## DANUBE POLLUTION REDUCTION PROGRAMME

# NATIONAL REVIEWS 1998 SLOVAKIA

## **TECHNICAL REPORTS**

Part C: Water Quality

Part D: Water Environmental Engineering



## **MINISTRY OF ENVIRONMENT**

in cooperation with the



Programme Coordination Unit UNDP/GEF Assistance



## DANUBE POLLUTION REDUCTION PROGRAMME

## NATIONAL REVIEWS 1998 SLOVAKIA

## **TECHNICAL REPORTS**

Part C: Water Quality

**Part D:** Water Environmental Engineering

## MINISTRY OF ENVIRONMENT

in cooperation with the

**Programme Coordination Unit UNDP/GEF Assistance** 

#### **Preface**

The National Reviews were designed to produce basic data and information for the elaboration of the Pollution Reduction Programme (PRP), the Transboundary Analysis and the revision of the Strategic Action Plan of the International Commission for the Protection of the Danube River (ICPDR). Particular attention was also given to collect data and information for specific purposes concerning the development of the Danube Water Quality Model, the identification and evaluation of hot spots, the analysis of social and economic factors, the preparation of an investment portfolio and the development of financing mechanisms for the implementation of the ICPDR Action Plan.

For the elaboration of the National Reviews, a team of national experts was recruited in each of the participating countries for a period of one to four months covering the following positions:

- Socio-economist with knowledge in population studies,
- Financial expert (preferably from the Ministry of Finance),
- ➤ Water Quality Data expert/information specialist,
- Water Engineering expert with knowledge in project development.

Each of the experts had to organize his or her work under the supervision of the respective Country Programme Coordinator and with the guidance of a team of International Consultants. The tasks were laid out in specific Terms of Reference.

At a Regional Workshop in Budapest from 27 to 29 January 1998, the national teams and the group of international consultants discussed in detail the methodological approach and the content of the National Reviews to assure coherence of results. Practical work at the national level started in March/April 1998 and results were submitted between May and October 1998. After revision by the international expert team, the different reports have been finalized and are now presented in the following volumes:

Volume 1: Summary Report Volume 2: Project Files

Volume 3 and 4: Technical reports containing:

- Part A: Social and Economic Analysis

- Part B: Financing Mechanisms

- Part C : Water Quality

- Part D: Water Environmental Engineering

In the frame of national planning activities of the Pollution Reduction Programme, the results of the National Reviews provided adequate documentation for the conducting of National Planning Workshops and actually constitute a base of information for the national planning and decision making process.

Further, the basic data, as collected and analyzed in the frame of the National Reviews, will be compiled and integrated into the ICPDR Information System, which should be operational by the end of 1999. This will improve the ability to further update and access National Reviews data which are expected to be collected periodically by the participating countries, thereby constituting a consistently updated planning and decision making tool for the ICPDR.

UNDP/GEF provided technical and financial support to elaborate the National Reviews. Governments of participating Countries in the Danube River basin have actively participated with professional expertise, compiling and analyzing essential data and information, and by providing financial contributions to reach the achieved results.

The National Reviews Reports were prepared under the guidance of the UNDP/GEF team of experts and consultants of the Danube Programme Coordination Unit (DPCU) in Vienna, Austria. The conceptual preparation and organization of activities was carried out by **Mr. Joachim Bendow**, UNDP/GEF Project Manager, and special tasks were assigned to the following staff members:

- Social and Economic Analysis and

Financing Mechanisms: Reinhard Wanninger, Consultant
- Water Quality Data: Donald Graybill, Consultant,
- Water Engineering and Project Files: Rolf Niemeyer, Consultant

- Coordination and follow up: Andy Garner, UNDP/GEF Environmental

Specialist

The **Slovakian National Reviews** were prepared under the supervision of the National Focal Point Coordinator, **Mr. Boris Minarik**. The authors of the respective parts of the report are:

Part A: Social and Economic Analysis: Ms. M. A. Petrikova
 Part B: Financing Mechanisms: Mr. David Luptak
 Part C: Water Quality: Ms. Anna Zekeova
 Part D: Water Environmental Engineering: Mr. Juraj Namer

The findings, interpretation and conclusions expressed in this publication are entirely those of the authors and should not be attributed in any manner to the UNDP/GEF and its affiliated organizations.

The Ministry of Environment

The UNDP/GEF Danube Pollution Reduction Programme, Danube Programme Coordination Unit (DPCU) P.O.Box 500, 1400 Vienna – Austria

Tel: +43 1 26060 5610 Fax: +43 1 26060 5837

Vienna – Austria, November 1998

# **Part C**Water Quality

## **Table of Contents**

| 1. | Summa   | ary                                                     | 1  |
|----|---------|---------------------------------------------------------|----|
|    | 1.1.    | Updating, Evaluation and Ranking of Hot Spots           | 1  |
|    | 1.2.    | Updating, Analysis and Validation of Water Quality Data | 2  |
| 2. | Updati  | ing of Hot Spots                                        | 5  |
|    | 2.1.    | General Approach and Methodology                        | 8  |
|    |         | 2.1.1. Evaluation of Existing Hot Spots                 | 12 |
|    |         | 2.1.2. Deletion of Existing Hot Spots                   |    |
|    |         | 2.1.3. Addition of Hot Spots                            | 15 |
|    |         | 2.1.4. Ranking of Hot Spots                             | 16 |
| 3. | Identif | ication of Diffuse Sources of Agricultural Pollution    | 27 |
|    | 3.1.    | Land under Cultivation                                  | 27 |
|    | 3.2.    | Grazing Area                                            | 29 |
| 4. | Updati  | ing and Validation of Water Quality Data                | 31 |
|    | 4.1.    | Index of Water Quality Monitoring Records               | 31 |
|    | 4.2.    | Data Quality Control and Quality Assurance              | 32 |
|    | 4.3.    | Data Consistency, Compatibility and Transparency        | 32 |
|    | 4.4.    | River Channel Characteristics                           | 37 |
|    |         | 4.4.1. Network                                          | 37 |
|    |         | 4.4.2. Channel Cross Sections                           | 37 |
|    |         | 4.4.3. Gradients                                        | 39 |
|    |         | 4.4.4. Flood Plains                                     | 41 |
|    |         | 4.4.5. Wetlands                                         | 41 |
|    |         | 4.4.6. Erosion and Degradation                          | 42 |
|    | 4.5.    | Dams and Reservoirs                                     | 43 |
|    | 4.6.    | Other Major Structures and Encroachments                | 43 |
|    | 4.7.    | Major Water Transfers                                   | 44 |
|    | 4.8.    | Preferred Sampling Stations and Data Sets               | 44 |
|    | 4.9.    | Water Discharges                                        | 45 |
|    | 4 10    | Sediment Discharges                                     | 46 |

|    | 4.11. Suspended Sediment Concentration                      | 46 |
|----|-------------------------------------------------------------|----|
|    | 4.12. Water Quality Data                                    | 47 |
| 5. | Legal and Institutional Framework for Water Quality Control | 49 |
| Aı | nnexes                                                      |    |

## **List of Tables**

| Гable 2.1.         | Municipal hot spots                                                                            |
|--------------------|------------------------------------------------------------------------------------------------|
| Гable 2.2.         | Industrial hot spots                                                                           |
| Г <b>able 2.3.</b> | Agricultural hot spots                                                                         |
| Г <b>able 2.5.</b> | Order of urgency for solution of municipal hot spots                                           |
| Гable 2.6.         | Order of urgency for solution of industrial hot spots                                          |
| Гable 2.17.        | Selected municipal hot spots                                                                   |
| Гable 2.18.        | Selected industrial hot spots                                                                  |
| Гable 3.1.         | Main rivers in the SR, their basins and length of bordering watercourses and structure of land |
| Гable 3.2.         | Fertilizer consumption                                                                         |
| Гable 3.3.         | Water erosion risk on Slovakia agricultural soils                                              |
| Гable 3.4.         | Average yield of selected crops within period 1990 to 1996                                     |
| Гable 3.5.         | Nutrient emission into surface water from Slovak Danube River basin                            |
| Гable 4.2.         | List of gauging stations                                                                       |
| Гable 4.3.         | Morava River                                                                                   |
| Гable 4.4.         | Vah River                                                                                      |
| Гable 4.5.         | Hron River                                                                                     |
| Гable 4.6.         | Ipel River                                                                                     |
| Гable 4.7.         | Slana River                                                                                    |
| Гable 4.8.         | Hornad River                                                                                   |
| Гable 4.9.         | Surface of territory endangered and protected by flood                                         |
| Гable 4.10.        | Water reservoirs in Slovakia with total volume over                                            |
| Гable 4.11.        | Water transfer in year 1996                                                                    |

# List of Abbreviations on Water Quality and Quantity

BOD 5 Biochemical Oxygen Demands after 5 days

**COD Cr** Chemical Oxygen Demand with Potassium Dichromate

**COD Mn** Chemical Oxygen Demands with Manganese

**DAS** Dissolved Anorganic Substances

**DS** Dissolved Substances

**NES** Non-Polar Extractable Substances

SS Suspended Solids

**TOC** Total Organic Carbon

Qa Long Time Average Year Discharge

**Qg** Guarantee Discharge

Q355 Water Discharge Guaranteed for 355 days in year

**Qokamž** Instantaneous Discharge

**DWQM** Danube Water Quality Model

**PE** Population Equivalent

QA/QC Quality Assurance and Quality Control

STN Slovak Technical Standards

**TNMN** Trans National Monitoring Network

VK Public Sewage System

WWTP Wastewater Treatment Plant

MB WWTP Mechanical-Biological WWTP

# List of Institutions **Dealing with Water Management Issues**

Environmental Programme for the Danube River Basin Programme Coordination Unit, Vienna International Center, Vienna, Austria

Ministry of Economy of the Slovak Republic Mierova 19, Bratislava

Ministry of Environment of the Slovak Republic

Nám. Ľ. Štura 1, Bratislava

Ministry of Health of the Slovak Republic

Limbova 2, Bratislava

Ministry of Soil Management of the Slovak Republic

Dobrovičova 12, Bratislava

National Reference Laboratory for Water in the SR

Water Research Institute

Nábr. arm. gen. L. Svobodu 5, Bratislava

Research Institute of Soil Fertility

Gagarinova 10, Bratislava

River Basin Authorities:

for Danube River Basin – Bratislava

Váh River Basin - Piešťany

Hron - Banská Bystrica

Bodrog and Hornád - Košice

Slovak Hydrological Institute

Jeséniova 17, Bratislava

Slovak Water Management Enterprices

Banská Štiavnica

Slovak Water Management Inspection, Head Office

Novomestského 2, Bratislava

Water Research Institute

Nábr. arm. gen. L. Svobodu 5, Bratislava

### 1. Summary

#### 1.1. Updating, Evaluation and Ranking of Hot Spots

Before the elaboration of the List of hot spots, the review of relevant documents, studies and projects performed up to now in the framework of the Danube Environmental Programme, such as National Review, Strategic Action Plan (SAP), Strategic Action Plan Implementation (SIP), Slovak National Action Plan (NAP) was carried out.

The List of "hot spots" sites established in the framework of SAP includes 22 sites from the Slovak Republic (municipal agglomerations, industrial pollution sources and landfills). For 21 of them preinvestment studies were prepared. For SIP projects proposals were suggested in two stages (SIP1 and SIP2) and four of them were selected to a short list. Two of them were focused on the solution of point sources of pollution.

