Restored 2021	Measure 2027	Decisive Impact HMWB
SI	SI2	Drava	SI3VT5171	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No
SI	SI3	Sava	SI1VT137	NWB	Hydropower	n.a.	Not necessary	Not necessary for achievement of GES/GEP	No
SK	SKABSTR001	Váh	SKV0006	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR002	Váh	SKV0007	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR003	Váh	SKV0007	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR004	Váh	SKV0007	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR005	Váh	SKV0007	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR006	Váh	SKV0007	HMWB	Hydropower	Other major abstractions	Not necessary		No
SK	SKABSTR007	Váh	SKV1002	HMWB (lake)	Hydropower	Other major abstractions	Not necessary		No

List of hydropeaking

Country	Hydropeaking Code	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT011AECA1-204F-4D5F-8178-C8F6F41B0DBC	Inn	ATOK304980003	HMWB	Yes		Unknown
AT	AT011AECA1-204F-4D5F-8178-C8F6F41B0DBC	Inn	ATOK304980006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT011AECA1-204F-4D5F-8178-C8F6F41B0DBC	Inn	ATOK304980005	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT020660C3-038E-4F23-97C1-94DAFE80974E	Drau	ATOK903540002	NWB	Yes		Unknown
AT	AT020660C3-038E-4F23-97C1-94DAFE80974E	Drau	ATOK903540001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT04ABC100-3A62-446C-B484-EBD6B156CADD	Salzach	ATOK305350003	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT04ABC100-3A62-446C-B484-EBD6B156CADD	Salzach	ATOK305350006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT1DD1537A-7A9B-4283-8CDB-8EEB237FAA42	Inn	ATOK307210001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT1DD1537A-7A9B-4283-8CDB-8EEB237FAA42	Inn	ATOK305850010	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT206BB26C-3B35-44E2-AB47-151927231040	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT211C7D8D-B8AA-4F8D-B1A6-5569C9695131	Raab	ATOK1002160000	NWB	Not yet	Implemented by 2027	Unknown
AT	AT211C7D8D-B8AA-4F8D-B1A6-5569C9695131	Raab	ATOK1001040109	NWB	Not yet	Implemented by 2027	Unknown
AT	AT211C7D8D-B8AA-4F8D-B1A6-5569C9695131	Raab	ATOK1001040108	NWB	Not yet	Implemented by 2027	Unknown
AT	AT2237FAC0-F3C6-4D7A-B4E3-911E39E3BBD7	Inn	ATOK304980010	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT2237FAC0-F3C6-4D7A-B4E3-911E39E3BBD7	Inn	ATOK304980009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT3387C1C0-3EB4-48AF-90E5-1BB0EBE5C01F	Thaya	ATOK501870001	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT46C46D07-C510-4567-B38C-40135A49DF62	Lech	ATOK307080000	NWB	Yes		Unknown
AT	AT4A153931-2560-4F9B-BE34-7FC49A47FC28	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT58F7DB2C-6D47-47AE-9BC7-61F4141E31DA	Inn	ATOK304980006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT58F7DB2C-6D47-47AE-9BC7-61F4141E31DA	Inn	ATOK304980009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT5AA1D134-6A23-463A-876C-2D2573DC9735	Inn	ATOK305850011	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT687026EF-6390-4F64-B317-11657D86D032	Salzach	ATOK305350006	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7AF7C89D-361A-464B-9A41-39B47659C7F4	Inn	ATOK304980009	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT7B9B2D7E-7D97-4F51-882B-D4E385B9702C	Drau	ATOK900470021	NWB	Not yet	Implemented by 2027	Unknown
AT	AT7B9B2D7E-7D97-4F51-882B-D4E385B9702C	Drau	ATOK900470022	HMWB	Not yet	Implemented by 2027	Unknown
AT	AT86D2B40B-52E5-4C1A-B7BF-7FE7C1043BC7	Salzach	ATOK304690004	HMWB	Not yet	Implemented by 2027	Unknown

Country	Hydropeaking Code	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT86D2B40B-52E5-4C1A-B7BF-7FE7C1043BC7	Salzach	ATOK304690005	NWB	Yes		Unknown
AT	ATA5F03313-E588-4711-98C0-D72340D09E3A	Enns	ATOK400240092	NWB	Not yet	Implemented by 2027	Unknown
AT	ATA5F03313-E588-4711-98C0-D72340D09E3A	Enns	ATOK411250010	NWB	Not yet	Implemented by 2027	Unknown
AT	ATA5F03313-E588-4711-98C0-D72340D09E3A	Enns	ATOK409970000	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA6CEB206-B169-4073-AF7F-F6DD28C6D082	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA7116E17-266B-4FDD-AE35-3130DB06EA55	Enns	ATOK411250021	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATA7116E17-266B-4FDD-AE35-3130DB06EA55	Enns	ATOK411250020	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB2EE16C5-FA4E-412D-A347-DD95DBE2FF47	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB2EE16C5-FA4E-412D-A347-DD95DBE2FF47	Salzach	ATOK305350002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATB2EE16C5-FA4E-412D-A347-DD95DBE2FF47	Salzach	ATOK305350003	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB95E7EE8-A2E6-4160-8A30-5A1D5E29EE39	Salzach	ATOK305350003	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB95E7EE8-A2E6-4160-8A30-5A1D5E29EE39	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB95E7EE8-A2E6-4160-8A30-5A1D5E29EE39	Salzach	ATOK305350006	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB95E7EE8-A2E6-4160-8A30-5A1D5E29EE39	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATB95E7EE8-A2E6-4160-8A30-5A1D5E29EE39	Salzach	ATOK305350002	NWB	Not yet	Implemented by 2027	Unknown
AT	ATD49938BB-DB9B-4429-9E08-5498116ACB54	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATD49938BB-DB9B-4429-9E08-5498116ACB54	Salzach	ATOK305360002	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE8E67B4A-C6D6-4B4C-AE6C-C637BDA3F9BA	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATE99B6E17-B7CE-4EEC-B732-ECDD2E79FFDE	Drau	ATOK903540003	NWB	Not yet	Implemented by 2027	Unknown
AT	ATFC098661-D3EC-4478-8129-EA99C9B7F82E	Salzach	ATOK305350001	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATFC8D1ACB-054E-4661-84B9-44F99DC4E155	Inn	ATOK305850011	HMWB	Not yet	Implemented by 2027	Unknown
AT	ATFF65EE0D-5B75-4AC6-AD22-96CBF26A8BC8	Mur	ATOK801180006	NWB	Yes		Unknown
AT	ATFF65EE0D-5B75-4AC6-AD22-96CBF26A8BC8	Mur	ATOK801180004	NWB	Yes		Unknown
AT	ATFF65EE0D-5B75-4AC6-AD22-96CBF26A8BC8	Mur	ATOK801180005	NWB	Yes		Unknown
DE	DEBY_HP_1_F122	Lech	DERW_DEBY_1_F122	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_HP_1_F124	Lech	DERW_DEBY_1_F124	HMWB	Yes		Unknown
DE	DEBY_HP_1_F125	Lech	DERW_DEBY_1_F125	NWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_HP_1_F128	Lech	DERW_DEBY_1_F128	HMWB	Not yet	Implemented by 2027	Unknown

Country	Hydropeaking Code	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
DE	DEBY_HP_1_F130	Lech	DERW_DEBY_1_F130	NWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_HP_1_F131	Lech	DERW_DEBY_1_F131	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_HP_1_F132	Lech	DERW_DEBY_1_F132	HMWB	Not yet	Implemented by 2027	Unknown
DE	DEBY_HP_1_F163	Donau	DERW_DEBY_1_F163	HMWB	Yes		Unknown
DE	DEBY_HP_1_F429	Isar	DERW_DEBY_1_F429	HMWB	Not yet	Implemented by 2027	Unknown
HR	HRTABHPEAK00001	Drava	HRCDRI0002_010	HMWB	Not yet	Implemented by 2027	No
HR	HRTABHPEAK00001	Drava	HRCDRI0002_012	NWB	Not yet	Not necessary for achievement of GES/GEP	No
HR	HRTABHPEAK00001	Drava	HRCDRN0002_011	HMWB	Not yet	Implemented by 2027	No
HR	HRTABHPEAK00001	Drava	HRCDRN0002_013	NWB	Not yet	Not necessary for achievement of GES/GEP	No
HU	HUDrava	Dráva	HUAEP439	HMWB	Not yet	Not implemented by 2027	Yes
HU	HUSebesKoros	Sebes-Körös	HUAEP953	HMWB	Not yet	Not implemented by 2027	Yes
ME	MEDPHE1p	Piva	MEPIV_2	HMWB	Not yet	Not implemented by 2027	Yes
SI	SI_HE1	Sava	SIIVT137	NWB	Not necessary	Not necessary for achievement of GES/GEP	No
SI	SI_HE2	Sava	SI1VT310	NWB	Not necessary	Not necessary for achievement of GES/GEP	No

HYDROMORPHOLOGICAL LIGHTHOUSE PROJECTS IN THE DANUBE RIVER BASIN DISTRICT (2015-2021)

ANNEX 19

Table of content

1.	Overall c	ontext	3
2.	Overview	of measures	4
3.	Lighthou	se projects	6
	3.1 3.2 3.3 3.4	AT-Traisen: Creation of a meandering river section in the River Traisen AT-Danube: LIFE "Network Danube" and "Network Danube Plus" DE-Isar: Restoration of the ecological continuity in the Upper Isar Valley DE-Danube: Improving a Danube water body in the Upper Danube by – inter alia –	6 9 12
	3.5 3.6 3.7 3.8 3.9 3.10 3.11	removal of bank fixations and creation of gravel banks CZ-Dlouhá řeka/ Morava: Nedakonice water management node CZ-Bečva: Restoration of the Bečva River CZ-Morava: Morphological restoration of the Morava River RO-Somes Mic: Restoration of connectivity in the Somes Mic River HU-Tisza: Measures to improve water retention in Bereg HU-Monsoni-Duna: Measures at Mosoni-Duna estuary section SI-Continuity restoration in the Sava River	15 18 21 23 25 28 31 34
4.	Final rem	narks - Outlook	37
5.	Projects	related to hydromorphology and supported by the ICPDR	38

1. Overall context

Over the last century, legitimate water uses (hydropower generation, navigation and flood protection as well as activities related to urban settlements or agriculture) significantly changed the habitat and hydrological conditions of surface waters and thus impacted the ecological status and functioning of river systems.

The alteration of natural hydromorphological conditions can have negative effects on aquatic populations. Based on increased knowledge on hydromorphological alterations and their relevance for the achievement of the environmental objectives, measures have to be taken to restore natural or near-natural conditions. Measures to improve the hydromorphological conditions aiming at improved water status and increasing habitat diversity include

- Hydrological measures (e.g. increase of residual flow, dampening of hydropeaking),
- Restoration of river continuity for fish and sediment (e.g. construction of fish migration aids, improvement of sediment transport),
- Morphological improvements (e.g. removal of bank fixation, reconnection of floodplains).

During the last water management planning cycle (2015-2021), a significant number of appropriate hydromorphological measures were identified, many of them only started or already implemented by Danube countries. Table 1 shows, that most measures are related to the restoration of river morphology and continuity for fish, but also hydrological measures were implemented.

Table 1: Number of hydromorphological measures and their implementation status

	Planning on-going	Implementation on-going	Completed
Hydrological improvements	14	5	10
Restoration of river continuity	21	6	26
Morphological improvements	14	22	29

* for more details, see Annex 15 of the DRBMP Update 2021

To highlight the importance of hydromorphological measures, this brochure presents some lighthouse projects in the Danube River Basin District that were started or implemented since 2015.