The Ministry of Environment of the Slovak Republic (MoE) included in the NAP a study focused on the pollution reduction in discharged wastewater. The "hot spots" are ranked into 2 categories. The first category includes 19 pollution sources in the Danube River basin and takes into account national requirements as well. In the second category the highest priority is given to transboundary impact and it includes 17 pollution sources.

The Ministry of Soil Management of the Slovak Republic, which is responsible for the scope of activities in regard with municipal pollution sources, proposed to solve preferentially new sewerage and wastewater treatment plants (WWTPs) and WWTPs under construction in 13 cities. The majority of them are also on the List of MoE.

The Ministry of Economy of the Slovak Republic proposed to solve pollution sources considered as preferential.

The pollution sources in above-mentioned documents are listed in relevant chapters.

On the basis of data analysis and comparison, information and proposals included in the above-mentioned documents, it can be concluded, that they were selected on the basis of different criteria, application of which was not unified and systematic. It was quite difficult to rank a priority sequence. It is important to mention, that the National Review, the Strategic Action Plan have been elaborated several years ago and although the way of evaluation of point sources of pollution has not been altered significantly, part of the pollution sources is not included in the currently presented priority setting. One of the reasons is transformation of production programme in some factories and subsequently also alteration of discharged pollution. In the meantime, some of the pollution sources meet the Governmental Decree No. 242/1993 or are going to meet the Governmental Degree in a short time.

In order to exclude subjective aspect of pollution sources evaluation, the following approach to pollution sources selection in the Danube River basin was taken:

The initial database for updating of hot spots was created by using data on point sources of pollution during years 1990-96, which were registered in the State Water Management Balance (SWMB). In 1996 year 428 point sources of pollution were registered in SWMB, wastewater from which was discharged into rivers belonging to Danube River basin:

190 pollution sources from cities and municipalities

225 industrial sources of pollution

13 agricultural sources of pollution

It represented 1.102.465 mil. m<sup>3</sup> of wastewater, 25.074,3 t.y<sup>-1</sup> of BOD<sub>5</sub>, 70.935,5 t.y<sup>-1</sup> of COD<sub>Cr</sub>, 38.579,4 t.y<sup>-1</sup> of suspended solids, 580,9 t.y<sup>-1</sup> of NES (non-polar extractable substances) and 5490,1 t.y<sup>-1</sup> of N-NH<sub>4</sub>. It is not possible to make balance of pollution from sources registered in SWMB because of incompleteness of data on total N, total P, heavy metals and specific organic pollutants. The database of pollution sources from SWMB was analyzed in accordance with amount of emissions to define introductory group of point sources of pollution. In the introductory group were included sewerage of cities and municipalities under administration of waterworks, industrial and agricultural sources with emissions larger than 40 t.y<sup>-1</sup> of BOD<sub>5</sub> and also industrial and agricultural sources, which affect receiving water body significantly by specific pollution (heavy metals, etc.) in spite of emissions lower than 40 t.y<sup>-1</sup> of BOD<sub>5</sub>. Apart from that, each pollution source was evaluated from the point of view of water management permission, which is issued in compliance with the Governmental Decree No. 242/1993. If the pollution is in compliance with the Governmental Decree, the source of pollution was excluded from the list. Also small effluents lower than 10 t.y<sup>-1</sup> of BOD<sub>5</sub> were excluded. Pollution sources, which were temporarily discharging higher pollution (so called exceptions), were evaluated individually. This way the introductory group of 184 pollution sources was reduced to 82 sources of pollution. They were used in the priority setting by using multi-criteria analysis, illustrated in the Annex 2.1. "Criteria for evaluation of the urgency of WWTP construction", which is based on a score system. The pollution sources were ranked on the basis of a score number into priority sequence, which is increasing with increasing score number. The summaries are in the tables "Order of Urgency for Solution of Municipal Hot Spots" and "Order of Urgency for Solution of Industrial Hot Spots" (Table 2.5. and Table 2.6.). Including some of the pollution sources covered by SAP is out-of-date either because they were already solved, or their solution is under process in present e.g. Re-loading Railway Station Čierna n. Tisou, Sliac Airfield, Red Mud Deposit from the "ZSNP" Aluminium Factory in Žiar nad Hronom.

On the basis of described procedure agricultural point sources did not fall into reduced group of 82 pollution sources.

The list of "hot spots" in Slovak Republic in the Danube River basin includes top 10 from the list of municipal sources of pollution and top 10 from the list of industrial pollution sources (Table 2.16. and Table 2.17.). They represent emission sources, which should have been solved preferentially in dependence on accessible technical and financial sources because they are important pollution sources from both, the national and transboundary impacts on the water quality. Based on this top list the analyses of impact on rivers and use of water, data on wastewater treatment and current issues with proposal of necessary measures were elaborated. The processed data are in relevant tables.

## 1.2. Updating, Analysis and Validation of Water Quality Data

Surface water quality monitoring was set up in 1963 year. With increasing number of substances of interest and analytical methods development also number of monitored water quality determinants was gradually increasing. The surface and groundwater quality and quantity monitoring is in the scope of activities covered by the Ministry of Environment of the Slovak Republic. Nowadays, surface water quality is monitored in 243 sampling sites belonging to the Danube River basin (1997 y.). The surface water quality is evaluated in accordance with Slovak Technical Standard STN 75 7221 "Classification of Surface Water Quality". The data are evaluated on a yearly basis and published in a yearbook "Surface Water Quality in Slovak Republic".

The Slovak Hydrometeorological Institute (SHMI) is responsible for the surface water quality monitoring in the Slovak Republic. Sampling and analytical measurements are realized on the basis of contract between SHMI and Slovak Water Management Authority, actually by its four river basin authorities.

Slovak Hydrometeorological Institute defines to the laboratories requirements on the detection limit values for water quality determinants (which should correspond to 10% of limit value set up for I. class of water quality in accordance with Slovak classification system) and requirements on using of the standardized methods. The laboratories have also an obligation to provide information about quality system established in laboratory.

The laboratories send data to SHMI in defined structure and units (codes of river basins, rivers, sampling sites, determinants and analytical methods are unified). Apart of data control by laboratories, control is also performed by SHMI. Data needed to be checked (outliners, data which don't conform to general pattern of a data set) are consulted with representatives of the laboratories. After checking the data are recorded into database system MAGIC and are archived. Also secondary data concerns sampling location, time and date of sampling, analysis methods, etc. are stored. Statistical analyze of data is performed by computerized processing. Limit of detection value is used for statistical treatment in cases when value below detection limit was measured.

The laboratories of River Basin Authorities have developed their internal QA/QC system. Except for the Hron River Basin Authority, the laboratories are under the accreditation process, realized by Slovak National Accreditation System. The Hron River Basin Authority is planning to start with this process during a year 1998. In the Danube River Basin Authority and the Vah River Basin Authority persons responsible for quality management are already set up. Quality manuals are under preparation process in the Danube River Basin Authority, the Vah River Basin Authority and the Bodrog and Hornád River Basin Authority.

Standardized methods are used exclusively to analytical measurements of surface water samples in each laboratory. The results are well documented and archived. Documentation on maintenance of equipment and calibration is registered in logbooks. Principles of storage and maintenance of used chemicals are set up by each laboratory. Control and documentation in regard with the chemicals are performed by responsible persons.

Surface water sampling, transport conditions, sample conservation and storage before analytical measurements are in accordance with Slovak Technical Standard STN 83 0530. Standardized sampling protocols are filled in during the sampling process.

The type of sampling bottle and cleaning procedure is set up for different types of analyses.

Internal quality control is ensured using control charts and analysis of control samples (blanks, spiked samples, replicates) in participating laboratories.

External quality control is realized by participating of laboratories in between-laboratory performance testing, which is organized mainly by National Reference Laboratory for Water in the Slovak Republic. The National Reference Laboratory for Water is also the methodological center for quality assurance of water and water related media analyses and is a part of Water Research Institute in Bratislava. Between-laboratory performance testing is organized in accordance with standards valid in European Union.

Great importance is given to continuous increasing of staff qualification in laboratories. The information on completed training courses or studies creates a part of personal documentation of the laboratory staff.

In addition to national surface water quality monitoring network monitoring of transboundary rivers with neighboring countries is realized. The selection of sampling sites, sampling frequency, analytical methods used and method of evaluation depend on the common agreement of country representatives. The data on water quality in transboundary sampling sites are also accessible. If they are required, it will be necessary to take into account its specific character in the data assessment process. Their use should have been bound to agreement of both involved countries.

With purpose to get information on human activities impact on environment and on quality of human living "Danube Water Quality Model" is under preparation, which is to be served for assessment of transboundary pollution impact and also as a tool for water management planning.

With purpose to municipal and industrial hot spots impact assessment and for water quality management by using this model data on surface water quality from sampling sites situated above and below pollution sources in years 1994-96 (in some cases in 1997 y.) can be used. These sampling sites are listed in relevant tables of chapter 2.

For evaluation and balance of pollution out flowing from the Slovak Republic by using this model the water quality data of the Danube River entering and flowing off the Slovak Republic and its tributaries are accessible for years 1994-97. Selected water quality determinants are in Tables Water Quality in the Main Check Points in 1994-1997 as the minimum, maximum and mean values.

As one of the activities of the Danube Environmental Programme TNMN (Trans National Monitoring Network) was established, in the framework of which the water quality data from selected sampling sites in Danube River basin countries are collecting. The data are sent from involved countries in agreed extent and in the defined structure. This activity is coordinated by the same Programme and with purpose to avoid the duplicity it is therefore not mentioned in this section in a larger extent.

GEF - Danube River Basin Pollution Reduction Programme is focused on the pollution reduction in the Danube River Basin and on reduction of its negative impact on both the Danube Delta and Black Sea. One of its main purposes is reduction of eutrophication processes in Black Sea. In regard to these purposes determinants of interest such as BOD5, CODCr, total nitrogen (or other nitrogen forms), total phosphorus, heavy metals, oil and other hazardous chemicals were selected.

It is necessary to say that the frequency of surface water analyses on heavy metals, organic pollutants, total N, total P and some other determinants content is lower in some cases, and evaluation in accordance with STN 75 7221 is therefore not possible. It is supposed to be a disadvantage in the process of water quality simulation.

Another important disadvantage regarding the input of the data for water quality simulation is the lack of information concerning discharged nutrients amount from point sources of pollution, such as total N and total P. The current legislation does not require its monitoring. The New Water Act with related regulations are under preparation process now. They are preparing in accordance with EU Directives, in which monitoring of discharged nutrient is required.

Information concerning nutrient balance in Danube region was published in Final Report "Nutrient Balances for Danube Countries", which was elaborated in the frame of the Danube Environmental Programme - Applied Research Programme. To obtain more exact data was not possible, because of lack of information about effluent discharges from the point of view of nutrients. Data concerning diffusion pollution are not available on better basis than published in this report. Emissions of Slovakia into Danube River Basin were estimated as follows: 59 kt/y N and 5 kt/y P. The statement concerning estimation of nutrient emissions in this report was prepared on the basis of information of the experts from wastewater treatment branch and research institutions.

## 2. Updating of Hot Spots

The Environmental Programme for the Danube River Basin (EPDRB) conceived in Sofia in September 1991 and started in 1992, following agreement between its parties, Danubian countries and European Union.

Programme consists of two parts:

- First one is focused on collection of data and information, which monitors environment state
- second one is oriented to realization of the measures, which will lead to improvement of environment, mainly Danube water quality and following Danube Delta and Black Sea.

The first document in the frame of the EPDRB in Slovakia was <u>"The National Review"</u>, March 1994. It is focused on data and information about individual components of environment in the Slovak Republic according to river basins.

Chapter III proves by evidence point sources of pollution, nutrient outflow from arable agricultural land by wind and water erosion, waste disposals and water structures. Data are valid for the time of "The National Report" preparation, maximum till year 1991. In consequence of cogent changes ensued from the transformation of economy, substantial part of data does not represent reality.

"The Strategic Action Plan" (SAP) elaborated in December 1994, sets up common objectives, policy and strategy for solution of main environmental problems in the Danube River basin, its Delta and Black Sea.

On the SAP' list of the "hot spots", that means critical loaded areas, 22 localities from Slovakia are mentioned. Pre-investments studies were worked out for 21 of them.

List of proposed Slovak hot spots is in SAP (page 47) and consists of:

7 municipalities

10 industrial point sources of pollution

5 industrial localities like landfills of hazardous waste, respectively area with contaminated land and penetration of harmful substances into surface and ground water

SAP contents list of wetlands and other ecological sensitive areas as well. Their protection and renaturation is important from point of view of biodiversity, restoration of selfpurification etc. On this list are mentioned 6 localities from Slovakia (SAP, page 31).

"The Strategic Action Plan Implementation" (SIP) started in year 1996. On May 1996 "List of Project Proposals for the Danube Environmental Programme" was elaborated, called "SIP Projects" (SIP 1 and SIP 2). Projects were prepared for Morava, Vah and Tisa River basins, and were specially focused on hot spots with transboundary impact to Danube water quality. List of hot spots was prepared on the basis of report of an expert from the Water Research Institute named "Order of Urgency of Construction of the WWTPs with Transboundary Effect to Water Quality". Report was prepared specially for SIP Projects and used latest available data. Criteria for project proposals were following:

- incorporation in the SAP
- > order of urgency for solution of point sources of pollution (updated information)
- position on list of sources of pollution with regard to transboundary impact to water quality
- nature protection priorities

During the second phase project proposals were chosen:

#### Morava River basin:

- Reduction of the Pollution from WWTP in the Company Slovhodvab Senica nad Myjavou
- Renaturation of the River System in the Morava River basin

#### Vah River basin:

The International Training Center for the Education of Wastewater Treatment Plant Staff in Central and Eastern European and Developing Countries - Town Sladkovicovo

#### Tisa River basin:

Management of the Senne Rybniky

Strategic Action Plan is a tool of the EPDRB for improvement of environment in the Danube River basin, focused mainly to water protection. Each of Danubian countries prepared (or prepares) own Strategic Action Plan called National Action Plan.

"National Action Plan for Danube River Basin" (NAP) was submitted to Slovak Government on June 1997. Important part of NAP is chapter 2, in which are summarized main environmental problems including their influence on water regime and quality, causes and proposals of the measures with regard to local and regional level and level of the main river basins and whole Danube River system and Black Sea as well.

In chapter 4 "Measures" is improvement of water quality focused on the solution of important point sources of pollution and to measures in agricultural sector as well.

In the study of the Ministry of Environment of the Slovak Republic (MoE) which is focused on pollution reduction in wastewater up to limit values, order of hot spots is listed for two categories.

In the first category national criteria are set up and it includes 19 point sources in the Danube River Basin, from which 17 are municipalities and 2 industrial complexes. List of these point sources is in NAP (page 38). The second category gives the highest priority to transboundary impact and includes 17 point sources, of which 10 are municipalities and 7 industrial sources. Point sources are listed in NAP as well (page 38).

Ministry of Soil Management of the Slovak Republic, responsible for municipal sources of pollution (public sewerage and WWTPs), proposes prior solution of 13 new sewerage and WWTPs, respectively those, which construction started before. Eight of them are mentioned in the list of Ministry of Environment of the Slovak Republic in the first category, what means from the point of view of national interests.

On the programme of the Ministry of Economy of the Slovak Republic are listed point sources of pollution, which have priority from both point of view of the MoE - from national and transboundary aspect. For eight proposed hot-spots investment should be ensured from own sources of the factories and the enterprises and as loans from national and foreign financial institutions.

Point sources proposed for solution by the Ministry of Soil Management of the Slovak Republic and the Ministry of Economy of the Slovak Republic are listed in NAP (pages 38 and 39).

Analysis and comparison of data, information and proposals listed in above mentioned documents shows that the selection of hot spots and their order of urgency is designated by different criteria, application of which is not unified and systematic.

For mentioned reason it is problematic to set up order of urgency for solution of hot spots. That is why in the summary are point sources proposed till now, distributed to municipal and industrial. But order of urgency is not identical with the digit.

#### NOTES TO FOLLOWING TABLES:

- SAP Strategic Action Plan
- SIP (1) Strategic Action Plan Implementation, the first List of Project Proposals
- SIP (2) Strategic Action Plan Implementation, the second (final) List of Project Proposals (transboundary effect)
- NAP (1) National Action Plan national point of view
- NAP (2) National Action Plan transboundary point of view
- MP SR Ministry of Soil Management of the Slovak Republic
- MH SR Ministry of Economy of the Slovak Republic
- VK Public Sewage System

Table 2.1. Municipal hot spots

| No. | Locality                | Proposed in                           |   |
|-----|-------------------------|---------------------------------------|---|
| 1   | VK Banska Bystrica      | SAP, NAP (1), MP SR                   |   |
| 2   | VK Hlohovec             | SAP                                   | D |
| 3   | VK Kosice               | SAP, SIP (1), NAP (1), NAP (2), MP SR |   |
| 4   | VK Krompachy            | SAP, SIP (2), MP SR                   |   |
| 5   | VK Nitra                | SAP, NAP (1), MP SR                   |   |
| 6   | VK Nove Zamky           | SAP                                   |   |
| 7   | VK Ziar nad Hronom      | SAP                                   | D |
| 8   | VK Malacky              | SIP (1), NAP (1) NAP (2)              |   |
| 9   | VK Komarno              | SIP (1)                               |   |
| 10  | VK Kralovsky Chlmec     | SIP (1), NAP (2)                      |   |
| 11  | VK Slovenske Nove Mesto | SIP (1), NAP (2)                      |   |
| 12  | VK Devinska Nova Ves    | SIP (1), NAP (2)                      |   |
| 13  | VK Humenne              | NAP (1), MP SR                        |   |
| 14  | VK Presov               | NAP (1), MP SR                        |   |
| 15  | VK Svidnik              | NAP (1), MP SR                        |   |
| 16  | VK Trencin, right bank  | NAP (1)                               |   |
| 17  | VK Michalovce           | NAP (1), MP SR                        |   |
| 18  | VK Trnava               | NAP (1)                               |   |
| 19  | VK Bardejov             | NAP (1)                               |   |
| 20  | VK Hnusta               | NAP (1)                               |   |
| 21  | VK Svabovce             | NAP (1)                               |   |
| 22  | VK Kisovce – Horka      | NAP (1)                               |   |
| 23  | VK Roznava              | NAP (1)                               |   |
| 24  | VK Rimavska Sobota      | NAP (1)                               |   |
| 25  | VK Banska Stiavnica     | NAP (1), MP SR                        |   |
| 26  | VK Lucenec              | NAP (2)                               |   |
| 27  | VK Sturovo              | NAP (2)                               |   |
| 28  | VK Samorin              | NAP (2)                               |   |
| 29  | VK Sahy                 | NAP (2)                               |   |
| 30  | VK Cadca                | MP SR                                 | ` |
| 31  | VK Safarikovo           | MP SR                                 |   |
| 32  | VK Zvolen               | MP SR                                 |   |
| 33  | VK Kovacova             | MP SR                                 |   |

Table 2.2. Industrial hot spots

| No. | Name / Locality                                                          | Proposed in:           |
|-----|--------------------------------------------------------------------------|------------------------|
| 1   | Tannery factory-Bosany                                                   | SAP                    |
| 2   | Istrochem-Bratislava (chemical plant)                                    | SAP, NAP(2)            |
| 3   | Copper Smelting Works-Krompachy                                          | SAP, SIP(2) <u>D</u>   |
| 4   | Biopo-Leopoldov (food industry)                                          | SAP <u>D</u>           |
| 5   | Novaky Chemical Plants-Novaky                                            | SAP, NAP(1)            |
| 6   | North Slovak Pulp and Paper Plants-Ruzomberok                            | SAP                    |
| 7   | Sugar Factory-Sladkovicovo                                               | SAP <u>D</u>           |
| 8   | Chemko-Strazske (chemical plant)                                         | SAP, SIP(1), NAP(2)    |
| 9   | Sugar Factory-Surany                                                     | SAP <u>D</u>           |
| 10  | Povazske Chemical Plants-Zilina                                          | SAP                    |
| 11  | Re-loading station-Cierna nad Tisou                                      | SAP <u>D</u>           |
| 12  | Municipal waste dump-Krompachy                                           | SAP <u>D</u>           |
| 13  | Fly-ash dump-Zemianske Kostolany                                         | SAP <u>D</u>           |
| 14  | Airfield-Sliac                                                           | SAP <u>D</u>           |
| 15  | Dump of the ZSNP Plants-Ziar nad Hronom (aluminium factory)              | SAP <u>D</u>           |
| 16  | Bukocel Hencovce                                                         | SIP(1), NAP(1), NAP(2) |
| 17  | Slovhodvab-Senica nad Myjavou                                            | SIP(1), SIP(2), NAP(2) |
| 18  | Antifriction bearing Plant-Skalica                                       | SIP(1), NAP(2)         |
| 19  | East Slovak Ironworks-Kosice                                             | SIP(1), NAP(2)         |
| 20  | Old Herold Ferm-Trencin (spirit and yeast                                | SIP(1)                 |
|     | production)                                                              |                        |
| 21  | ASSI DOMAN Sturovo (pulp and paper ind.)                                 | NAP(2)                 |
| 22  | Feasibility study for Training Center for WWTP<br>Operators-Sladkovicovo | SIP(2)                 |

NOTE: " $\underline{D}$ " /deleted/ - that means hot spots which are listed in the Strategic Action Plan, but present are solved, or under solution.