2. Overview of measures

Overall, ten measures were reported by Danube countries. Their location within the Danube catchment is shown in Figure 1.

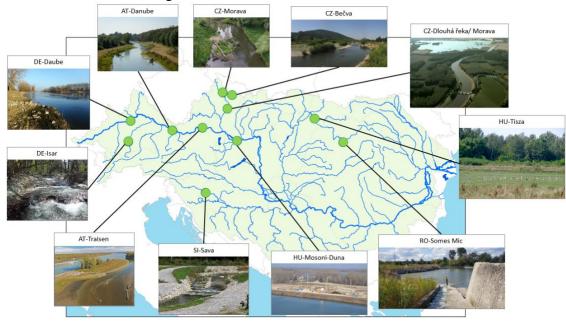


Figure 1: Overview map of hydromorphological measures in the Danube catchment

The main driving forces reported for the eleven lighthouse projects are hydropower (5 cases), flood protection (7 cases) as well as irrigation, land use and navigation (2 cases each). For five locations, several driving forces were reported, while six locations are dominantly changed by one driving force.

At most sites (i.e. 8) measures which serve the restoration of more than one hydromorphological impact type (i.e. related to hydrology, morphology, connectivity) are implemented. The here presented sites provide examples for restoration of river morphology and the riparian zone (7 sites), and/or floodplain areas (8 sites), connectivity for fish (7 sites) and sediment (3 sites). Furthermore, four sites provide examples for hydrological restorations, e.g. by improvement of water retention and flow variability.

Term used	Hydrology	Connectivity ¹	Morphology ²	Benefitting directives	Status
AT-Danube		F	R, F	WFD, Habitats-D, Birds-D	Partly finished (2019, 2023)
AT-Traisen		F	R, F	WFD, Habitats-D, Birds-D	Finished (2019)
CZ-Becva		S	R ,F	WFD	Ongoing
CZ-Dhoulá reka	Х	F	R, F	WFD, Habitats-D	Finished (2021)
CZ-Morava	Х	F, S	R, F	WFD, Habitats-D, Birds-D	Finished
DE-Danube		F	R, F	WFD, Habitats-D	Finished (2018, 2019)
DE-Isar		F, S		WFD, Habitats-D	Finished (2018)
HU-Tisza	Х		R, F	WFD, Habitats-D	Finished (2019)
HU-Monsoni-Duna	Х		F	WFD, Floods-D	Finished (2021)
RO-Somes Mic		F		WFD, Habitats-D	Finished (2017)
SI-Sava		F	R, F	WFD, Habitats-D	Finished (2017)

Tat	ole 2	: 0	verv	iew o	fł	۱yc	Irom	orp	ho	logi	ical	measu	res
-----	-------	-----	------	-------	----	-----	------	-----	----	------	------	-------	-----

1) Measures for fish (F) and/or sediment (S); 2) Measures for river/riparian (R) and/or floodplain areas (F)

Nine out of the eleven sites report that the planned or performed measures serve more than one directive (see Table 2). While all restoration measures serve the fulfilment of the European Water Framework Directive (WFD), nine are expected to bring benefits for the Habitats Directive (Habitats-D) and three for the Birds Directive (Birds-D). One is reported to be

beneficial for the Floods Directive (Floods-D). Those projects are thus also highlighting the importance of implementation of synergetic measures that are bringing achievement of different goals related to water management.

Nine lighthouse projects are already finished or expected to be finished by the end of 2021, while one is still ongoing. Another example (AT-Danube) comprises of two projects of which one was finished (2019) and one is still ongoing (2023).

Overall, more than 200 mill. were invested in the measures, whereby costs range from $38,000 \in$ to 82 mill. These costs were often shared between EU, national and other funds (6 cases), or rely entirely on EU- (1 case), national- (3 cases) or other funds (1 case).

Monitoring results are available for five cases. The two fish passes in Romania and Slovenia were proven to be functional. In some cases, an improvement of the ecological status (e.g. from moderate to good status at AT-Traisen) or individual quality elements (e.g. from moderate to good fish-ecological status at DE-Danube) was achieved. A preliminary monitoring at AT-Danube also showed promising results with an increase in endemic species and juvenile life-stages. Further improvements area also expected for the remaining lighthouse projects.

The following chapter provides a more detailed description of the individual lighthouse projects.

3. Lighthouse projects

3.1 AT-Traisen: Creation of a meandering river section in the River Traisen

3.1.1 Initial (impacted) situation

The river Traisen is one of the biggest tributaries of the river Danube in Lower Austria. The river stretch runs through the Natura2000 site "Tullnerfelder Donauauen", Austria's largest enclosed wetland. It contains twelve protected habitat types acc. Annex I and 30 protected species acc. Annex II of the Habitats Directive as well as 24 protected bird species acc. Annex I of the Birds Directive.

The Danube floodplains were cut off from the river due to river regulation measures for navigation already in the 19th century. The Danube Hydropower Plant "Altenwörth" was built in the 1970ies and is operated by the VERBUND, Austria's leading electricity company. With a design flow rate of 2,700 m³/s, the run-of-river plant has a standard working capacity 1,967.6 GWh per year. This power plant thus generates about one sixth of the electricity generated on the Austrian Danube.

During the construction of the Danube hydropower plant of Altenwörth, in 1976 the mouth of the river Traisen was relocated about 7.5 km further downstream. The new river course was heavily regulated disconnecting the river from the surrounding riparian forest and supressing aquatic and terrestrial habitats that are usually found in floodplains. This situation led to an unfavourable conservation status for the whole Natura 2000 site. Additionally, the estuary was not passable for fish to migrate from the Danube into the river Traisen. For those reasons the concerned water body of the river Traisen reached only poor ecological status according to the Austrian National River Basin Management Plan 2009.

3.1.2 The measure

During the LIFE+ project a meandering river segment was built with a total length of approx. 10 km, which is allowed to develop dynamically during flood events and provides multiple habitats for aquatic species. The old channelized river course was maintained as backwater and flood drainage. The adjacent area of the Traisen was lowered to create about 60 ha of active floodplain habitats and approximately 30 ha of typical river habitats. Furthermore, the river Traisen was re-connected to the Danube and its fish population.

Figure 2: Construction works in the Traisen-area ©Verbund

Figure 3: Restored section of the Traisen River, next to the Danube River (upper right) ©Verbund

The large-scale excavations during the construction of the riverbed and its adjacent floodplain resulted in a material surplus of approx. 1.5 mill. m³, which was partly reintroduced downstream the Danube hydro power plant "Wien-Freudenau" to counteract riverbed incision.

The project has started in 2013 and the overall measure was finished in 2019. The costs of 30 mill. \in were split between EU (5.3 mill. \in , provided by LIFE funds), the national Environment Fund (3.3 mill. \in), VERBUND as the operator of the hydropower plant (15 mill. \in), regional funds (1.9 mill. \in ; Federal State Lower Austria, Fishery Association of Lower Austria, viadonau) and revenue from the excavated and sold gravel (4.5 mill. \in).

3.1.3 Conclusion

The LIFE+ project "Traisen" is one of the largest ecological river engineering projects in Austria and in Europe and could only be realized through close cooperation of all project partners.

Figure 4: Restored river section of the river Traisen ©Verbund

Monitoring of the fish biocenosis was carried out during and after finalization (i.e. in 2014, 2016 and 2017). Focus of the monitoring was also laid on the assessment of juvenile fish, of spawning grounds and on temperature changes. Results show an increase from 20 to 33 species. While the old channel of the river Traisen did not provide suitable spawning- and rearing habitats, a high density of juvenile fish of various species were found in the new channel. The re-opening of the continuum to the Danube has directly led to an increase and reproduction of typical Danubian fish species. To sum up, the monitoring showed an increase in the number of species, an improvement in population structures due to higher reproduction rates and an increase in population density. The assessment reveals an improvement of the fish ecological status from moderate (status class 3) in 2014 to good status (status class 2) in 2017. Furthermore, the "good ecological potential" was achieved in the adjacent water body of river Danube.

The approach of providing both – fish migration and high-quality key habitats – ensures a significant contribution to the goals of the Habitats Directive, the Bird Directive, as well as the WFD, thus implementing EU legislation with the aim of best value for money.

3.2 AT-Danube: LIFE "Network Danube" and "Network Danube Plus"

3.2.1 Initial (impacted) situation

The Austrian share of the Danube has a length of 352 km. VERBUND, Austria's leading electricity company, is operating ten large run-of-river hydropower plants along the Austrian Danube which generate about 20% of the public electricity production in Austria

Large sections of the course of the Austrian Danube have been shaped by river regulation and damming measures already in the 19th century. The development of the Danube for hydroelectric power in the 20th century has additionally reshaped about 80% of its course. The ten existing hydropower plants have a significant ecological impact on the Danube river and its floodplains. They cause long stretches with reduced flow velocity and the dams have fragmented the river into environmentally disconnected sections. Moreover, the floodplains and floodplain water bodies along the river are for the most part cut off from the Danube by dams. In the Danube and its floodplains, the key habitat of permanently connected side arms, which provide spawning grounds and nurseries for rheophilic fish species and shelter from ship-induced waves, is missing. As a result of these alterations, the good ecological status/ potential is currently not reached in most of the Austrian waterbodies of the Danube.

3.2.2 The measure

Along the Austrian Danube there are several Natura 2000 protected areas and a National Park. The Natura 2000 area "Tullnerfelder Donau-Auen", Austria's largest enclosed wetland, contains 42 species protected under the EUs Birds Directive and Annex II of the Habitats Directive. The National Park "Donau-Auen" in the most eastern section of the Austrian Danube with an extent of over 9,600 ha is the largest complete, (near) ecologically intact natural riverine environment of its kind in Central Europe and provides home and refuge to many endangered plant and animal species.

Figure 5: Continuity restoration in the area of Abwinden-Asten ©Verbund

These areas are not ecologically connected due to the existing hydropower dams and flood protection measures. By restoring the continuity of the river and creating new habitats in the

river and its floodplains, the protected areas can be interconnected by a network of ecological stepping stones.

The two EU-funded projects "Network Danube" and "Network Danube Plus" aim for the restoration of connectivity and habitat improvements in the whole Danube upstream Vienna to the border with Germany. Thereby, they pursue objectives related to the WFD as well as the Habitats and the Birds directive.

Figure 6: Bypass channel at Ottensheim-Wilhering ("LIFE Network Danube") ©Verbund

The first project "LIFE Network Danube" started in 2011 and was finished in 2019. The following measures were successfully implemented:

- Construction of bypass channels at three hydropower dams to facilitate fish migration in the Danube
- Creation of gravel habitats (gravel banks, gravel islands) in the reservoirs of five hydro power plants on the Danube entailing 325,000 m³ of gravel; and
- Creation of 500 m of branches and side arms on the shores of the Danube.

The project is co-funded by the EU LIFE Programme. The total costs of the measure were 25.3 mill. Euro, whereby 4.3 mill. were funded by EU, 3.8 mill. by national funds, 16.7 mill. by VERBUND and 0.5 mill. by the Fishery Associations of Lower and Upper Austria.

The second project "LIFE Network Danube Plus: Closing the gaps and promoting a river corridor system with an European perspective" started in 2019 and is scheduled until 2023. The main aims of the projects are the following:

- Restoring the passability of the Danube for all fish species: In addition to the _ construction of fish migration facilities at three Danube power plants, feasibility studies on restoring the continuity are being carried out for the two remaining non-passable dams in the Austrian Danube. By the end of the project, unhindered fish migration will be possible between the Iron Gates gorge in Serbia and the Ybbs-Persenbeug hydropower plant in Austria (over 1,100 km) including the two last free-flowing stretches of the Austrian Danube;
- Creation of habitats by building gravel structures and lateral re-connection with tributaries
- Interlinking Natura 2000 sites (stepping stone biotopes between protected areas)

- Strengthening of fish populations also in the Danube floodplains and tributaries
- Closing the gaps between already implemented LIFE-Projects in Lower Austria
- Strengthening and appreciating the positive impacts of former ecological projects (e.g. the project Life-Traisen)

The project is co-funded by the EU LIFE Programme and the total costs are expected to be 10.1 mill. Euro, whereby 4.2 mill. will be funded from EU, 0.9 mill. from national funds, 4.9 mill. from VERBUND and 0.1 mill. from the Fishery Association of Lower Austria.