Table 2.3. Agricultural hot spots

| No. | Name/Locality                                       | Proposed in : |
|-----|-----------------------------------------------------|---------------|
| 1   | Reduction of Nutrient Load to the Black Sea by      | SIP(1)        |
|     | Improvement Agricultural Management Practices       |               |
|     | (Proposal for PHARE Cross Border Project)-          |               |
|     | selected localities within one or more of the three |               |
|     | Slovak river basins                                 |               |

## 2.1. General Approach and Methodology

Starting point database for realization of requirement objective is: "up-dating of hot spots", are data concerning point sources of pollution from years 1990-1996, which are recorded in "The State Water Management Balance" (SWMB). Criteria for record keeping in SWMB are following:

Annual pollution higher than

15,000 m<sup>3</sup> discharged wastewater

3 t BOD -

6 t COD - Cr

5 t suspended solids (SS)

0.5 t non-polar extractable substances (NES)

10 t dissolved anorganic substances (DAS)

NOTE: for record keeping is enough fulfillment one of mentioned criteria

In Danube River Basin were recorded 428 point sources of pollution in SWMB in year 1996. Wastewater discharges were as follows:

190 from cities, towns and villages225 from industry13 from agriculture

Total volume of wastewater discharged in the Danube River basin was 1.102.456 mil. m<sup>3</sup>/year and pollution expressed by special indices was the following:

```
BOD – 5 25.074,3 t/year

COD – Cr 70.935,5 t/year

SS 38.579,4 t/year

NES 580,9 t/year

N-NH 4.5 490,1 t/year
```

In the frame of the SWMB it is not possible to calculate the balance discharged pollution from point sources for total N, total P, TOC, heavy metals and specific organic pollutants, because of the lack of the data. Existing legislation does not require those data. New legislation is under preparation now.

Database of pollution sources in the State Water Management Balance was submitted to analysis with regard to the greatness of emissions, with aim to set up most important points of pollution and to work out order of urgency for their solution. This way input file for point sources of pollution was established, in which were included:

- > public sewerage of towns and villages, which are under control of the waterworks
- industrial and agricultural sources with emissions higher than 40 t BOD5/year
- industrial and agricultural sources with emissions lower than 40 t BOD5/year, but with significant impact to water quality downstream of source with specific pollutants (heavy metals, organic pollutants etc.)

Each point source is assessed from point of view of discharging permit issued by the Water Management Authority as well. In this permit is regarded the Government Degree No. 242/1993 Coll., which sets up limit values for chosen parameters in wastewater. More details are in Annex of the Chapter 5.

Only 32 % of input files meet conditions in accordance with water management permit. Point sources in harmony with permit were deleted from file. Sources with temporary higher values than limit values, but discharging with permit of the water management authority (so called "exceptions") were evaluated individually. Each of those exceptions has determined the date when they must meet the Government Degree No. 242/1993 criteria. Public sewerages with small discharged pollution (lower than 10 t BOD-5/year) were deleted from the list.

Using this procedure number of point sources has been decreased to 82.

The order of urgency for solution of mentioned 82 sources have been established by the method of multicriteria analysis. The principle is system of evaluation by points for 11 criteria. Each criterion has the scope from 1 to 5 and depends on the cogency. The signification of the criteria is evaluated by numbers as well and is called "weight of the criterion". The highest weight has criterion for discharged pollution in relationship to the deterioration of downstream water quality (for flow discharge Q 355). Following are criteria intakes of water for drinking water supply, state of wastewater treatment etc. More details in Annex 2-1.

The order of pollution sources established on the basis of points evaluation is articulated into municipal and industrial sources as follows:

Table 2.5. Order of urgency for solution of municipal hot spots

| No. | Name/Locality                         | E   | Outle                      | et into receiving water |                   |
|-----|---------------------------------------|-----|----------------------------|-------------------------|-------------------|
|     | ř                                     |     | Name of recipient          | r.km                    | $Q_{355} (m^3/s)$ |
| 1   | VK Kosice                             | 241 | Hornad                     | 24,3                    | 6,23              |
| 2   | VK Nitra                              | 224 | Nitra                      | 52,5                    | 3,46              |
| 3   | VK Malacky                            | 223 | branch of Malina           | 1,6                     | 0,001             |
| 4   | VK Banska Bystrica                    | 222 | Hron                       | 168,4                   | 7,93              |
| 5   | VK Michalovce                         | 219 | Laborec                    | 34,2                    | 1,474             |
| 6   | VK Svidnik                            | 217 | Ondava                     | 117,2                   | 0,28              |
| U   | VK SVIUIIK                            | 217 | Olidava                    | 115,3                   | 0,28              |
| 7   | VK Trencin right bank                 | 215 | Zlatovsky creek            | 2,8                     | 0,03              |
| 8   | VK Humenne                            | 210 | Laborec                    | 63,4                    | 1,13              |
| 9   | VK Ruzomberok                         | 198 | Vah                        | 314,8                   | 12,1              |
|     |                                       | _   |                            |                         |                   |
| 10  | VK Topolcany VK Svabovce              | 195 | Nitra                      | 93,4                    | 2,78              |
| 11  |                                       | 194 | Ganovsky creek             | 5,7                     | 0,034             |
| 12  | VK Kisovce-Horka                      | 194 | Tarnocky creek             | 1,5                     | 0,034             |
|     |                                       |     | Kisovsky creek             | 0,05                    |                   |
| 13  | VK Roznava                            | 190 | Slana,                     | 50,2                    | 0,951             |
|     |                                       |     | Roznavsky creek            |                         |                   |
| 14  | VK Liptov. Mikulas                    | 190 | Vah                        | 357,6                   | 4,473             |
| 15  | VK Banska Stiavnica                   | 186 | Stiavnica                  | 51,0                    | 0,017             |
|     |                                       |     |                            | 51,6                    |                   |
| 16  | VK Krompachy                          | 181 | Hornad                     | 96,5 and 98,9           | 1,48              |
|     |                                       |     |                            | 0,096                   |                   |
|     |                                       |     | Slovinsky creek            |                         |                   |
| 17  | VK Ilava                              | 174 | Nosicky channel            | 18                      | Qg                |
| 18  | VK Hlohovec                           | 172 | Vah                        | 98,9                    | Qg: 6,4           |
| 19  | VK Zvolen                             | 172 | Hron                       | 153,3                   | 9,79              |
|     |                                       |     |                            | 152,7                   |                   |
|     |                                       |     | Slatina                    |                         |                   |
| 20  | VK Lucenec                            | 172 | Krivansky creek            | 4,4                     | 0,116             |
| 21  | VK Sala nad Vahom                     | 169 | Kolarovsky channel         | 27,9                    | 0,3               |
| 22  | VK Secovce                            | 168 | Trnavka                    | 14                      | Qg: 0,32          |
| 23  | VK Levice                             | 168 | Podluzianka                | 2,2                     | 0,03              |
| 24  | VK Myjava                             | 167 | Myjava                     | 62,3                    | 0,055             |
| 25  | VK Galanta                            | 167 | Sard                       | 10,4                    | 0,006             |
| 26  | VK Slov. Lucobne                      | 166 | Rimava                     | 59,9                    | 0,478             |
|     | zavody-                               | 100 |                            | 57,5                    | 0,170             |
|     | Hnusta                                |     |                            |                         |                   |
| 27  | VK Pezinok                            | 163 | Blatina                    | 1,2                     | 0,035             |
| 28  | VK Holic                              | 162 | Kystor                     | 4,1                     | 0,001             |
| 29  | VK Piestany                           | 162 | Dubova                     | 2,6                     | 0,001             |
| 30  | VK Spisske Podhradie                  | 162 | Margecianka                | 5,0                     | 0,04              |
| 31  | VK Spisske Podifiadie  VK Velky Meder | 161 | chan. Velky Meder -Holiare | 2,8                     | 0,001             |
|     |                                       |     |                            |                         |                   |
| 32  | VK Komarno                            | 161 | Vah                        | 1,7                     | 40                |
| 33  | VK Sturovo                            | 160 | Dunaj                      | 1718,1                  | 890               |
| 34  | VK Prievidza                          | 159 | Handlovka                  | 4,8                     | 0,249             |
| 35  | VK Nove Zamky                         | 159 | Nitra                      | 8,8                     | 4,27              |
| 36  | VK Kosice-Saca                        | 155 | Hornad                     | 24,3                    | Qg: 6,23          |
| 37  | VK Kralovsky Chlmec                   | 154 | Chlmecky channel           | 1,1                     | 0,001             |
| 38  | VK Cadca                              | 153 | Kysuca                     | 28,1                    | 0,785             |
| 39  | VK Senec                              | 150 | Cierna Voda                | 30,7                    | 1,03              |
| 40  | VK Krupina                            | 149 | Krupinica                  | 40,7                    | 0,005             |
| 41  | VK Petrzalka                          | 148 | Dunaj                      | 1862                    | 800               |
| 42  | VK Bratislava                         | 148 | Maly Dunaj                 | 123,4                   | Qg:               |
| _   | (central WWTP)                        | 1   | ,                          | 120,                    | ×0'               |
| 43  | VK Spis.Nova Ves                      | 147 | Hornad                     | 127,4                   | 0,54              |
|     | VK Stropkov                           | 147 | Ondava                     | 100,8                   | 0,45              |
| 44  | V K Stronkov                          |     |                            |                         |                   |

Table 2.5. continued

| No. | Name/Locality        | E   | Out                | tlet into receiving water |                   |
|-----|----------------------|-----|--------------------|---------------------------|-------------------|
|     |                      |     | Name of recipient  | r.km                      | $Q_{355} (m^3/s)$ |
| 45  | VK Samorin           | 144 | Dunaj              | 1843                      | 800               |
| 46  | VK Skalica           | 142 | Kopciansky channel | 7,4                       | ponds system      |
| 47  | VK Velke Kapusany    | 142 | Udoc               | 3,8                       | 0,017             |
| 48  | VK Vranov nad Toplou | 141 | Topla              | 17,5                      | 1,58              |
| 49  | VK Kysuc.Nove Mesto  | 139 | Kysuca             | 7,1                       | 1,53              |
| 50  | VK Modra             | 139 | Stolicny creek     | 21,3                      | 0,019             |
| 51  | VK Bernolakovo       | 138 | Cierna Voda        | 41,1                      | 0,02              |
| 52  | VK Filakovo          | 138 | Belina             | 1,6                       | 0,017             |
| 53  | VK Sahy              | 133 | Ipel               | 54,7                      | 0,61              |
| 54  | VK and Ozeta Tornala | 133 | Slana              | 15,8                      | 2,64              |
|     |                      |     |                    | 17,4                      |                   |
|     |                      |     |                    | 17,8                      |                   |
| 55  | VK Svaty Jur         | 130 | Sursky channel     | 11,2                      | 0,035             |
| 56  | VK Kremnica          | 130 | Kremnicky creek    | 15,0                      | 0,077             |
|     |                      |     |                    | 15,5                      |                   |
|     |                      |     |                    | 10,6                      |                   |
| 57  | VK Liptov.Hradok     | 129 | Vah                | 357,6                     | Qg: 4,473         |
| 58  | VK Vrable            | 127 | Zitava             | 19,9                      | 0,32              |
| 59  | VK Dolny Kubin       | 126 | Orava              | 15,6                      | 6,26              |
| 60  | VK Levoca            | 125 | Levocsky creek     | 15,0                      | 0,09              |
| 61  | VK Jablonov          | 125 | Vavrincov creek    | 3,0                       | 0,03              |
| 62  | VK Brezno            | 125 | Hron               | 218,8-232-224             | 1,77              |
|     |                      |     | Brezenec           | 0,8                       |                   |
| 63  | VK Dudince           | 125 | Stiavnica          | 10,0                      | 0,147             |
| 64  | VK Banovce n. Bebr.  | 120 | Bebrava            | 19,8                      | 0,485             |
| 65  | VK Gelnica           | 120 | Hnilec             | 7,0                       | 1,242             |
| 66  | VK Slovenske         | 117 | Ronava             | 1,1                       | 0,25              |
|     | Nove Mesto           |     |                    |                           |                   |
| 67  | VK Jelsava           | 111 | Muran              | 20,9                      | 0,438             |
| 68  | VK Devinska NovaVes  | 106 | Mlaka              | 1,0                       | 0,055             |
| 69  | VK Medzilaborce      | 100 | Laborec            | 110,6                     | 0,16              |
| 70  | VK Snina             | 93  | Cirocha            | 22,1                      | 0,28              |
|     | . 0                  |     |                    | 22,5                      |                   |

NOTE: Qg - guarantee discharge

Table 2.6. Order of urgency for solution of industrial hot spots

| No. | Name/Locality                   | Evaluation |
|-----|---------------------------------|------------|
| 1   | Novaky Chemical Plants-Novaky   | 207        |
| 2   | Bukocel Hencovce                | 198        |
| 3   | Povazske Chemical Plants-Zilina | 186        |
| 4   | Istrochem Bratislava            | 185        |
| 5   | Slovhodvab-Senica nad Myjavou   | 179        |
| 6   | Chemko Strazske                 | 175        |
| 7   | ASSI DOMAN Sturovo              | 168        |
| 8   | Biotika Slovenska Lupca         | 161        |
| 9   | Bucina Zvolen                   | 157        |
| 10  | Tanner Tactory-Bosany           | 148        |
| 11  | Harmanec Paper Factory-Harmanec | 121        |
| 12  | East Slovak Ironworks-Kosice    | 120        |

 $Note: E-evaluation\ expressed\ by\ points\ assessment\ (municipal\ and\ industrial\ sources)$ 

By using multicriteria analysis evaluation, agricultural point sources are not in narrow down file of 82 sources. Those sources are essentially pig and poultry farms and improvement of the sanitary conditions of veterinary facilities.

#### 2.1.1. Evaluation of Existing Hot Spots

Data and information concerning sources of pollution, existing in individual documents (the National Review, SAP, SIP, NAP), are not possible to compare and evaluate, because of their insufficient scope and heterogeneous assessment criteria.

List worked out on the basis of multicriteria analysis sets up the order of urgency for the solution of pollution sources.

The first 10 sources were chosen from the list of municipal hot spots. For those latest available data were assessed, mainly the size of emission source, impact on downstream water quality in the relationship to pollution source and state of wastewater treatment.

Eight from mentioned 10 hot spots are proposed in the Strategic Action Plan, the National Action Plan or SIP. Six of them as well were chosen by the Ministry of Soil Management of the Slovak Republic as sources with priority solution.

Latest data about point sources emission are available from year 1996 (data of year 1997 are being worked up) and for 10 chosen municipal hot spots in Table 2.7.

Data about influence pollution source on recipient shows Table 2.8. There are average values of chosen water quality indices in the recipient of years 1995-1996, in profiles up and downstream of pollution source. Surface water quality is classified by class as well (standard STN 75 7221). Check profile localities for evaluated hot spots are in Table 2.9. and on map (Figure 2.1.).

More detailed data concerning water quality in check qualitative profiles for years 1994-1997 are in the Slovak Hydrometeorological Institute database. They are available in the yearbooks "Surface Water Quality in SR".

Quantity of emissions and their impact on recipient depends largely on state of wastewater treatment. For this reason key measures are focused to this problem. The present wastewater treatment state in chosen hot spots and realization proposed measures is listed in Table 2.10.

Other available information characteristic of pollution source and recipient, above all from point of view of its utilization is noted in Table 2.11.

Similarly as for municipal hot spots, industrial hot spots data are handled for year 1996. Characteristic indices of effluent discharges for the first 10 hot spots shows Table 2.12. The influence to water quality in check point downstream of point source is proved by average values of measured data in years 1995-1996 and completed by class of quality (standard STN 75 7221). Results are in Table 2.13. Industrial hot spots check river points of receiving water are listed in Table 2.14. The present wastewater treatment state in hot spots and proposed measures shows Table 2.15.

Water quality data in qualitative checkpoints during years 1994-1997 are in the yearbook "Surface Water Quality in SR" at SHMI.

Map "Significant Pollution Sources and main Profiles of the State Water Management Balance" shows municipal and industrial hot spots including checkpoints of water quality (Figure 2.1.).

#### 2.1.2. Deletion of Existing Hot Spots

All pollution sources proposed in SAP, SIP and NAP or in the proposals of the Ministry of Soil Management and the Ministry of Economy are found in more narrow pollution sources file. The order of urgency for their solution is worked out on the basis of multicriteria analysis. The changes in the order of urgency ensue from the methodic of individual criteria evaluation.

On the basis of comparison of lists of hot spots in SAP, NAP, SIP, or other relevant documents, with list of hot spots prepared by multicriteria analysis, it is possible to state:

8 municipal hot spots localities, 7 industrial point sources and 5 areal polluted places are missing. They are listed below:

#### Municipal hot spots

#### ZIAR NAD HRONOM

WWTP fulfills criteria for wastewater discharges in the wording of Governmental Decree No. 242/1993. In 1994 started MB WWTP where removal of N is included in the treatment process. In the future is planned removal P as well.

#### **PRESOV**

WWTP after finalization of new MB WWTP in 1997 fulfills required emissions limits and other conditions as set up in Governmental Decree No. 242/1998. Testing operation a new WWTP should be finished in June 1998. By end of the year 1998 finalization IV construction of sewerage Presov-Sekcov is planned. Outflow DEPO has been canceled.

#### **TRNAVA**

WWTP was finished in year 1997, now is in testing operation.

#### **BARDEJOV**

Upgrading of WWTP was completed in 1997.

#### RIMAVSKA SOBOTA

Extended WWTP including nutrients removal is in testing operation since 1997 and fulfills required limit values.

#### **TORNALA**

Sewerage and WWTP should be finished in 1998. Common treatment for municipal and industrial (OZETA) wastewater.

#### **KOVACOVA**

During years 1996 - 97 sewerage and main sewerage collector were built. Finalization is planned in year 1999.

#### **HLOHOVEC**

WWTP finalization in year 1998

#### > Industrial hot spots

#### KOVOHUTY KROMPACHY

The reconstruction and changes of technology are planned till year 2000.

#### **BIOPO LEOPOLDOV**

Change in the production structure and establishing of low - waste technology are reason for decreasing of organic pollution discharged into recipient (from 1879 t BOD-5 in year 1991 to 130 t BOD-5 in year 1996). Decrease of N-NH4 is registered as well. Effluent discharges fulfill limit values.

#### SCP RUZOMBEROK (pulp and paper industry)

Installation of a new paper machine and mechanical-chemical treatment of wastewater are the causes of suspended solids lowering. By introducing of new bleaching technology for pulp, content of COD decreased about 35 % in wastewater. Other parameters were improved as well (color, sulphur compounds) and limit values for discharged pollution were fulfilled, except COD values.

Change of ownership is presupposed.

#### SUGAR FACTORY SLADKOVICOVO (CUKOS Ltd.)

Upgrading of MB WWTP was finished in year 1997.

#### SUGAR FACTORY SURANY

On the basis of changes in production process, MB WWTP fulfills required criteria.

#### ANTIFRICTION BEARING PLANT SKALICA

WWTP was built and since 1997 is in testing operation

#### OLD HEROLD FERM TRENCIN

WWTP built and treatment process started in 1997.

#### Critical sides

Contemporary list of industrial point sources does not include the environmentally critical sites that are mentioned in the Strategic Action Plan. Their total number is 5, but for all of them during years 1993-1994 pre-investment studies were elaborated, in which and measures for solution are proposed.

Actual data and information concerning progress in environmental problems solution in those localities it is possible obtain usually from interested institutions. Character and extent of relevant questions of those areas as mentioned in the pre-investments studies including present situation is as follows:

#### RE-LOADING RAILWAY BORDER STATION "ČIERNA NAD TISOU"

Identified environmental problems are concentrated on the ground water pollution of oil components derived from spills leaching of oil from oil tanks and waste reservoirs due to the re-loading of oil and oil products from Ukraine and other eastern countries.

More than 450.000 m<sup>3</sup> of soil and 70.000 m<sup>3</sup> of ground water aquifer are heavily contaminated. The contamination seriously threatens a nearby drinking water reservoirs for approx. 20.000 inhabitants.

Projects listed by the company included a great number of measures concentrated to two locations:

- a. the pumping area and storage tanks
- b. a lake area (7 ha), into which all wastewater from the drainage/sewage system were pumped for many years resulting in a thick layer of accumulated oil at the bottom (now removed)

#### Present situation:

Oil products accumulated in lake area were removed. Hydraulic shield for groundwater sources protection was proposed, and start of its operation is planned on May 1998. Former oil products pipe should be liquidated soon and the improvement of sanitary condition will start as well.

Solution of these hot spots is under auspices of the Slovak Railway and depends on available budget.

#### "SLIAČ" AIRFIELD

During its use as a military airfield by the Russians until 1989, the sub-soil and ground water at the Sliac airfield have been polluted by leakage of oil from storage tanks and pipelines. The total polluted area is about 3,6 ha. The pollution was thought to endanger the water quality of the Hron River and two nearby spas (Sliac and Kovacova). However, in view of the hydro-geological condition this danger seems minor. The situation with regard to micro-pollution is not clear.

After 1989 a number of sanitation measures were taken. Biodegradation of polluted soil seems to be effective. This has been done in the past but was discontinued.

#### Present situation:

Cleaning process in this area continues under the auspices of the Ministry of Defense of the Slovak Republic, which is responsible body for it now. That means biodegradation of oil products in polluted soil and treatment of polluted ground water.

## RED MUD DEPOSIT FROM THE "ZSNP" ALUMINIUM FACTORY AT ZIAR NAD HRONOM

The red and brown mud is waste product from the production of aluminium (raw material bauxide). The fluid mud is transported by pipeline to a storage site of about 50 ha where it is piled up to a high of some 40 to 50 meters. The water leaching from this dumping site is high alkalinity (pH about 12) with high concentrations of chromium, arsenic, vanadium and molybdenium. At the upstream side of the storage site a bentonite wall has been constructed. This wall was intended as a barrier to prevent the flow of percolate and polluted (arsenic especially) ground water to the Hron River.

The bentonite wall has been not satisfactorily effective. The ground water flows to the Hron contain an estimated arsenic load 750-3500 kg/y, which will rise the average arsenic concentration of the Hron by 0.7 to 3.8 microgram/l.

To avoid the flow of polluted ground water towards the river it was prepared a project of extension the bentonite wall around the entire dumping area. In addition it is planned to evaluate the drain from the dumping site, to prevent the build up of a high hydraulic pressure on the bentonite wall. This water can be reused in the factory.

Present situation:

Planned wall was built up, now continues process of afforestation, which depends of financial sources.

#### MUNICIPAL SOLID WASTE IN TOWN KROMPACHY

Main problem of these hot spots was leaching of heavy metals and nutrients into drinking water supplies.

Present situation:

Municipal solid waste should be closed during year 1998 and it is part of complex solution together with dump of factory "Kovohuty" in Krompachy, dump "Halna" and fly-ash dump of "Foundry" in Krompachy. Responsible bodies for closing of dumps and their cleaning up are mentioned enterprises together with Municipal Office Krompachy.