3.2.3 Conclusion

For the fish passes Ottensheim and Greifenstein interim results of the monitoring are available showing very good results. In Greifenstein 46 out of 58 endemic species could be evidenced. Furthermore, all stages of age were observed. Using pit-tags long-term monitoring is possible. With the upcoming fish passes and their monitoring more fish will be marked and can give new inputs on the topic of far-distance migration of fish.

Figure 7: Fish pass Greifenstein ©Verbund

The projects "LIFE Network Danube" and "LIFE Network Danube Plus" are demonstrating the suitability of a targeted stepwise approach for achieving the goals of the Habitats and Birds directives and the EU Water Framework Directive on a large spatial scale. The two projects complement each other with interlinking sets of measures and thus are multiplying the overall benefits of each individual project. Additionally, the measures to improve the river's continuity enhance the positive effects of other renaturation projects. By re-connecting habitats in the Danube and its tributaries the biodiversity and the ecological status in the Danube itself as well as in its floodplains can be improved.

3.3 DE-Isar: Restoration of the ecological continuity in the Upper Isar Valley

3.3.1 Initial (impacted) situation

Due to river construction works in the river Isar for infrastructure protection (flood protection and agricultural land use) erosion caused a continuity interruption between the Isar and its tributary Aumühlbach. Important spawning areas and habitats for juvenile fish could not be reached and thus, the waterbody failed to achieve the good ecological status (in particular for fish).

3.3.2 The measure

In order to re-established the ecological continuity for biota (e.g. European grayling, barbal, nase) a structured ramp was established. It includes ten pools with a length of 4.3 m, which are connected by slots of 0.45 m in width and 0.52 m in height to overcome a fall height of 0.15 m each. As a consequence, important refuges and habitats in the near-natural tributary are once more accessible. The functionality of the structure for fish migration was ensured for a wide range of flow situations.

The measure was finished in March 2018. The overall costs of 90,000€ were covered by national funds.

Figure 8: Construction of the measure

Figure 9: View in upstream direction

3.3.3 Conclusion

The measure is expected to have a positive effect on the fish fauna in the Isar, which showed only a moderate ecological status with regard to its fish fauna before the measure was implemented. The success of the measure will be visible in the Isar in the medium term.

This measure is part of a bundle of measures that support and promote the development of a natural, species-rich and diverse fish community in order to achieve the good ecological potential/ status in the Isar by 2021.

From a nature conservation perspective, the measures are also suitable to support the conservation goals for the protected area (habitats directive) "Oberes Isartal" (Upper Isar Valley). Consequently, the measure supports the achievement of both, the WFD and the Habitats directive.

Figure 10: Finished bypass

3.4 DE-Danube: Improving a Danube water body in the Upper Danube by – inter alia – removal of bank fixations and creation of gravel banks

3.4.1 Initial (impacted) situation

One main reason for not achieving good status in the Danube between Vohburg and Staubing is a severe hydromorphological alteration of this water body at a length of about 20 km.

2015, the ecological status was "moderate", because of the assessment of invertebrates und macrophytes/phytoplankton. An additional problem is caused by invasive species, which benefit from the bank protection with (armour-)stones.

3.4.2 The measure

In order to improve the ecological status of the river body and to ensure that a good ecological status could be maintained for the future, a comprehensive programme of measures for this river stretch was set up.

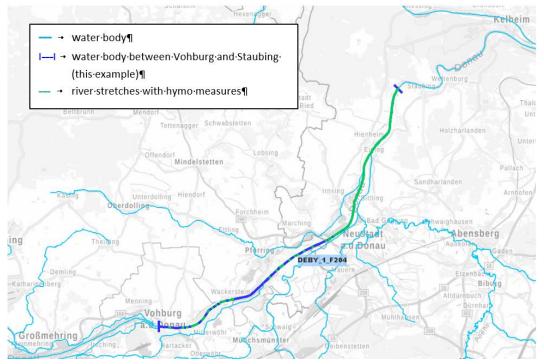


Figure 11: Overview map - location of water body and hydromorphological measures

The complete hydromorphological measures for this river stretch includes the following activities:

1. Structural measures to promote natural retention (~3.8 km)

The natural water retention in the Danube floodplain increases by removing riparian deposits along the riverbank. This was already done on a large scale during the last years and will be continued. In addition, a flood storage basin is to be reactivated by the removal of riparian land and artificial bank protection.

2. Removal/ reduction of bank reinforcement (15 locations, approx. 14 km)

The massive bank protection on the Danube is to be partially or completely removed in areas where it is not indispensable for the protection of settlements, bridges, roads and flood protection facilities.

3. Inserting structural elements in the existing water profile (11 locations, 11.6 km)

Armourstones that are left over from the removal of the bank protection can partly be placed in the river profile. Short groynes (up to about mean water level) increase the variety of currents

in the Danube and promote bank erosion, flow diversity and morphological development in adjacent downstream areas.

4. Creating and redesigning gravel banks

One additional gravel bank is to be created through the introduction of gravel around armourstones. Two existing gravel banks will be redesigned in order to create new spawning habitats for characteristic Danube fish species.

5. Developing floodplain habitats

The development of an approx. 900 m long and 50 - 80 m wide strip with typical floodplain habitats (succession areas, grassland, wet areas) and the development of alluvial forest areas on former intensively used meadows on a stretch of approx. 1.3 km is to be realised.

6. Recreating alluvial waters (5 locations, approx. 3.5 km)

In order to be able to develop a more natural watercourse again, it is planned to divert water from the Danube into new branches to be created at several points. These measures are also intended to improve the habitat conditions for typical fish species.

7. Connecting backwaters

Several backwaters are currently not or not permanently connected to the Danube river. Improvement measures are proposed for four areas.

8. Improving lateral connectivity

The three tributaries to the Danube are not optimally passable for fish, thus the mouth areas will be redesigned. Thereby, the backwaters in the floodplain could also be linked with the Danube. 9. Improving the sediment situation

Due to sediment retention upstream causing a strong bedload deficit, gravel was introduced into the river at two places. It is very likely that sediment input will have to be repeated every 5 to 7 years.

Example for realisation of measures: Creation of a gravel bank for rheophilic fish

A structured gravel bank located in the area of mean flow (~250m long, gradient of ~1:25) was created near the left bank of the Danube for which about 3,000 m³ of Danube gravel were used. A basic structure of hydraulic building blocks serves to stabilize the gravel bank and offers protection against erosion.

The measure was finished in July 2018. The overall costs of $100,000 \in$ were entirely covered by national funds.

Figure 12: Finished gravel bank from aerial view

Since the measure is situated in a protected area (Habitats directive, "Donauauen zwischen Ingolstadt und Weltenburg"), the measure aligns with the WFD and the Habitats directive.

Example for realisation of measures: Removal of bank fixations

The bank fixation of the Danube was removed at approx. 500 m in order to promote the development of structures typical of natural rivers such as bank breaks, backwash and potholes. The lining material was used for creating different groynes. Due to the generous denudation of bank material, a softwood site with high flood dynamics has been created. The measure was finished in November 2018, whereby the overall costs of $60,000 \in$ were entirely covered by national funds.

Figure 13: Removal of the bank fixation

The removal of the bank fixation and the flattening of the steep bank sections also improves access to the Danube and makes the river more tangible for the population.

Since the measure is situated in the protected area (Habitats directive): "Donauauen zwischen Ingolstadt und Weltenburg" (Danube floodplain between Ingolstadt and Weltenburg) the measure aligns with the WFD and the Habitats directive.

3.4.3 Conclusion

The habitat conditions in the river have improved and will further improve as measures are implemented step-by-step. Measure implementation will continue during the next management cycle as well as monitoring of the progress of status improvement. Until now, inter alia, spawning grounds for typical Danube fish species have been created and the floodplain has been reconnected to the river. This is vital for typical Danube fish species. The quality element "fish fauna" has already reached "good status", invertebrates are still "moderate".

We expect that the water body will be in good ecological status in the medium term, as the ecosystem needs some time to establish a new "good" equilibrium.

3.5 CZ-Dlouhá řeka/ Morava: Nedakonice water management node

3.5.1 Initial (impacted) situation

Nedakonice water management junction was created in connection with the navigation of the Morava River in the first half of the last century. A weir with a navigation lock was placed in the newly created river channel. By this solution a big part of the original Morava river bed was cut off from the rest of the river. In this section, the mouth of the Dlouhá řeka River was connected to the side arm of Morava, called Morávka. Due to the water management alteration, these flows were also separated from Moravia, which stopped the Morávka from being supplied with water from Moravia and became a continuation of the Dlouhá řeka River. The problems with siltation started very soon, because discharges of Dlouha řeka River was not sufficient to transport bigger gravel of Morávka. Morávka River gradually started to fall dry for most of the year. The river stretch locked with sediments was no longer sufficient to transport flood water out of the area and problems with flood protection started on the Dlouhá řeka River at municipalities upstream of the locality.

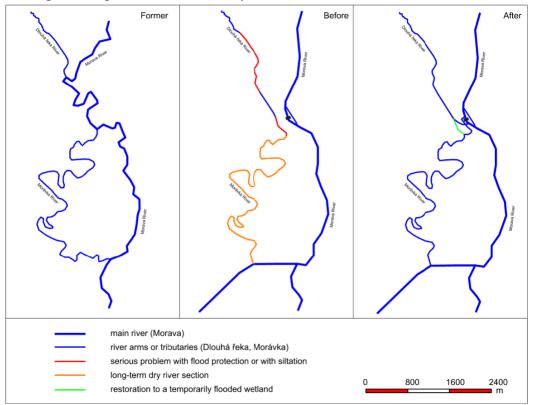


Figure 14: Historic (former), impacted (before) and restored situation (after) at the Nedakonice water management node

3.5.2 The measure

The aim of the revitalization measure is to ensure sufficient flow through the Morávka while at the same time limiting the entry of sediment from the Dlouhá řeka River into the system. Dlouhá řeka River will be taken downstream of the Nedakonice-weir. The new mouth of the Dlouhá řeka River will be created downstream of the weir **1**. The solution also will have a positive effect on the runoff conditions in the village of Nedakonice. The fish migration passage on the Morava River will be ensured by a new fish pass **3**. The water for the Morávka will be collected from the Morava River upstream of weir **2** by a new channel. The solution will respect the requirements of the water regime of the floodplain and floodplain forest as well as the requirements of municipal flood protection. The solution restores a situation similar to the situation before water management and eliminates their negative impact. Only the siltation will be removed from Morávka River **5**, the rest of this river will be cleaned by river flow itselve. The part of river bed, which will be no longer used for Dlouha řeka river **4**, will be re-created to a temporally flooded wetland.

The implementation of the measure is ongoing and is expected to be finished in 2021. The expected costs are around 3.2 mill. \in (without VAT) which will be covered by EU and national funds.