Note: Changes are intended in technology of production process in "Kovohuty" Krompachy

"ENO" (THERMAL POWER PLANT) ZEMIANSKE KOSTOLANY

Main problems - arsenic ashes stored at riverside

Present situation:

The enlargement of existing ashes dump is under construction and is realized on the basis of valid orders.

In future changes are planned in technology and for this reason character of waste will be changed. There are planned changes in fuel base as well.

#### 2.1.3. Addition of Hot Spots

On the basis of the consultation with the representatives of the Slovak Water Management Inspection, what is felt from their viewpoint as a problem, which should be solved as important, we have received next proposal.

There is a problem with discharged pollution from vessels in Slovak Danube River stretch and water pollution by oil products from vessels as well. This problem is necessary to solve from technical and institutional point of view. With regard to transboundary character of the Danube River, process of solution must be in accordance with existing relevant bilateral and multilateral agreements.

For above-mentioned reason this project was not put on the list of hot spots at present. But later on, after preparation of the common work plans with other Danube countries, supporting project could be useful. Now, this hot spot is assessed as POTENTIAL HOT SPOT. Moreover, in year 1997 project focused to solution of such problem was intended to be solved in the frame of the Danube Environmental Programme.

Diffuse sources of pollution as proposed to be mentioned in this part, are topic of the Chapter 3. Except of difficult clarification of diffusion source it is not possible to find polluter - owner of the project. At present to solve this problem in the frame of this Programme seems to be unrealistic.

#### 2.1.4. Ranking of Hot Spots

Regarding to the previous text and relevant tables ranking lists for municipal and industrial hot spots were prepared.

Table 2.17. Selected municipal hot spots

| No. | Locality                     | Priority |
|-----|------------------------------|----------|
| 1   | WWTP Kosice                  | high     |
| 2   | WWTP Nitra                   | high     |
| 3   | WWTP Malacky                 | medium   |
| 4   | WWTP Banska Bystrica         | medium   |
| 5   | WWTP Humenne                 | medium   |
| 6   | WWTP Michalovce              | medium   |
| 7   | WWTP Svidnik                 | medium   |
| 8   | Sewerage Trencin, right side | medium   |
| 9   | WWTP Ruzomberok              | low      |
| 10  | WWTP Topolcany               | low      |

From above mentioned municipal hot spots two pollution sources have transboundary impact to water quality: WWTP Kosice and WWTP Malacky

Table 2.18. Selected industrial hot spots

| No. | Locality                        | Priority |
|-----|---------------------------------|----------|
| 1   | Novaky Chemical Plants Novaky   | high     |
| 2   | Bukocel Hencovce                | high     |
| 3   | Istrochem Bratislava            | medium   |
| 4   | Povazske Chemical Plants Zilina | medium   |
| 5   | Slovhodvab Senica n. Myjavou    | medium   |
| 6   | Chemko Strazske                 | medium   |
| 7   | ASSI DOMAN Sturovo              | low      |
| 8   | Tanning Factory Bosany          | low      |
| 59  | Biotika Slovenska Lupca         | low      |
| 10  | Bucina Zvolen                   | low      |

Following industrial point sources have transboundary impact to water quality: Istrochem Bratislava, ASSI DOMAN Sturovo, Bukocel Hencovce, Slovensky hodvab Senica, Chemko Strazske.

Order of pollution sources was prepared with regard to wastewater impact to transboundary waters, which are: Danube, Morava and Bodrog.

In case of common assessment of municipal and industrial point sources, order of pollution sources with regard to transboundary impact to water quality is following:

- 1. Istrochem Bratislava
- 2. ASSI DOMAN Sturovo
- 3. WWTP Kosice
- 4. Bukocel Hencovce
- 5. Slovensky hodvab Senica
- 6. Chemko Strazske

NOTE: Industrial hot spots appear to have a greater importance than municipal hot spots from viewpoint of transboundary effect.

For preparation of the order, combination of the two criteria we have assessed as most important: increasing of BOD-5 values in transboundary profile as a consequence of wastewater discharge and distance of pollution source of the border. These criteria have been used for all orders in this Chapter.

## Summary of Information of the municipal hot spots - high priority

| Name of the<br>Hot Spots                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WWTP Košice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Pots                                                                      | Wastewater discharged into Hornad (r.km. 24,3). Analysis of wastewater in year 1996:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
|                                                                           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t/y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
|                                                                           | BOD-5<br>COD-Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br><b>75</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 182,6<br>2 956,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |  |  |
|                                                                           | DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 315,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |  |  |
|                                                                           | DAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 191,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |  |  |
| Critical                                                                  | NES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |  |  |
| Emissions                                                                 | N-NH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |  |  |
|                                                                           | total P 0,9 36,2  Volume of discharged waters and discharge regime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
|                                                                           | 1250l/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000 m <sup>3</sup> /y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 h/ 365 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | required for State Water Managemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt                        |  |  |
|                                                                           | Balance. Those data (tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l N and total P) are cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culated for municipal he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ot spots proposed to be solved in this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                         |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | art C - Water Environr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nental Engineering, wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ere other data except SWMB are use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed as                     |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stewater has in check j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | point upstream of WW7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TP Kosice following long-time hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ological                  |  |  |
|                                                                           | characteristics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4,383 \text{ m}^3/\text{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |  |  |
|                                                                           | Sampling site - r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,383 m/s<br>7,969 m <sup>3</sup> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |  |  |
| Seasonal                                                                  | "Krasna nad Hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'nadom'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
| Variation                                                                 | For amission of year 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 (ahaya liatad) ayama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qa<br>a daily diasharasa yyara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $20,970 \text{ m}^3/\text{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |  |  |
|                                                                           | For emission of year 199<br>8,888 m <sup>3</sup> /s (Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
|                                                                           | 52, 668 m <sup>3</sup> /s (Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n. value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x. value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |  |  |
|                                                                           | 21, 243 m <sup>3</sup> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | average ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                         |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed municipal wastewater, phenol wa<br>was hydraulic and mass overloaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |  |  |
| Root Causes of                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |
| Noot Causes of                                                            | this reason construction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f new mechanical part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and decay tanks has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en started. New mechanical WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | part is                   |  |  |
| Water Quality                                                             | in operation since 1988. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The decay tanks are in o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operation as well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                         |  |  |
|                                                                           | in operation since 1988. T<br>During years 1991-1992 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The decay tanks are in options and in the started construction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | operation as well.<br>ew parallel biological V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WWTP, which is not yet finished. At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the                       |  |  |
| Water Quality                                                             | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The decay tanks are in one started construction an building part of biolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | operation as well.<br>ew parallel biological V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the                       |  |  |
| Water Quality<br>Problems                                                 | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup><br>danger because lack of m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The decay tanks are in obtained construction and building part of biologoney.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | operation as well.<br>ew parallel biological V<br>ical level to finalize and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VWTP, which is not yet finished. At I technology fix up. Finalization exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the poses to              |  |  |
| Water Quality                                                             | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup><br>danger because lack of m<br>At the present wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The decay tanks are in our started construction and building part of biologoney.  The flowing into WWTP are into the construction and the construction are into the construction and the construction are into the construction ar | operation as well.  ew parallel biological Vical level to finalize and  ure distributed. About 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WWTP, which is not yet finished. At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the poses to original     |  |  |
| Water Quality<br>Problems                                                 | in operation since 1988. The During years 1991-1992 supresent it is necessary 3 <sup>rd</sup> danger because lack of multiple At the present wastewater MB WWTP, others, volumed discharged into recipient of the During At the present wastewater MB www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP are about 200-400 l/s a (without additional treat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | operation as well.  ew parallel biological Vical level to finalize and  are distributed. About 1  re treated at new mechal  attent).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VWTP, which is not yet finished. At a technology fix up. Finalization exponents of wastewater are treated at a nical part of WWTP and after that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup><br>danger because lack of m<br>At the present wastewater<br>MB WWTP, others, voludischarged into recipient<br>Check profiles (sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP are about 200-400 l/s a (without additional treat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | operation as well.  ew parallel biological Vical level to finalize and  are distributed. About 1  re treated at new mechal  attent).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VWTP, which is not yet finished. At d technology fix up. Finalization exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup><br>danger because lack of m<br>At the present wastewater<br>MB WWTP, others, voludischarged into recipient of<br>Check profiles (sampling<br>quality are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The decay tanks are in obtained construction and building part of biologoney.  I flowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operation as well.  ew parallel biological Vical level to finalize and  are distributed. About 1  re treated at new mechal  atment).  ble to evaluate public s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VWTP, which is not yet finished. At a technology fix up. Finalization exponents of wastewater are treated at a nical part of WWTP and after that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. T<br>During years 1991-1992 s<br>present it is necessary 3 <sup>rd</sup><br>danger because lack of m<br>At the present wastewater<br>MB WWTP, others, volundischarged into recipient<br>Check profiles (sampling<br>quality are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP are about 200-400 l/s a (without additional treat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | operation as well.  ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment).  ble to evaluate public so r.km 27,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VWTP, which is not yet finished. At a technology fix up. Finalization exponents of wastewater are treated at a nical part of WWTP and after that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of mat the present wastewater MB WWTP, others, voluid discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The decay tanks are in obtained construction and building part of biologoney.  The decay is a subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in obtained in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biologoney.  The decay tanks are in the subject of biolog | operation as well.  ew parallel biological V  ical level to finalize and  are distributed. About 1  re treated at new mecha  attment).  ble to evaluate public s  r.km 27,0  r.km 17,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VWTP, which is not yet finished. At a technology fix up. Finalization exponents of wastewater are treated at a nical part of WWTP and after that a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. The During years 1991-1992 is present it is necessary 3 <sup>rd</sup> danger because lack of many danger lack of ma | The decay tanks are in obtained construction and building part of biologoney.  I flowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | peration as well.  ew parallel biological V  ical level to finalize and  are distributed. About 1  re treated at new mecha  atment).  ble to evaluate public s  r.km 27,0  r.km 17,2  a source were listed, wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WWTP, which is not yet finished. At d technology fix up. Finalization exp 000 l/s of wastewater are treated at cinical part of WWTP and after that a ewerage-Kosice impact to recipient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of must have been dead of the Present wastewater of the WTP, others, voluting discharged into recipient of the Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The decay tanks are in obtained construction and building part of biologoney.  If lowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom' mission values of point (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | peration as well.  ew parallel biological V  ical level to finalize and  are distributed. About 1  re treated at new mecha  atment).  ble to evaluate public s  r.km 27,0  r.km 17,2  s source were listed, wa  KRASNA N. HORNAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VWTP, which is not yet finished. At I technology fix up. Finalization exp 000 l/s of wastewater are treated at conical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. The During years 1991-1992 is present it is necessary 3 <sup>rd</sup> danger because lack of mathematical At the present wastewater MB WWTP, others, voluted discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"  In year 1996 for which enfollows:  PARAMETER  Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The decay tanks are in obtained construction and building part of biologoney.  flowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom"  nission values of point (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | peration as well.  ew parallel biological V  ical level to finalize and  are distributed. About 1  re treated at new mecha  atment).  ble to evaluate public s  r.km 27,0  r.km 17,2  a source were listed, wa  KRASNA N. HORNAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VWTP, which is not yet finished. At a technology fix up. Finalization explored to the control of | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of                         | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of must have been dead of the Present wastewater of the WTP, others, voluting discharged into recipient of the Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The decay tanks are in obtained construction and building part of biologoney.  If lowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom' mission values of point (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | peration as well.  ew parallel biological V  ical level to finalize and  are distributed. About 1  re treated at new mecha  atment).  ble to evaluate public s  r.km 27,0  r.km 17,2  s source were listed, wa  KRASNA N. HORNAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VWTP, which is not yet finished. At I technology fix up. Finalization exp 000 l/s of wastewater are treated at conical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions            | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, voluid discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The decay tanks are in obtained construction and building part of biologoney.  flowing into WWTP ame about 200-400 l/s a (without additional tree sites) in which is possionad Hornadom"  mission values of point (mg/l)  min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peration as well.  ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantement).  ble to evaluate public so r.km 27,0 r.km 17,2 source were listed, was krasna N. HORNAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at c inical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 6,2 11,8 9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3 <sup>rd</sup> danger because lack of mathematical At the present wastewater MB WWTP, others, voluted discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"  In year 1996 for which enfollows:  PARAMETER  Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP a me about 200-400 l/s a (without additional treasites) in which is possionad Hornadom  (mg/l)  min max mean  min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 to source were listed, was krasna N. HORNAI 7,8 14,0 10,9 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at c nical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions            | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, voluid discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The decay tanks are in a started construction a nubuilding part of biologoney.  In the decay tanks are in a started construction a nubuilding part of biologoney.  In the decay tanks are in a started construction and the started line in the starte | peration as well.  ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment).  ble to evaluate public so r.km 27,0 r.km 17,2 r.source were listed, was taken to the distributed of the distribut | VWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at conical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 6,2 11,8 9,6 5,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, voluid discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP a me about 200-400 l/s a (without additional treasites) in which is possionad Hornadom  (mg/l)  min max mean  min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 to source were listed, was krasna N. HORNAI 7,8 14,0 10,9 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at c nical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3PA 3P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, voluid discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The decay tanks are in a started construction a nubuilding part of biologoney.  In the decay tanks are in a started construction a nubuilding part of biologoney.  In the decay tanks are in a started construction and the started line in the starte | peration as well.  ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment).  ble to evaluate public so r.km 27,0 r.km 17,2 r.source were listed, was taken to the distributed of the distribut | VWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at conical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 6,2 11,8 9,6 5,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of must the present wastewater MB WWTP, others, volut discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"  In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The decay tanks are in obtained construction and building part of biologoney.  I dowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom"  I min max mean  I min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 resource were listed, was KRASNA N. HORNAI  7,8 14,0 10,9 3,0 10,0 6,1 8,0 18,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VWTP, which is not yet finished. At a technology fix up. Finalization expression of wastewater are treated at conical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA  6,2 11,8 9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of must the present wastewater MB WWTP, others, volut discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"  In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The decay tanks are in obtained construction and building part of biologoney.  I dowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom'  I min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 r.km | VWTP, which is not yet finished. At a technology fix up. Finalization expression of wastewater are treated at a chical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA  6,2 11,8 9,6 5,0 1,0 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of must the present wastewater MB WWTP, others, volut discharged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana"  In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The decay tanks are in obtained construction and building part of biologoney.  If lowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom'  Inission values of point (mg/l)  Inin max mean  Inin max mean  Inin max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 resource were listed, was KRASNA N. HORNAI  7,8 14,0 10,9 3,0 10,0 6,1 8,0 18,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VWTP, which is not yet finished. At a technology fix up. Finalization expression of wastewater are treated at conical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA  6,2 11,8 9,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, volutilischarged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5  COD Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The decay tanks are in obtatred construction and building part of biologoney.  flowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom"  mission values of point (mg/l)  min max mean  min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 are distributed at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 a source were listed, was KRASNA N. HORNAI  7,8 14,0 10,9 3,0 10,0 6,1 8,0 18,0 13,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WWTP, which is not yet finished. At d technology fix up. Finalization exp 2000 l/s of wastewater are treated at c inical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was 2DANA 2DANA 6,2 11,8 9,6 5,0 1,0 6,8 9,0 26 17,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, volutilischarged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5  COD Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The decay tanks are in obtained construction and building part of biologoney.  Thowing into WWTP are about 200-400 l/s a (without additional treasites) in which is possionad Hornadom  Inission values of point (mg/l)  min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peration as well. ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 r.source were listed, was KRASNA N. HORNAI 14,0 10,9 10,0 6,1 18,0 13,0 13,0 0,039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VWTP, which is not yet finished. At d technology fix up. Finalization exp  000 l/s of wastewater are treated at conical part of WWTP and after that a sewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, volutilischarged into recipient of Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5  COD Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The decay tanks are in obtained construction and building part of biologoney.  In without adout 200-400 l/s a (without additional treasites) in which is possionad Hornadom"  In min max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | peration as well. ew parallel biological Vical level to finalize and the distributed. About I re treated at new mechantment). ble to evaluate public so r.km 27,0 r.km 17,2 r.source were listed, was krasna N. HORNAI 10,9 r.source were listed in 10,0 f.1 r.source we | VWTP, which is not yet finished. At a technology fix up. Finalization expression of the check profiles was ewerage-Kosice impact to recipient ter quality in the check profiles was boom ZDANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the poses to priginal are |  |  |
| Water Quality<br>Problems  Immediate<br>Causes of<br>Emissions  Receiving | in operation since 1988. The During years 1991-1992 is present it is necessary 3rd danger because lack of means and the present wastewater MB WWTP, others, voluted discharged into recipient of the Check profiles (sampling quality are:  Hornad "Krasna Hornad "Zdana" In year 1996 for which enfollows:  PARAMETER  Dissolved Oxygen  BOD-5  COD Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The decay tanks are in a started construction a nubuilding part of biologoney.  Thowing into WWTP a me about 200-400 l/s a (without additional treasites) in which is possionad Hornadom"  Inission values of point (mg/l)  Inin max mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | peration as well.  ew parallel biological Vical level to finalize and the distributed. About 1 re treated at new mechantment).  ble to evaluate public son r.km 17,2 r | VWTP, which is not yet finished. At I technology fix up. Finalization exp 000 l/s of wastewater are treated at conical part of WWTP and after that a ewerage-Kosice impact to recipient ter quality in the check profiles was DOM ZDANA  6,2 11,8 9,6 1,0 6,8 9,0 26 17,4 0,210 1,724 0,840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the poses to priginal are |  |  |

| Name of the<br>Hot Spots      |                                                                                                                   |                                                    | WWTP Košice                                                                                   |                                                                     |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                               | N-NO3                                                                                                             | min                                                | 1,807                                                                                         | 1,807                                                               |
|                               |                                                                                                                   | max                                                | 4,608                                                                                         | 4,125                                                               |
|                               |                                                                                                                   | mean                                               | 2,829                                                                                         | 2,850                                                               |
|                               | total P                                                                                                           | min                                                | 0,050                                                                                         | 0,100                                                               |
|                               |                                                                                                                   | max                                                | 0,400                                                                                         | 0,450                                                               |
|                               |                                                                                                                   | mean                                               | 0,126                                                                                         | 0,260                                                               |
|                               | Hg                                                                                                                | min                                                | 0,05                                                                                          | 0,05                                                                |
|                               | microgram/l                                                                                                       | max                                                | 1,9                                                                                           | 0,55                                                                |
|                               |                                                                                                                   | mean                                               | 0,53                                                                                          | 1,18                                                                |
| Nearby<br>Downstream          | intakes are realized only in<br>and upstream Kosice ahe<br>demands for water quality<br>Classification of the Hor | n stretch upstream S<br>ad of tributary Tory<br>y. | Spisska Nova Ves (r. km 129,9), u<br>ysa (r. km 31,4). Water intakes are<br>oundary profile : |                                                                     |
| Uses                          | oxygen regime                                                                                                     |                                                    | III class (polluted wa                                                                        |                                                                     |
|                               | nutrients(N-NH4                                                                                                   |                                                    | IV class (heavily poll                                                                        | uted water)                                                         |
|                               | heavy metals, bi<br>and microbiolog                                                                               |                                                    | V class ( strongly pol                                                                        | luted water)                                                        |
| Transboundary<br>Implications |                                                                                                                   | * 1                                                | is WWTP Kosice one of the bigge<br>on is not possible to realize water i                      | st point sources of the Hornad river<br>ntakes from water resources |
| Rank                          | High Priority                                                                                                     |                                                    |                                                                                               |                                                                     |