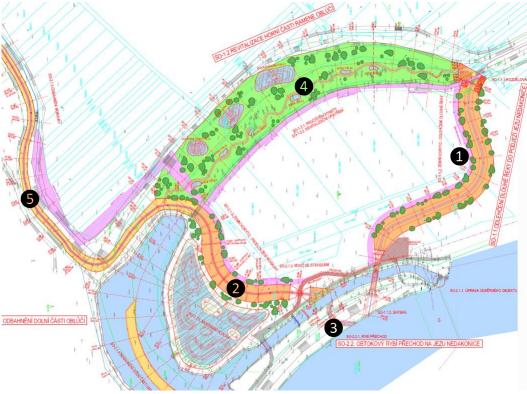


Figure 15: Overview of the measure

3.5.3 Conclusion

The measure is expected to have a positive effect on the runoff conditions in the village of Nedakonice and migration passage on the Morava River. The solution will respect the requirements of the water regime of the valley floodplain and floodplain forest as well as the requirements of municipal flood protection. The solution restores a situation similar to the situation before water management and eliminates their negative impact. Dlouha řeka and Moravka River are connected directly to the Morava River again which restores their flow regime and increase theirs morphological condition. More than 7 km of previously dry river bed of Morávka River are restored to a functioning river with full discharge again. Consequently, the measure serves both, the EU WFD and the Habitats Directive.

Figure 16: Morava River and Nedakonice water management node (on the lower right side)

3.6 CZ-Bečva: Restoration of the Bečva River

3.6.1 Initial (impacted) situation

Naturally, the Bečva River was a wild gravel flowing stream, but in the last century it was gradually modified to a monotonous capacity channel with a profile of a simple trapezoid. The effort of the river for shore erosion was suppressed by repeated building interventions. Restrictions on shore erosion and natural gravel run have led to the acceleration of bottom erosion and the gradual decomposition of the flow channel.

Figure 17: Already restored section of the Bečva River

3.6.2 The measure

Until the extreme floods in 1997, there was a spontaneous renaturation of several sections. These sites have become inspiration for revitalization. At present, a four-kilometre natural river bed rehabilitation project is being prepared. The narrow trapezoidal riverbed will be transformed into a triple-walled gravel stream with a moving shallow cunette and a large expanse of exposed gravel. The project envisages the restoration of the morphological processes within the created river corridor, the restoration of the natural regime of the gravel sediment load and the improvement of the river's function during the floods.

The measure is still ongoing and the expected costs of 13,4 mill. \in (without VAT) will be covered by EU and national funds.

3.6.3 Conclusion

Restorations in larger rivers should always consider impacts on the catchment scale. Often, problems arise at the tributaries (e.g. sediment deficit) and are consequently inherited by the Danube itself. Disturbed gravel flows, which form a significant part of the hydrographic network, represent a fundamental problem. One older project coined the name "gravel crown Danube" for them. Bečva is just one of the typical gravel streams. For this reason, the solution of its revitalization is an important stone in the mosaic of achieving good status of the entire Danube basin.

Figure 18: Revitalizing intervention implemented the "nature model" of spontaneous river renaturation

Figure 19: In some places it was necessary to correct the development of nature-friendly river bed interventions

3.7 CZ-Morava: Morphological restoration of the Morava River

3.7.1 Initial (impacted) situation

In the 1970s, the Morava River was heavily stabilized by stone riprap between the confluence with Cholinka River and "Štěpánovska smuha". Nevertheless, it is still currently reported to exhibit unaffected flow conditions. Bank stabilization prevents lateral erosion processes and increases bottom erosion. The result is the unnatural recess of the river below the terrain of the surrounding floodplain (i.e. river bed incision). Although everything seemed fine at the first sight, it caused a significant deterioration of the morphological condition. This was unacceptable, especially because of the location in the Landscape Protected Area Litovelské Pomoraví.

Figure 20: Before the implementation of the action was necessary to obtain ownership rights to coastal land

3.7.2 The measure

To improve the situation, the heavy stone riprap will be locally removed along a 2.6 km long section of the Morava River. In order to reduce the transport of material inside the protected landscape area, this material will be reintroduced directly in the stream on site. Initial channelling elements (stone shoots, islands and bottom elements) combined with wood mass (anchored strains) will be created. The initiating elements in combination with the riverwood contribute to the decaying of the bank and accelerate the desirable morphological development that has long been unnaturally suppressed.

The measure itself is already finished and caused expenses of $160,976 \in$ (without VAT). However, the purchase of land, which accounts for 742,115 \in , makes up a large proportion of the overall costs.

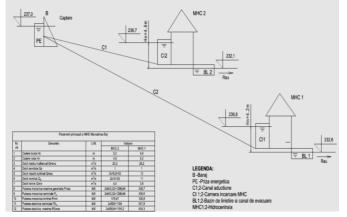
Figure 21: Inappropriate bank lining were removed and used for initiation elements

Figure 22: Restored section of the Morava river with a man-made peninsula

3.7.3 Conclusion

If the revitalization is well done, human intervention on the river should not be noticeable. This applies here. The river again develops freely and increases its morphological value of protected landscape area. The whole area is better adapted to climatic change, the ability to better manage water supplies is improved. The measure supports the achievement of the EU WFD. However, the restoration measure is also expected to have a positive effect on the Habitats- and Birds Directive (Litovelské Pomoraví"; EVL CZ0714073, CZ0711018).

3.8 RO-Somes Mic: Restoration of connectivity in the Somes Mic River


3.8.1 Initial (impacted) situation

The Manastirea River Dam is located on the river Someşul Mic, at a distance of approx. 3.5 km from the confluence with Someşul Mare river, on the territory of Mănăstirea locality, upstream of Dej municipality.

The river dam and the hydropower plants were built a century ago, in the place where there used to be a water mill. Thus, in 1910, the Monastery was the first electrified rural locality in Eastern Europe. The current purpose of the river dam is the water intake for hydropower production in the hydropower plants (HPP) Manastirea 1 and 2, according to the planning scheme below (see Figure 24):

Characteristics

- P_{installed} = 0.8 MW,
- V_{turbined} = 168.16 mill. m³/year
- Energy produced =5.91 GWh/year.
- The maximum flow that can be transited through the arrangement section is 138m³/s.
- Main features of the dam:
- dam length = 47.6 m
- dam elevation = 238 m above sea level
- dam height = 4.5 m at the overflow ridge (7.5 m in total)

Figure 24: Planning scheme of HPPs Manastirea 1 and 2

Two small hydropower plants are included in the hydropower planning scheme, Dej Manastirea 1 and 2, located on the banks of the Someşul Mic river, on both sides of the dam.

The water body RORW2-1-31_B4 / Someșul Mic - cf. Nadăș -cf. Someș Mare, on which the dam is located, has been designated a heavely modified water body (typology RO05CAPM) due to the hudromorphological pressures and transversal barrierres (3 obstacles with a height >0.5 m).

3.8.2 The measure

The measure of equipping the dam with a fish pass facility has been etablished in the frame of River Management Plan of the Someș-Tisa hydrographic area, estimated to be implement in the period 2015-2021. The following considerations have been considered:

1. The presence of migratory fish species downstream of the transversal barrier and their absence at the upstream monitoring sections. The monitoring of the quality element (QE) fish, performed in 2020, indicated the presence of migratory species nase (*Chondostroma nasus*), barbel (*Barbus barbus*) and vimba bream (*Vimba vimba*) in the monitoring section located after the confluence with Someş Mare river.

2. According to the distribution of the ichthyofauna in Romania (after Bănărăscu, 1964), on the respective segment of the river the barbel (*Barbus barbus*) is indicated as the dominant species. 3. The dam is located in a site of community importance (ROSCI0394 Someșul Mic) which was designated in 2011. Three fish species can be found on the list of protected species within this site.

4. An acceptable level of implementation costs, compared to environmental benefits.

Figure 25: Construction scheme / Photo - fish pass

In the period 2015-2017, the measure was implemented, together with the rehabilitation works of the dam, hydroelectromechanical equipment and HPP made by the new owner of the dam. The fish pass is located on the left bank of the dam with a total length of 28 m, the upstream level is 236.25 m above sea level, and the downstream is 230.0 mdMN. The flow through the fish pass is 1 m³/s. Constructively, it consists of a system of pools with a size of 1.20x1.40 m, located at different heights and communicating through slots with a size of 20x60 cm. The thickness of the walls of the pools is 30 cm. The project was funded by Somes Tisa RB Administration budget. The total costs of the measure have been $38.000 \notin$.

3.8.3 Conclusion

Following the monitoring of the ichthyofauna on the water body RORW2-1-31_B4 / Someşul Mic -cf. Nadas-cf. Someş Mare carried out by the laboratory of the Someş-Tisa hydrographic space in 2020, in the upstream section of the Manastirea dam, *Barbus barbus* were identified,

which indicates a properly functioning of the fish pass. The fish migration route was thus extended by 20.4 km.

Also, when monitoring the biological elements carried out by the owner of the small hydro power plant, according to the obligations contained in the water management permit, specimens belonging to the species *Barbus barbus* were caught, even in the fish pass.

Figure 26: Photo Collage - MHC fish fauna monitoring (source: SC Limnades LLC)

In the 3rd planning cycle of the RBMP, works for restoring the longitudinal connectivity on the water body RORW2-1-31_B4 are foreseen for another two transversal barriers, in the area of Gherla and Apahida localities. The implementation of these measures will lead to the complete restoration of longitudinal connectivity on this water body.

3.9 HU-Tisza: Measures to improve water retention in Bereg

3.9.1 Initial (impacted) situation

The landscape unit Bereg (579 km² in total) is located in Hungary and Ukraine. In Hungary 54% of the area is nature protected by Hungarian laws and/or part of Nature 2000. The area is situated between the Carpathians and the Tisza river which is flowing at the borders of Nyírség, a sandy hilly area. The area is typically characterised by small settlements having declining birth-rate and aging population.

Before river restorations, Bereg used to be an area of little waters; creeks running from the mountains, and swamps situated between these creeks. The mosaics of this landscape are still to be found and stand under nature protection.

The flood protection management technics since the 1870s of the river Tisza, the irrigation and land use changes formed the water system of the area. The floodplain became disconnected from its main river and the creeks channelized. New drainage and irrigation channels were built which do not necessarily follow the former river beds. The onetime wetlands are often under agricultural use, where water still appears in form of excess water. On average 26% of the area is affected by excess water. Maximal excess water inundation is affecting 44% of the area. It can also be mentioned that the area is within drought zones of medium and high intensity. The excess water channels are 935 km long in Bereg.

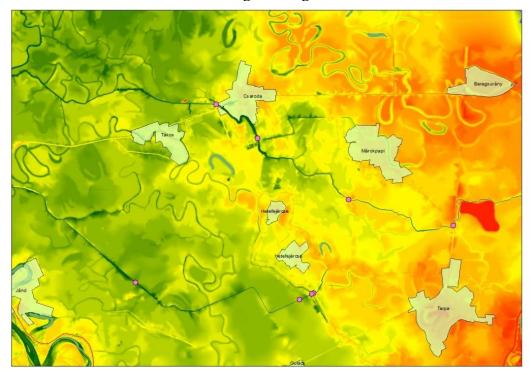


Figure 27: Original river system

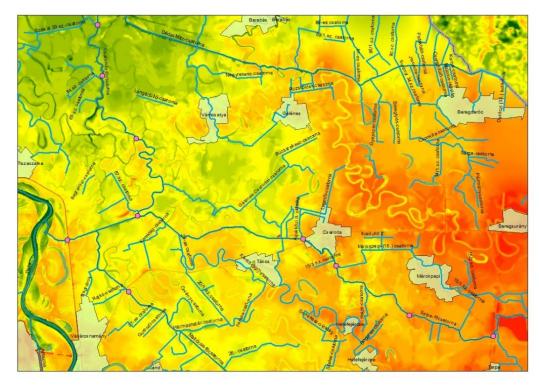


Figure 28: Drainage channels

The river regulations resulted in less water in the area, as swamps were drained, creeks abolished and new channels constructed also with the aim to drain the land. Excess water is regarded as a problem on the agricultural land. Climate change, the need for agricultural production and nature protection aims changed the relation to water, which is not regarded as part of the landscape.

The water managing structures of the area are mainly suitable for the drainage of water and not for managing/ retaining it. Furthermore, the agricultural use not fully takes into account the water regime characteristics of Bereg, which makes the agricultural production vulnerable. Nature protection is of high importance in the area, but is also not fully sustained by the existing water infrastructure.

The restoration aimed to change the water infrastructure to better accommodate it to landscape characteristics (small creeks, more water) and to make a land use change possible.

3.9.2 The measure

The Bereg project aimed to raise water retention possibilities by ensuring more water in the area and helping better water regulation. The concrete measures involve two new water abstraction possibilities from the river Tisza, three new channels for water supply, channel rehabilitations, building/reconstruction of structures to ensure water retention, rehabilitation of former mine pits to create wetlands as also building/modernisation of new monitoring stations. Also, a water supply possibility was analysed from the Borzsa river in Ukraine.

The creation of water retention possibilities has multiple effects:

- it sustains the water supply of dead arms and backswamps in Bereg
- landscape management can be now based on the concept of water retention. More water is available in the area in low water situations, it also sustains the quality of available water resources

- the new infrastructure ensures the basis for an optimal land use for e.g. forestry, nature protection, agriculture. It adumbrates the improvement of the environmental status of the area but also farmers' living conditions.
- landscape management can be attached to the function of overflow reservoirs. Two overflow reservoirs of the river Tisza are situated in Bereg. In case of high floods, the reservoirs will be able to transfer water to Bereg.
- Monitoring system (also structure operation monitoring) development in the area ensures the continuous information on water quality and quantity.

The project was finished in 2019. The overall costs of 34 mill. € were entirely covered by EU funds.

3.9.3 Conclusion

The project was initiated by foresters, nature protection experts, farmers and water managers. It was a good example for stakeholder participation where the change of water management principles was originating from local residents and famers.

More water in the area enables higher groundwater levels. During arid summer periods forests and agricultural land benefit from available groundwater as also protected water dependent wetlands do. It makes the change in land use possible that fits more to landscape characteristics. The project is beneficial for the EU WFD, Habitats directive and the European Landscape Convention and has connection to FD. Hungary built overflow reservoirs which intended to be multifunctional. By retaining water from floods/ excess water the water can be used for other aims as nature protection, landscape unit characteristic based agriculture. The project builds on the overflow reservoirs as also on other water resources (Tisza, Borzsa) by using a holistic view.

Figure 29: Restored section

3.10 HU-Monsoni-Duna: Measures at Mosoni-Duna estuary section

3.10.1 Initial (impacted) situation

Szigetköz is situated in north-western Hungary and depends on Danube water. This river stretch still shows the anabranching pattern of the Danube, while the river branches are already stationary. The regulated water levels and transfers are ensuring this situation. Still, this area has high values in nature protection, landscape management and recreation. The Szigetköz with its water dependent habitats is representing a unique value.

Szigetköz is depending on the water transferred from the Gabcikovo reservoir on the Danube. After the building of the HPP the arms of the anabranching river lost water. Several measures have been taken since 1992 on the Hungarian side to reduce the impacts of less water, mainly smaller and larger dams/ weirs were built to ensure water retention in the side arms.

Since the 1960s, the Danube is suffering from river bed incision, as a consequence of HPPs and river regulation in Germany and Austria.

The river bed incision of about two meters has a suction effect on the Szigetköz side arms and the groundwater. The dam newly built at the mouth of the Mosoni-Duna arm is situated on the lowest point of the area, where the anabranching character ends. It helps to sustain water retention on the lower part of the area (the mitigation measures started on the upper part of Szigetköz and continued on the middle part while the lower part was less taken into account until now).

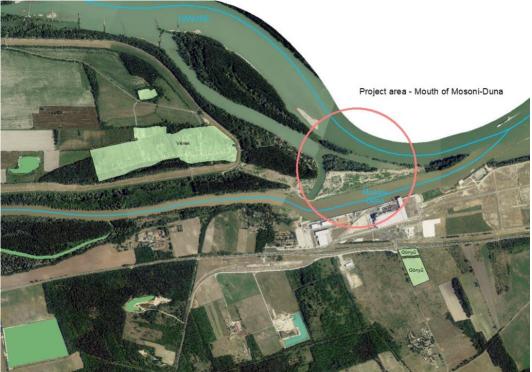


Figure 30: Project area (confluence of Mosoni-Duna with Danube)

3.10.2The measure

The main aim of the project was to raise the medium and low water levels in the lower section of Mosoni-Danube and the connected area of Szigetköz, but also to restore the estuary water level corresponding to the supporting effect of the Danube. It was realised by the building of a new dam at the mouth of Mosoni-Duna.

The higher water levels in the lower Szigetköz will enable water supply for wetlands and floodplains in Szigetköz where the former Danube branches have important values with their colourful ecosystems.

Figure 31: Before the construction works started at Mosoni-Danube and Danube estuary section

Figure 32: Construction works - funding the structure

The building of the dam also sustains other water uses. Higher water levels ensure navigation of the Mosoni-Duna: The Győr-Gönyü national port –built from 1992 – and situated near the mouth of Mosoni-Duna will be better available for ships due to higher water levels. Also, the results of the project will provide a more attractive view of the city Győr, where river bed incision also indicated changes. The dam will also ensure the exclusion of too high water levels of the Danube reducing the flood risk of the cities along the lower Mosoni-Duna. The project is ongoing and expected to be finished in 2021. The overall costs of 82 mill. \notin will be shared between EU (50%) and national funds (50%).

3.10.3 Conclusion

The new dam raises the medium and low water levels and ensure higher water levels in lower Szigetköz. This higher water level will be adjusted to original water levels (before the HPP was built and the Danubean incision reduced water levels here), while ecosystem needs will be

considered. It will enable better water supply of river branches, wetlands and floodplains, and connect their woody and water related ecosystems. The main aim is to have a more natural conditions in this area. The measure serves the EU WFD by reducing the risk of low water situations in Szigetköz (and reaching good status) as also Floods Directive by increasing the flood safety for the city Győr. Furthermore, the Fertő-Hanság National park under the name Szigetközi Landscape Conservation Area and the Natura 2000 site as Szigetköz (HUFH30004) may benefit from the measure.

3.11 SI-Continuity restoration in the Sava River

3.11.1 Initial (impacted) situation

There are 8 HPPs built on the Slovenian part of the Sava River. Between the most downstream HPPs there is an additional dam that is needed for operation of a nuclear power plant. Fish passes are built on the three most downstream HPPs. With construction of the last HPP also the dam at the nuclear power plant becomes passable for fishes due to an increase in water level caused by the downstream HPP. The construction of a fish pass is one of numerous mitigation measures on the HPP. There were also other mitigation measures implemented, i.e. dynamic river banks, sand banks for kingfishers, floating islands for terns, banks for sand martins, riparian vegetation, passages for amphibians, passability between Sava River and tributaries etc.

3.11.2The measure

The fish pass is located on the run-of-river HPP Brežice, on the left bank of the Sava River. The fish pass is divided in two parts – first, a near-natural part, designed as a side channel of the river and second, a technical part, designed as sequence of pools. The first part is 830 m long and is created as meandering channel with two larger resting places, five spawning grounds, six larger pools and nine sequences of rapids. Special attention was given to designing of spawning grounds, where specific river conditions are needed (water depth, flow velocity and substrate). These spawning grounds are mainly designed for following fish species: *Chondrostoma nasus, Rutilus pigus virgo, Squalius cephalus, Barbus barbus* and *Alburnoides bipunctatus*.

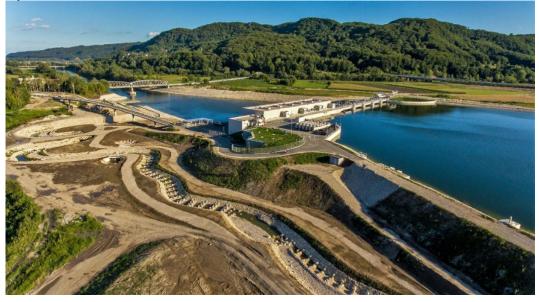


Figure 33: HPP Brežice and the fish pass on the Sava River after construction

At the inflow to the technical part of the fish pass, an automatic system of one main lock and six regulative locks enables inflow of the necessary discharge for every water level condition. The water flow in the fish pass is changing depending on the fish species needs in each particular season of the year. There is a higher discharge guaranteed in spring (800 l/s) during spawning season. Also, in summer and early spring discharge is slightly higher (650 l/s) and then reduced in autumn and winter time (500 l/s).

Figure 34: HPP Brežice and the fish pass on the Sava River one year after construction

The operation of the fish pass was also adjusted to high water flow conditions (when discharge of Sava is higher than 700 m³/s). In these conditions the main lock is partially closed (7%), one of the regulative locks is opened and the other regulative locks are closed in order to guarantee a reduced inflow of suspended sediment into the fish pass and to prevent siltation in the fish pass. In high water conditions fishes are hidden in pools created within the fish pass.

The operation of the fish pass is also adjusted to winter conditions. In order to prevent freezing of water in the inflow part (when air temperature is lower than 3°C), only the first and sixth regulatory lock is opened.

3.11.3 Conclusion

After the fish pass construction in 2017, fish monitoring was established. Results showed appropriate functioning of the fish pass. In total, 27 different fish species were identified, whereby the near-natural part of the fish pass featured a higher diversity of fish species. It was found that fish species are present along the whole length of the fish pass.

The functionality of the fish pass depends mainly on guaranteed flow variability. This is of special importance for prevention of siltation of the substrate too that is crucial for effective spawning grounds. Beside this also regular maintenance works on the fish passes are recognised as very important for its appropriate working.

Figure 35: HPP Brežice on the Sava River 3 years after construction

4. Final remarks - Outlook

Most of the here presented lighthouse projects aim for the restoration of more than one impact type (e.g. hydrology, morphology, connectivity). Furthermore, most examples also serve the fulfilment of more than one directive (e.g. WFD, Habitats Directive, Birds Directive, Floods Directive). They therefore provide best-practice examples on how synergies can be used.

Four examples are located in the Danube River or in its vicinity. All of these projects focus on morphological restorations, while three also serve continuity restoration. Six examples are located in Danube tributaries. Since the Danube often inherits problems arising in tributaries (e.g. sediment deficit), restorations in tributaries are not only relevant locally but are beneficial for the Danube too in the long run.

The here presented lighthouse projects represent just an extract of many implemented measures in the DRBD between 2015 and 2021 (see Table 1). Since efforts to restore the Danube and DRBD tributaries will have to continue in the future, the here presented examples should provide some inspiration for future measure implementation.

Of course, several additional measures are planned for the DRBD. While several fish passes and river restoration projects are currently in planning or in construction phase, there are also additional measures planned for the period 2021-2027. With 211 measures, a clear focus is given to continuity restoration. But also 50 morphological and 25 hydrological restoration projects are foreseen. Finally, the reconnection of 30,845 ha of wetlands/floodplains are planned until 2027. Further exchange on their planning and implementation, the best use of synergies and contribution to fulfilment of the WFD are encouraged in order to make the best use of available resources.

5. Projects related to hydromorphology and supported by the ICPDR

Beside implemented hydromorphological measures, important progress in the field of hydromorphology in the Danube River Basin was made through the implementation of different projects supported by the ICPDR, mainly the DanubeSediment project, the Danube Floodplain project and the MEASURES project (on restoring corridors for migratory fish species), which results are presented in the DRBMP Update 2021.

Additionally, also other important projects, supported by the ICPDR, were implemented, including projects Aquacross (hydromorphological restoration, mitigation and conservation), coopMDD (restoration of ecological connectivity), DANUBEparksCONNECTED and WILDislands initiative (Danube wild islands habitat corridor), DriDanube (management of drought related risks), FRAMWAT (small water retention measures) and MARS (managing of aquatic ecosystems) or are in implementation phase in the Danube River Basin, including projects Living Danube Partnership (rivers, floodplains and wetlands restoration), IDES (integrative floodplain management), LIFELINE MDD (restoration of ecological connectivity). Several of these projects like DriDanube, FRAMWAT, MARS or IDES are also of pollution relevance and supported and/or support ICPDR.

More information about the projects, including a short description and weblinks, can be found in the table below.

Name of the project	Duration	Aim/results of the project with particular relevance for HYMO	Web page
	2015 2010	activities/objectives	
AQUACROSS:	2015-2019	An assessment of pressures on inland waters was performed identifying	https://aquacross.eu/
Knowledge, Assessment and		the extent of hydromorphological alterations, and specifically for the	
Management for AQUAtic		Danube River Basin a prioritisation of the river-floodplain systems along	
Biodiversity and Ecosystem		the navigable stretch of the Danube for hydromorphological restoration,	
Services aCROSS EU policies		mitigation and conservation was conducted. Therefore, a novel	
		integrative modelling approach was developed that used different data	
		sets (inlcuding hydromorphological assessments) and considered multiple	
		targets related to biodiversity, ecosystem services and socio-economic	
		benefits, in line with Ecosystem-based management.	
Coca Cola Living Danube	2014-2021	Regional partnership between WWF, COKE system and ICPDR covering	https://www.icpdr.org/main/
Partnership		river and floodplain, wetland restoration projects across six countries	publications/working-together-living-
		(Austria, Hungary, Croatia, Serbia, Romania and Bulgaria). The	danube
		partnership is working closely with local stakeholders and relevant	
		authorities to restore areas and connect river stretches or , inclfloodplains	
		to the river system by opening dams, reconnect side-arms, installing	
		water retention artefacts, improving water supply channels, forest habitats	
		or creating open water surface. At the same time regional movement is	
		being created for river, wetland conservation and restoration.	
coopMDD	2017-2019	In the frame of the coop MDD project, a Transboundary Management	https://www.wwf.at/de/coopmdd/
		Programme for the future 5-country UNESCO Biosphere Reserve "Mura-	
		Drava-Danube" (TBR MDD) was jointly developed. The "Guidelines for	
		a dynamic river corridor" as one of the project outputs show which	
		objectives need to be reached to protect and restore the dynamic river	
		corridor for the rivers Mura, Drava and Danube, also with regard to	
		"River management and engineering".	
DANUBEparksCONNECTED:	2017-2019	Within DANUBEparksCONNECTED (funded by the Interreg Danube	www.danubeparks.org
Bridging the Danube Protected		Transnational Programme), the Danube River Network of Protected	http://www.interreg-danube.eu/
Areas towards a Danube Habitat		Areas (DANUBEPARKS) implemented transnational measures to	
Corridor		counteract habitat fragmentation, and to strengthen the Danube as	
		ecological corridor. The WILDisland initiative has been launched: Based	
		on a Danube-wide inventory of all islands, the conservation campaign for	
		these "flagship sites of river dynamics" resulted in pilot river restoration	
		measures. Additionally, project actions preserved and restored riparian	
		soft wood forests, promoted coherent management of Danube dry	
		habitats, and protected thousands of bird lives against collision at electric	
		powerlines (DANUBE FREE SKY initiative).	

Name of the project	Duration	Aim/results of the project with particular relevance for HYMO	Web page
		activities/objectives	
DriDanube	2017-2019	The project aimed at increasing the society's resilience to the occurrence	http://www.interreg-danube.eu/approved-
		of drought in the Danube region by developing a regional drought	projects/dridanube
		monitoring tool ¹ and a strategic document on improved national response	
		to drought ² . The project results with particular relevance for HYMO	¹ <u>https://droughtwatch.eu/</u>
		activities/objectives is the drought monitoring tool "Drought Watch",	² <u>http://www.interreg-danube.eu/uploads/</u>
		developed for better drought characterisation and early warning over the	media/approved project out put/0001/38/
		region by allowing a spatial and temporal view of the state of soil	0363f7bdde74184f0f372bc04744650d464
		moisture and vegetation through various drought-related datasets at	<u>45c49.pdf</u>
		regional and national level. The tool integrates also the results of the	
		project-established "National Reporting Networks" in 10 Danube basin	
		countries, which gather weekly observations on the state of soil and	
		plants, and this way help deliver early awareness of drought damage in	
		place. The other product of this project, also integrated into Drought	
		Watch, are informative cross-border comparable maps of drought risk in	
		the Danube region, prepared both in climatological sense and in relation	
		to expected yield loss. They allow to recognise the areas prone to rainfall	
		deficit or considerable crop losses.	
FramWat:	2017-2020	The main aim of the FramWat project was to support and boost	www.interreg-central.eu/FramWat
Framework for improving water		knowledge on more systematic approaches towards the application of	http://WaterRetention.sggw.pl
balance and nutrient mitigation by		N(S)WRM in river basins. One of the main tools developed within the	
applying small water retention		project is FroGIS – GIS based tool to analyse the needs and possibilities	https://www.interreg-
measures		of water retention. The rest of the tools and outputs developed within the	central.eu/Content.Node/DT353-
		project, best practices from participating countries, and practical	Guidelines.pdf
		recommendations from pilot catchments are collected into 5-step process	https://planning.waterretention.sggw.pl/
		of N(S)WRM planning and presented in the Practical Guidelines on	
		Planning Small Water Retention in River Basins. Addition to the	
		Guidelines is the Decision Support System, created for people involved in	
		planning water retention measures. The goal of the application is to	
		familiarise the user with the catalogue of N(S)WRM and the planning	
		process, as well as to survey their preferences for their area of interest.	
IDES:	2020-2022	IDES aims to identify the retention potential of floodplains by applying	http://www.interreg-danube.eu/ides
Improving water quality in the		the model MONERIS and to integrate multiple interests along the river to	
Danube river and its tributaries by		accelerate the joint implementation of a sustainable water quality	
integrative floodplain management		management along the Danube. The new IDES tool will help to derive	
based on Ecosystem Services		optimized, nature-based solutions by assessing all relevant ecosystem	
		services in an unbiased way, their trade-offs and synergies. Based on the	
		results of Danube wide assessment and in pilot areas, national action	

Name of the project	Duration	Aim/results of the project with particular relevance for HYMO	Web page
		activities/objectives	
		plans with prioritized areas and a joint strategy for improving water	
		quality at transnational level will be developed regarding the Danube	
		river basin management plan and targets of PA4 and PA6 of the EUSDR.	
lifelineMDD	2020-2022	The project lifelineMDD addresses the issue of an insufficient knowledge	http://www.interreg-danube.eu/approved-
		base and unused synergies within the transboundary MDD river corridor	projects/lifelinemdd
		with a cross-sectoral partnership that aims to improve connectivity and	http://www.amazon-of-
		biodiversity. The development of a strategic integrated approach to river	europe.com/en/lifelinemdd/
		restoration will be based on scientific studies of bio-indicators (fish and	https://www.wwf.at/de/lifeline-mdd/
		river birds) and abiotic framework conditions (sediment transport and	
		climate change). A cross-sectoral learning process between nature	
		protection and water management authorities based on pilot restoration	
		actions will raise institutional competences and cooperation between key	
		stakeholders.	
MARS:	2014-2018	Aim/results of the project with particular relevance for HYMO	http://www.mars-project.eu
Managing Aquatic ecosystems and		activities/objectives (2-3 sentences): MARS has analysed data from	https://freshwaterblog.net
water R esources under multiple		various spatial scales, i.e. local water body, single river basin and	
Stress		European scale, in order to better understand and disentangle complex	
		interactions between pressures (including HYMO), resulting stressors and	
		their effects on aquatic biota. Multi-stressor situations require knowledge	
		on the relative importance of different stressors (stressor hierarchy,	
		including dominating stressors) and their impacts in order to find the best	
		combination of mitigation or restoration measures. MARS therefore has	
		generated a general framework supported by MARS tools for tackling	
		multi-stressor conditions in River Basin Management and to select	
		appropriate management strategies concerning the level and type of	
		necessary mitigation measures, which are described in the MARS	
		Recommendations document.	

DISCONNECTED WETLANDS AND FORMER FLOODPLAINS WITH POTENTIAL FOR RECONNECTION

ANNEX 20

Disconnected wetlands and floodplains listed below are collected considering criteria given in the Table.

Disconnection of adjacent wetlands/floodplains, provoked alterations and criteria for the significant pressure assessment

Morphological pressure	Provoked alteration	Criteria for significant pressure assessment
River regulation works Intensive land use within riparian and adjacent land	Alteration of adjacent wetlands/floodplains	All disconnected wetlands/floodplains >500 ha and smaller ones of basin-wide significance, with a definite potential for reconnection or with potential for improvement of lateral connectivity within the active wetland/floodplain

Explanation of abbreviations for the tables

AWB = Artificial Water Body HMWB = Heavily Modified Water Body NWB = Natural Water Body RWB = River Water Body

List of wetlands/floodplains

Country	Floodplain code	Name	Area (ha)	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
AT	AT1204000	Donau-Auen östlich von Wien	9554	Donau	ATOK409040008	NWB	Partly	Implemented by 2027	Unknown
DE	DEBY_LAT_IS	Isarmuendung	2926	Isar	DERW_DEBY_1_F430	NWB	Partly	Implemented by 2027	No
DE	DEBY_LAT_NB_IN	Dynamisierung der Donauauen	3038	Donau	DERW_DEBY_1_F163	HMWB	Yes, completely		No
HU	HUBivaly	Bivaly-tó	552	Tisza	HUAEQ060	HMWB	Yes, completely		No
RO	ROLA01.13.1.15.0.0.0.0	Meandre/brate secundare Jijia intre Cotu Morii si Cristesti	2650	Jijia	RORW13-1-15_B4	AWB	Partly	Implemented by 2027	No
RO	ROLA02.14.1.0.0.0.0	Bistret	2966	Dunarea	RORW14-1_B3	HMWB	Not yet	Implemented by 2027	Yes
RS	RS4514	Potamišje	23989	Tamiš	RSTAM_2	HMWB	Partly	Not yet determined	No
RS	RS485	Gornje Podunavlje	19604	Dunav	RSD_10	NWB	Partly	Not yet determined	No
RS	RS50	Obedska bara	9820	Sava	RSSA_3	NWB	Partly	Not yet determined	No
RS	RS602	Karađorđevo	4237	Dunav	RSD_09	NWB	Partly	Not yet determined	No
RS	RS605	Tikvara	554	Dunav	RSD_09	NWB	Partly	Not yet determined	No
RS	RS608	Koviljsko - Petrovaradinski rit	5895	Dunav	RSD_07	NWB	Partly	Not yet determined	No
RS	RS686	Stara Tisa kod Bisernog ostrva	970	Tisa	RSTIS_2	NWB	Not yet	Not yet determined	No
RS	RS69	Carska Bara	4726	Begej	RSBEG	HMWB	Not yet	Not yet determined	No
RS	RS729	Ritovi donjeg Potisja	3010	Tisa	RSTIS_2	NWB	Partly	Not yet determined	No
RS	RS749	Pančevačke ade	1309	Dunav	RSD_05	HMWB	Partly	Not yet determined	No
SK	SKLAD0001	Ramenna sustava stareho koryta Dunaja - lava strana	2966	Dunaj	SKD0017	HMWB	Not yet	Implemented by 2027	No
SK	SKLAD0003	Pravostranne ramena Dunaja - Bratislava	507	Dunaj	SKD0017	HMWB	Not yet	Implemented by 2027	No
SK	SKLAD0004	Biskupicke rameno Dunaja	503	Dunaj	SKD0017	HMWB	Not yet	Implemented by 2027	No
SK	SKLAD0005	Medvedovsko-Klucovecka sustava -lavostranne ramena Dunaja	533	Dunaj	SKD0017	HMWB	Partly	Implemented by 2027	No
SK	SKLAD0010	Ramenna sustava Dunaja - Istragov	794	Dunaj	SKD0017	HMWB	Partly	Implemented by 2027	No
UA	UA01renkag	Reniyskiy	800	Danube	UADB_UA_01	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA02renkag	Kagulskiy	1300	Danube	UADB_UA_02	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA03renkag	Orlovskiy	795	Danube	UADB_UA_02	NWB	Not yet	Not implemented by 2027	Yet to be determined

Country	Floodplain code	Name	Area (ha)	River	RWB Code	RWB Type	Restored 2021	Measure 2027	Decisive Impact HMWB
UA	UA04renkug	Kugurluiskiy	1270	Danube	UADB_UA_02	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA05izmkug	Repida	2799	Danube	UADB_UA_02	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA06izmkug	Matroskiy	1195	Danube	UADB_UA_02	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA07izmkat	Staronekrasovskiy	671	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA08izmkat	Lung	1730	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA09izmkis	Kislitskiy	5650	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA10izmkit	Kamyshovskiy	4281	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA11kilkit	Vasilevskiy	1346	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA12kilstp	Stepovoi	870	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA13kilszp	Liskivskiy	3400	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA14kilvil	Vilkovskiy	1180	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA15kilsol	Solomonov	1850	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA16kilerm	Ermakov	2670	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA17kilszp	SZP	2653	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA18kilszp	SZP	4772	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UA19kilkil	Kiliiskiy	2600	Danube	UADB_UA_03	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UAPolder_3	3	520	Tisza	UATISR05	NWB	Not yet	Not implemented by 2027	Yet to be determined
UA	UAPolder_6	6	1204	Tisza	UATISR05	NWB	Not yet	Not implemented by 2027	Yet to be determined

FINANCING JOINT PROGRAMME OF MEASURES

ANNEX 21

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
European Regional Develop- ment Fund (ERDF)	EU (Euro- pean Structu- ral and Invest- ment Funds/ ESIF)	The ERDF aims to strengthen economic, social and territorial cohesion in the EU by correcting imbalances between regions. The ERDF supports regional and local development to contribute to all of the thematic objectives, laid down in the CPR ¹ .	TO 5 (climate change adaptation, risk prevention and management): ecosystem-based approaches for hydromorphological alterations (reconnection of wetlands/floodplains), possibly nutrient pollution (diffuse pollution from agriculture). TO 6 (preserving and protecting the environment and promoting resource efficiency): organic pollution (UWWTP, industrial point sources), nutrient pollution (UWWTP, industrial point sources), hazardous substances pollution (UWWTP industrial point sources), hydromorphological alterations (reconnection of wetlands/floodplains). The TOs are accompanied by five specific objectives (POs), of which PO2 is of special importance for environmental issues: "a greener, low-carbon Europe by promoting clean and fair energy transition, green and blue investment, the circular economy, climate adaptation and risk prevention and management ² "	Only EU Member States eligible MS/regions are classified according to "more developed regions/transi tion regions/less developed regions" (influencing minimum allocations set for a number of priority areas, such as "low carbon economy").	*Common Provisions Regulation ³ . *ESIF general: http://ec.euro pa.eu/contract s_grants/fund s_en.htm *ERDF general: https://ec.euro pa.eu/regional _policy/en/fu nding/erdf/ *Project database: http://ec.euro pa.eu/regional _policy/index. cfm/en/projec ts/?LAN=EN &pay=ALL& region=ALL &the=97&typ e=ALL&per= 2
European Social	EU (Euro- pean	The European Social Fund Plus (ESF+) is the main	No direct linkage to the Danube SWMIs.	Organisations based in EU Member	*Common Provisions Regulation

¹ The thematic objectives, applicable to all ESI Funds, are: 1. research and development, and innovation; 2. information and communication technologies; 3.competitiveness of SMEs; 4. shift towards a low-carbon economy; 5. climate change adaptation, risk prevention; 6. protecting the environment and promotion resource efficiency; 7. promoting sustainable transport; 8. employment and labor mobility; 9. social inclusion and poverty; 10. education, and training; 11. institutional capacity and efficiency of public administration.

TO 5 and 6 are particularly relevant for water and marine policy.

² Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the European Regional Development Fund and on the Cohesion Fund: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A372%3AFIN

³ More detailed information on eligibility, financial instruments, ex-ante conditionalities and management and control principles, as well as common elements on strategic planning and programming, thematic objectives linked to the Europe 2020 Strategy and visions on the Common Strategic Framework and on the Partnership Agreements to be agreed between the Commission and each Member State can be found in the Common Provisions Regulation/CPR (No 1303/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 December 2013, amended 24th April 2020), to be found here: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02013R1301-20200424.

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
Fund Plus (ESF+)	Structu- ral and Invest- ment Funds/ ESIF)	financial instrument to strengthen Europe's social dimension, for investing in employment opportunities (especially of young people), better education, improvement of the situation of the most vulnerable people; capacity building/training in the environment is also being supported.	Possible indirect linkages in all areas regarding capacity building/training.	States, associated countries and under certain conditions third countries are eligible for funding.	(see footnote 3 above) *ESF/ESF+ general: https://ec.euro pa.eu/esf/hom e.jsp?langId= en *Project database: see link under ERDF
Cohesion Fund (CF)	EU (Euro- pean Structu- ral and Invest- ment Funds/ ESIF)	The Cohesion Fund 2021-2027 invests in all regions, still on the basis of 3 categories (less- developed; transition; more- developed), determined by Gross National Income (GNI) and GDP/capita. New criteria are youth unemployment, low education level, climate change, and the reception and integration of migrants.	TO5 and 6 of the CPR as well as the new PO2 apply to the CF (see footnote 2): - Climate change adaptation and risk prevention: hydromorphological alterations (reconnection of wetlands/floodplains). - Investment in the water and waste sectors, and the urban environment: organic pollution (UWWTP, industrial point sources), nutrient pollution (UWWTP, industrial point sources, urban run-off), hazardous substances pollution (UWWTP, industrial point sources, urban run-off). - Investment in energy, provided it has positive environmental benefits: possibly all hydromorphological pressures if linked to hydropower.	Only EU Member States eligible	*Common Provisions Regulation (see footnote 3 above) *CF general: https://ec.euro pa.eu/regional _policy/en/fu nding/cohesio n-fund/ *Project database: see link under ERDF
European Maritime and Fisheries Fund (EMFF)	EU (Euro- pean Structu- ral and Invest- ment Funds/ ESIF)	The EMFF is the primary financing instrument for the reformed Common Fisheries Policy (CFP) and the Integrated Maritime Policy (IMP), including the Marine Strategy	No direct linkage to the Danube SWMIs. Possible indirect linkages in transitional/coastal water, e.g. with regard to data collection on fish species, or the management, restoration and monitoring of coastal Natura2000 sites.	Only EU Member States eligible	*Common Provisions Regulation (see footnote 3 above) *EMFF general: https://ec.euro pa.eu/fisherie s/cfp/emff/

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
CAP/ European Agricultu-	EU (Euro- pean	Framework Directive (MSFD). It is aimed at supporting the European fisheries sector towards more sustainable fishing practices, with a particular focus on supporting small- scale fishermen. The EAFRD is one of the primary financing	A new focus in 2021-2027 is on protecting marine ecosystems with an expected contribution of 30% of its budget to climate change mitigation and adaptation, in line with the commitments agreed under the Paris Agreement. SWMI targeted through Pillar II payments (rural development), which will	Only EU Member States	*Common Provisions Regulation
ral Fund for Rural Develop- ment (EAFRD)	Structu- ral and Invest- ment Funds/ ESIF)	instruments for the Pillar II of the CAP (Rural Development). The post 2020 CAP (whose budget is allocated for the multiannual financial network 2021-2027 but the provisional start date of the proposed CAP reform is 1 January 2023, with a transitional regulation for the period of 2021- 2022) is proposed to be implemented through national CAP Strategic Plans, a programming tool that will define, for each Member State, the key parameters for the implementation of all CAP instruments (direct payments, rural development and sectorial interventions). The CAP Strategic Plans will be bound to conditionalities, e.g. in the field "climate and	continue to fund investments also in the field of environment and climate. This includes the agri- environment-climate payments supporting environmental-friendly farming methods and practices beneficial for the environment and climate, and providing environmental public goods in the fields of climate change mitigation and adaptation, the protection and improvement of the environment, including water quality and quantity, air quality, soil, biodiversity, landscapes and ecosystem services. Hence, all SWMIs (except hydromorphology) and cross-cutting issues are also in future potentially covered by EAFRD payments. Additionally, rural development will continue to support organic farming, areas composing the Natura 2000 EU network, and also environment/climate- related investments, knowledge-building, innovation as well as co- operation.	eligible	(see footnote 3 above) *EAFDR general: https://ec.euro pa.eu/info/foo d-farming- fisheries/key- policies/com mon- agricultural- policy/rural- development# eafrd *CSWD on the proposed CAP and the environment: https://ec.euro pa.eu/info/site s/info/files/fo od-farming- fisheries/susta inability_and_ natural_resour ces/document s/analysis-of- links- between-cap- and-green- deal_en.pdf
LIFE	EU	environment". The LIFE programme is the	Potentially addresses all SWMIs through the "LIFE	EU and non- EU countries	*General information:

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
		only EU fund entirely dedicated to environmental and climate objectives. It supports the implementation of relevant EU legislation and the development of key policy priorities, by co-financing projects with European added value. In June 2018, the European Commission submitted a proposal on a regulation establishing a new LIFE programme for 2021-2027. It has two main fields of action, covering four sub- programmes. 1: Environment field with the Nature and Biodiversity and the Circular Economy and Quality of Life sub- programmes. 2: Climate Action field with the Climate Change Mitigation and the Clean Energy Transition sub- programme.	Integrated Projects" (organic pollution indirectly). Foci are ecosystem-based approaches: organic pollution (indirectly through natural buffer zones), nutrient pollution (diffuse sources from agriculture and agricultural atmospheric emissions, urban run-off), hazardous substances pollution (diffuse sources, mainly from agriculture, but potentially also from urban and landfill/mining sites), hydromorphological alterations (longitudinal river continuity, reconnection of wetlands/floodplains, hydrological alterations). Also measures targeting sediments (retention measures) and IAS. Through the many links to climate and resilience, synergy effects between climate change adaptation, mitigation and water/biodiversity protection are manifold (keywords: NWRM, green infrastructure).	(candidate countries and the Western Balkan countries involved in the Stabilisation and Association Process, as well as countries to which the European Neighbourho od Policy applies).	http://ec.euro pa.eu/environ ment/life/ *Information on COM proposal: https://www.e uroparl.europ a.eu/RegData/ etudes/BRIE/ 2018/628294/ EPRS_BRI(2 018)628294_ EN.pdf *LIFE regulation (proposal): https://eur- lex.europa.eu/ legal- content/EN/T XT/?uri=CO M%3A2018% 3A385%3AFI N *National contact points: https://ec.euro pa.eu/easme/e n/section/life/I ife-national- contact-points
Horizon Europe	EU	Horizon Europe is the funding program for research and innovation for the period 2021-2027.	No direct link to Danube SWMIs, but research to support measures/knowledge on any SWMI is possible.	EU and non- EU countries (associated countries). Research program, SME participation possible. Most projects require at	*General information on Horizon Europe: https://ec.euro pa.eu/info/hor izon-europe- next-research- and- innovation- framework-

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application programme_e
				partners.	n
INTER- REG VI/ European Territorial Coopera- tion (ETC)	EU	INTERREG programs are a specific strand of funding possibilities within the cohesion policy funding, under the European Territorial Cooperation (ETC) goal. INTERREG programs typically focus on cooperation between regions and Member States, and are generally aimed at enabling exchange of experience, knowledge and good practices among relevant stakeholders from different MS and/or regions.	No direct link to Danube SWMIs, but enabling exchange of experience, knowledge and good practices can benefit implementation of measures in all areas.	EU and non- EU countries. Programs can be cross- border (along internal EU borders), transnational (cover larger areas of co- operation such as the Danube Basin), and interregional at EU-28 level (between regional and local bodies in different regions).	*Information on Interreg VI (legislative process): https://www.e uroparl.europ a.eu/RegData/ etudes/BRIE/ 2018/628228/ EPRS_BRI(2 018)628228/ EPRS_BRI(2 018)628228/ EN.pdf *Information on ETC and INTERREG V: http://ec.euro pa.eu/regional _policy/index. cfm/en/policy /cooperation/e uropean- territorial/ *Project database: http://ec.euro pa.eu/regional _policy/index. cfm/en/projec ts/?LAN=EN &pay=ALL& region=ALL &the=97&typ e=ALL&per= 2 List of programs: http://www.da nube- region.eu/201 4-03-21-07- 28-38/etc-ipa- cbc-and-enpi- cbc- programmes
Neigh- bourhood, Develop- ment and Internatio- nal Coopera-	EU	NDICI (replacing ENI) is providing direct financial support for the EU's external actions.	Support for non-EU countries participating in cross-border ERDF/INTERREG programs possible.	Non-EU (candidates, possible candidates and neighbouring countries; in	*General information on the new policy (proposal): https://www.e uroparl.europ

Financing Program	Organi sation	Description	Significant Water Management Issue targeted Otherwise, potential link to	Other eligibility criteria the Danube	Sources/ further information regarding application
tion Instrument (NDICI)			Otherwise, potential link to Danube SWMIs through various funding opportunities (in July 2020, not yet adopted).	the Danube region: Republic of Moldova and Ukraine)	a.eu/RegData/ etudes/BRIE/ 2018/628251/ EPRS_BRI(2 018)628251_ EN.pdf *Proposal for the new regulation: https://www.e uroparl.europ a.eu/RegData/ docs_autres_i nstitutions/co mmission_eur opeenne/com/ 2018/0460/C OM_COM(20 18)0460_EN. pdf
Instrument for Pre- Accession Assistance (IPA III)	EU	Since 2007, the Instrument for Pre- Accession Assistance (IPA) replaces a series of EU programs and financial instruments for candidate countries or potential candidate countries (such as PHARE, ISPA, SAPRD etc.). It is organized along five components, which are: C1. assistance for transition and institution building; C2- cross-border cooperation (with EU MS and other countries eligible for IPA); C3. regional development (transport, environment, regional and economic development); C4. human resources (strengthening human capital and	In the Danube RB, only C1 and C2 are being funded: 1. assistance for transition and institution building; 2- cross-border cooperation (with EU MS and other countries eligible for IPA). Hence, no direct link to Danube SWMIs, although institution building and cross-border cooperation can benefit implementation of measures in all areas.	EU candidate countries (Turkey and FYROM) are eligible for all five components of IPA, potential candidate countries in the Western Balkans (Albania, Bosnia and Herzegovina, Montenegro, Serbia, and Kosovo under UN Security Council Resolution 1244/99) are eligible only for the first two components.	*Information on IPAIII: https://ec.euro pa.eu/regional _policy/de/20 21_2027/ *More general information: http://www.w elcomeurope. com/european -funds/ipa-ii- instrument- pre-accession- assistance- 2014-2020- 838+738.html #tab=onglet_d etails *More information: http://ec.euro pa.eu/regional _policy/index. cfm/EN/fundi ng/ipa/ List of programs: http://www.da nube- region.eu/201 4-03-21-07- 28-38/etc-ipa- cbc-and-enpi-

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application cbc-
		exclusion); C5. rural development.			programmes
Internat- ional Bank for Recon- struction and Develop- ment (IBRD) Internat- ional Develop- ment Associ- ation (IDA)	World Bank (WB)	The World Bank is an international financial institution that provides loans to developing countries. It consists of two agencies (IBRD and IDA) and focuses on the following fields: - human development (e.g. education, health); - agriculture and rural development (e.g. irrigation and rural services); - environmental protection (e.g. pollution reduction, establishing and enforcing regulations); - infrastructure (e.g. roads, urban regeneration, and electricity); - large industrial construction projects; - governance (e.g. anti-corruption, legal institutions development). The IBRD and IDA provide loans at preferential rates to member countries, as well as grants to the poorest countries.	No direct link to Danube SWMIs, although a multitude of projects/measures benefitting WFD implementation can be financed by WB loans (see also the examples listed under GEF). It has to be remarked, however, that IBRD provides only loans (though at preferential rates), not grants. IDA also provides grants.	IBRD: middle income and creditworthy low-income countries (all Danube except DE and AT). IDA: Republic of Moldova (and Kosovo)	*Products and Services: http://www.w orldbank.org/ en/projects- operations/pro ducts-and- services *IBRD: https://www. worldbank.or g/en/who-we- are/ibrd *IDA: https://ida.wo rldbank.org/
Global Environ- ment Facility (GEF)	GEF	The Global Environment Facility is a partnership for international cooperation where 183 countries work together with international institutions, civil	GEF provides grants to various types of projects (Climate Change Adaptation Projects and Small Grants Programme (SGP) most relevant) ranging from several thousand dollars to several million dollars. Projects are supported in several "focal	Most countries should be eligible, depending on the focal area, eligibility criteria established	*Templates and guidelines available at: http://www.th egef.org/gef/g uidelines_tem plates *Project types:

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
		society organizations and the private sector, to address global environmental issues.	areas", of which the most relevant are: Biodiversity, Climate Change, Chemicals and Waste. Financing is provided through grants and non-grants. Funding possible with regard to all Danube SWMIs.	by the relevant COP of the respective convention, and some others.	http://www.th egef.org/gef/p roject_types *Example from Republic of Moldova: http://www.w orldbank.org/ projects/P075 995/agricultur al-pollution- control-gef- project?lang= en&tab=overv iew *Example from Romania: http://www.w orldbank.org/ projects/P093 775/romania- integrated- nutrient- pollution- control- project?lang= en
European Investment Bank (EIB)	EU	The EIB is the EU's bank, offering loans (individual for projects over 25 Mio. €, intermediate to other banks/institutions for SME with projects under 25 Mio. €). The EIB finances a broad range of projects in all sectors of the economy, adhering to one of the six priority objectives, of which 2Climate and Environment" is of special importance for WFD implementation in the Danube.	No direct link to Danube SWMIs, but the EIB's financing can help to unlock financing from other sources, particularly from the EU budget. It has to be remarked, however, that the EIB provides loans, not grants.	EU and non- EU countries (all Danube countries).	*Applying for a loan: http://www.ei b.org/projects /cycle/applyin g_loan/index. htm *For the Western Balkans, see Western Balkans Investment Framework: http://www.w bif.eu/
European Bank for Recon-	Inter- national	The EBRD is a development bank offering loans and	No direct link to Danube SWMIs, although a multitude of (mostly private	All countries in the Danube RB -	*Products and Services: http://www.eb

Financing Program	Organi sation	Description	Significant Water Management Issue targeted	Other eligibility criteria	Sources/ further information regarding application
struction and Develop- ment (EBRD)		other financial products (like equities) in more than 30 countries from central Europe to Central Asia. Although the name suggests European ownership, the biggest shareholder is the United States. The EBRD supports private sector development (meeting the requirements, of which to "satisfy banking and environmental standards" is a part) in the relevant sectors agribusiness, energy efficiency & climate change (see Sustainable Energy Initiative), municipal & environmental infrastructure; power and energy.	sector) projects/investments can be supported (such as improving animal feeding/breeding lots etc.). The "Sustainable Energy Initiative" (including renewable energy and adaptation projects) finances projects in energy efficiency, renewable energy and climate change adaptation/resilience. It has to be remarked, however, that the EIB provides loans, not grants.	except Austria and Germany - are eligible for loans.	rd.com/what- we- do/products- and- services.html *Sustainable Energy Initiative: https://www.e brd.com/what -we- do/sectors- and- topics/sustain able-energy- initiative.html

Country/ Funding Instrument	National Funding	European Regional Develop- ment Fund (ERDF)	European Social Fund (ESF)	Cohesion Fund (CF)	European Maritime and Fisheries Fund (EMFF)	LIFE	HORI ZON 2020	
Austria	yes	Information not available	Information not available	Informatio n not available	Information not available	yes	yes	
Bosnia and Herzegovina	yes	No	no	no	no	yes	yes	
Bulgaria	yes	Yes	no	yes	no	no	no	
Croatia	yes	Yes	yes	yes	yes	yes	yes	
Czech Republic	yes	Yes	yes	yes	no	yes	yes	
Germany	yes	No	no	no	no	yes	no	
Hungary	yes	Yes	yes	yes	yes	yes	yes	
Republic of Mo	oldova			Data not available yet.				
Montenegro	yes	No	no	no	no	no	no	
Romania	yes	Yes	no	yes	yes	yes	no	
Serbia	yes	No	no	no	no	no	yes	
Slovakia	yes	Yes	no	yes	no	yes	yes	
Slovenia				Data not available yet.				
Ukraine	yes	No	no	no	no	no	yes	

Funding Instruments used in the 2nd Management Cycle

Note: CAP/European Agricultural Fund for Rural Development (EAFRD) is excluded, as all EU countries use this fund. Note: Ukraine is only starting to develop RBMPs, information listed here hence covers only financing some activities in the water sector in

this region.

Country/ Funding Instrument	INTER- REG V/ European Territorial Coopera- tion (ETC)	European Neighbour- hood Instrument (ENI)	Instru- ment for Pre-Acce- ssion Assistance (IPA II)	International Bank for Reconstru- ction and Development (IBRD)/ International Development Association (IDA)	Global Environ- ment Facility (GEF)	European Invest- ment Bank (EIB)	European Bank for Reconstru- ction and Develop- ment (EBRD)	
Austria	yes	Information not available	Info- rmation not avail- able	Information not available	Informa- tion not available	Informa- tion not available	Informa- tion not available	
Bosnia and Herzegovina	no	yes	yes	yes	yes	yes	yes	
Bulgaria	no	no	no	no	no	no	no	
Croatia	yes	yes	yes	yes	yes	yes	yes	
Czech Republic	yes	no	no	no	no	yes	yes	
Germany	no	no	no	no	no	no	no	
Hungary	yes	yes	yes	yes	yes	yes	yes	
Republic of Moldova	Data not available yet.							
Montenegro	no	no	yes	no	no	no	no	
Romania	no	no	no	yes	no	yes	yes	
Serbia	yes	no	yes	yes	yes	yes	yes	
Slovakia	yes	no	no	no	no	no	no	
Slovenia	Data not available yet.							
Ukraine	yes	yes	no	yes	yes	yes	yes	

Note: CAP/European Agricultural Fund for Rural Development (EAFRD) is excluded, as all EU countries use this fund.

Note: Ukraine is only starting to develop RBMPs, information listed here hence covers only financing some activities in the water sector in this region.