## Summary of municipal hot spots – high priority

| Name of the<br>Hot Spots   |                                                                                                                                                            |                                                                                                                                                                                               | WWTP N I T R A                                                                                                                                                                                        |                                                                                                                       |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Hot Spots                  | Wastewater discharged into                                                                                                                                 | the Nitra River (r. 1                                                                                                                                                                         | cm 52,5). Analysis of wastew                                                                                                                                                                          | vater in year 1996:                                                                                                   |
|                            | Parameter                                                                                                                                                  | die Tillia Terrer (T. 1                                                                                                                                                                       | mg/l                                                                                                                                                                                                  | t/y                                                                                                                   |
|                            |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                       |
|                            | BOD-5                                                                                                                                                      |                                                                                                                                                                                               | 108,0                                                                                                                                                                                                 | 1 262                                                                                                                 |
|                            | COD-Cr                                                                                                                                                     |                                                                                                                                                                                               | 174,3                                                                                                                                                                                                 | 2 037                                                                                                                 |
| Critical                   | SS<br>N-NH4                                                                                                                                                |                                                                                                                                                                                               | 93,0<br>14,6                                                                                                                                                                                          | 1 086<br>170,6                                                                                                        |
| Emissions                  | NES (UV)                                                                                                                                                   |                                                                                                                                                                                               | 0,21                                                                                                                                                                                                  | 2,45                                                                                                                  |
|                            | total P                                                                                                                                                    |                                                                                                                                                                                               | 2,28                                                                                                                                                                                                  | 26,5                                                                                                                  |
|                            | V-1 £ 4:1                                                                                                                                                  |                                                                                                                                                                                               | •                                                                                                                                                                                                     |                                                                                                                       |
|                            | volume of dischar                                                                                                                                          | rged waters and disc                                                                                                                                                                          | narge regime                                                                                                                                                                                          |                                                                                                                       |
|                            |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                       |
|                            | 369 1/s                                                                                                                                                    |                                                                                                                                                                                               | 1 168 794 m <sup>3</sup> /y                                                                                                                                                                           | 24 h. / 365 days                                                                                                      |
|                            | Long-time hydrological cha                                                                                                                                 | aracteristics at the ch                                                                                                                                                                       | eck point profile Nitra-"Luzi                                                                                                                                                                         | anky", r. km 65.1 :                                                                                                   |
|                            | Q355                                                                                                                                                       |                                                                                                                                                                                               | $3.5 \text{ m}^{3}/\text{s}$                                                                                                                                                                          |                                                                                                                       |
|                            | Q270                                                                                                                                                       |                                                                                                                                                                                               | $6,99 \text{ m}^3/\text{s}$                                                                                                                                                                           |                                                                                                                       |
| Seasonal                   | Qa                                                                                                                                                         |                                                                                                                                                                                               | $17,76 \text{ m}^3/\text{s}$                                                                                                                                                                          |                                                                                                                       |
| Variation                  | Discharges in profile Nitra-                                                                                                                               | "Luzianky" in year                                                                                                                                                                            | 1996:                                                                                                                                                                                                 |                                                                                                                       |
|                            | $5,86 \text{ m}^3/\text{s}$                                                                                                                                |                                                                                                                                                                                               | n value                                                                                                                                                                                               |                                                                                                                       |
|                            | $50,70 \text{ m}^3/\text{s}$                                                                                                                               | ma                                                                                                                                                                                            | x value                                                                                                                                                                                               |                                                                                                                       |
|                            | $10,45 \text{ m}^3/\text{s}$                                                                                                                               | ave                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                       |
| Root Causes                |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                       | odel technology, construction of a                                                                                    |
| of Water                   | new WWTP.                                                                                                                                                  | 700 and 13 flydraune                                                                                                                                                                          | and mass overloaded. Outme                                                                                                                                                                            | der teemiology, construction of a                                                                                     |
| Quality                    | 10                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                       |
| Problems                   |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                       |
| Immediate                  |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                       |
| Causes of                  | I                                                                                                                                                          | part of them dischar                                                                                                                                                                          | ged into recipient after mecha                                                                                                                                                                        | anical treatment                                                                                                      |
| Causes of                  | insufficient treated waters,                                                                                                                               | part of them dischar                                                                                                                                                                          | sed into recipient after meen                                                                                                                                                                         | anicai ticatinciit                                                                                                    |
| Emissions                  |                                                                                                                                                            | •                                                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                       |
|                            | Check profiles (sampling si                                                                                                                                | tes) in which is poss                                                                                                                                                                         | ible to evaluate impact of W                                                                                                                                                                          |                                                                                                                       |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"                                                                                                            | tes) in which is poss                                                                                                                                                                         | ible to evaluate impact of W<br>m 65,1                                                                                                                                                                |                                                                                                                       |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"                                                                                        | tes) in which is poss<br>r.k<br>r.k                                                                                                                                                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8                                                                                                                                                      |                                                                                                                       |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the                                                        | tes) in which is poss<br>r.k<br>r.k<br>ose profiles in year 1                                                                                                                                 | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:                                                                                                                                              | WTP Nitra :                                                                                                           |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER                                           | tes) in which is poss<br>r.k<br>r.k<br>see profiles in year 1<br>(mg/l)                                                                                                                       | ible to evaluate impact of W<br>m 65,1<br>m 47,8                                                                                                                                                      | WTP Nitra :  CECHYNCE                                                                                                 |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER                                           | tes) in which is poss<br>r.k<br>r.k<br>see profiles in year 1<br>(mg/l)                                                                                                                       | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY                                                                                                                                  | WTP Nitra :  CECHYNCE                                                                                                 |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER                                           | tes) in which is poss<br>r.k<br>r.k<br>ose profiles in year 1<br>(mg/l)                                                                                                                       | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY                                                                                                                                  | WTP Nitra :  CECHYNCE                                                                                                 |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean                                                                                                                      | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996 :<br>LUZIANKY<br>                                                                                                                             | WTP Nitra :  CECHYNCE  8,5 13,5 10,2                                                                                  |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l) min max mean                                                                                                                      | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY                                                                                                                                  | CECHYNCE                                                                                                              |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year I (mg/I) min max mean min                                                                                                                  | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>                                                                                                                              | WTP Nitra :  CECHYNCE                                                                                                 |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean min max                                                                                                              | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>                                                                                                                              | CECHYNCE                                                                                                              |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l) min max mean min max mean                                                                                                         | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>                                                                                                                              | WTP Nitra :  CECHYNCE                                                                                                 |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l) min max mean min max mean                                                                                                         | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>                                                                                                                              | CECHYNCE                                                                                                              |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l) min max mean min max mean                                                                                                         | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>8,3<br>13,2<br>10,7<br>3,0<br>6,3<br>4,7                                                                                      | CECHYNCE                                                                                                              |
|                            | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean min max mean min max mean                                                                                            | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>                                                                                                                              | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l) min max mean min max mean min max mean                                                                                            | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>8,3<br>13,2<br>10,7<br>3,0<br>6,3<br>4,7                                                                                      | CECHYNCE                                                                                                              |
| <b>Emissions</b> Receiving | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l)  min max mean  min max mean  min max mean  min max mean                                                                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5                                                                                       | WTP Nitra :  CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47                                                |
| Emissions                  | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year I (mg/I)  min max mean                                                             | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3<br>13,2<br>10,7  3,0<br>6,3<br>4,7  6,0<br>38,0<br>21,5                                                                     | WTP Nitra:  CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47 3,0                                             |
| Emissions                  | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k ose profiles in year 1 (mg/l)  min max mean  min max mean  min max mean  min max mean                                                                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5                                                                                       | WTP Nitra :  CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47                                                |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr                      | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean                                                                  | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>8,3<br>13,2<br>10,7<br>3,0<br>6,3<br>4,7<br>6,0<br>38,0<br>21,5                                                               | CECHYNCE                                                                                                              |
| <b>Emissions</b> Receiving | Check profiles (sampling si<br>Nitra "Luzianky"<br>Nitra "Cechynce"<br>Surface water quality in the<br>PARAMETER<br>———————————————————————————————————    | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>8,3<br>13,2<br>10,7<br>3,0<br>6,3<br>4,7<br>6,0<br>38,0<br>21,5<br>0,45<br>2,3<br>0,91                                        | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr                      | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean min max                                | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142                                                           | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr                      | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY<br>8,3<br>13,2<br>10,7<br>3,0<br>6,3<br>4,7<br>6,0<br>38,0<br>21,5<br>0,45<br>2,3<br>0,91                                        | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr                      | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean min max                                | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142                                                           | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4               | tes) in which is poss r.k r.k see profiles in year 1 (mg/l)  min max mean                                               | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996 :<br>LUZIANKY  8,3<br>13,2<br>10,7  3,0<br>6,3<br>4,7  6,0<br>38,0<br>21,5  0,45<br>2,3<br>0,91  0,001<br>0,142<br>0,058                      | CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47 3,0 0,99  0,005 0,138 0,065                                 |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4               | tes) in which is poss r.k r.k see profiles in year 1 (mg/l)  min max mean                   | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3<br>13,2<br>10,7  3,0<br>6,3<br>4,7  6,0<br>38,0<br>21,5  0,45<br>2,3<br>0,91  0,001<br>0,142<br>0,058                       | CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47 3,0 0,99  0,005 0,138 0,065  2,23                           |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4  N-NO2        | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean                           | ible to evaluate impact of W<br>m 65,1<br>m 47,8<br>996:<br>LUZIANKY  8,3<br>13,2<br>10,7  3,0<br>6,3<br>4,7  6,0<br>38,0<br>21,5  0,45<br>2,3<br>0,91  0,001<br>0,142<br>0,058  2,60<br>4,30<br>3,28 | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4               | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean | ible to evaluate impact of W m 65,1 m 47,8 996: LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142 0,058  2,60 4,30 3,28  0,14                                           | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4  N-NO2        | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean              | ible to evaluate impact of W m 65,1 m 47,8 996: LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142 0,058  2,60 4,30 3,28  0,14 0,71                                      | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4  N-NO2        | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean | ible to evaluate impact of W m 65,1 m 47,8 996: LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142 0,058  2,60 4,30 3,28  0,14                                           | CECHYNCE                                                                                                              |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4  N-NO2  N-NO3 | tes) in which is poss r.k r.k see profiles in year 1 (mg/l)  min max mean                   | ible to evaluate impact of W m 65,1 m 47,8 996: LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142 0,058  2,60 4,30 3,28  0,14 0,71                                      | CECHYNCE  8,5 13,5 10,2  4,0 9,2 5,5  4,0 43,0 21,8  0,47 3,0 0,99  0,005 0,138 0,065  2,23 4,05 3,12  0,13 0,56 0,31 |
| Emissions                  | Check profiles (sampling si Nitra "Luzianky" Nitra "Cechynce" Surface water quality in the PARAMETER  Dissolved oxygen  BOD-5  COD-Cr  N-NH4  N-NO2        | tes) in which is poss r.k r.k see profiles in year 1 (mg/l) min max mean              | ible to evaluate impact of W m 65,1 m 47,8 996: LUZIANKY  8,3 13,2 10,7  3,0 6,3 4,7  6,0 38,0 21,5  0,45 2,3 0,91  0,001 0,142 0,058  2,60 4,30 3,28  0,14 0,71                                      | CECHYNCE                                                                                                              |

| Name of the<br>Hot Spots | WWTP N I T R A               |                     |                                   |                                   |  |  |  |
|--------------------------|------------------------------|---------------------|-----------------------------------|-----------------------------------|--|--|--|
|                          | NES (UV)                     | min                 | 0,01                              | 0,01                              |  |  |  |
|                          | , ,                          | max                 | 0,14                              | 0,11                              |  |  |  |
|                          |                              | mean                | 0,06                              | 0,06                              |  |  |  |
|                          | Hg                           | min                 | 0,18                              | 0,11                              |  |  |  |
|                          | microgram/l                  | max                 | 1,04                              | 0,53                              |  |  |  |
|                          |                              | mean                | 0,48                              | 0,29                              |  |  |  |
|                          | As                           | min                 | 3,4                               | 5,2                               |  |  |  |
|                          | microgram/l                  | max                 | 21,0                              | 20,2                              |  |  |  |
|                          |                              | mean                | 11,89                             | 12,84                             |  |  |  |
| Nearby                   | Municipal and industrial w   | aters of town Nitra | together with other important p   | ollution sources upstream of town |  |  |  |
| Downstream               | Nitra are causes of the gro  | und water deteriora | tion in Nitra River alluvium.     | •                                 |  |  |  |
| Uses                     | In this river stretch were n | ot any more import  | ant water intakes realized during | g years 1996-1997                 |  |  |  |
| Transbounda              | Nitra River with regard to   | content of Hg and   | chlorine (chlorine hydrocarbons)  | and high salinity contributes to  |  |  |  |
| ry Effect                | Danube river pollution.      | C                   | •                                 |                                   |  |  |  |
| Rank                     | High Priority                |                     |                                   |                                   |  |  |  |

# Summary of information of the industrial hot spots – high priority

| Name of the Hot<br>Spots         | NOVÁCKE CHEMICKE ZAVODY<br>(CHEMICAL PLANTS) NOVAKY                                                                                                                                                    |                          |                                      |                                   |                                           |                     |                             |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|-----------------------------------|-------------------------------------------|---------------------|-----------------------------|--|
| Spots                            | Wastew                                                                                                                                                                                                 |                          | narged into Nitra<br>mentation tanks | River by two our                  |                                           |                     |                             |  |
|                                  | Wastewater containing CaCl2, Ca(OH)2, chlorinated hydrocarbons are pumped into sedimentation tanks.                                                                                                    |                          |                                      |                                   |                                           |                     |                             |  |
|                                  | A                                                                                                                                                                                                      | After contin             | uous neutralizati                    | on by HCl, they a                 | are discharged to Ni                      |                     |                             |  |
|                                  |                                                                                                                                                                                                        |                          | quality and amo                      |                                   | D.4.0                                     | NEO LIV             |                             |  |
|                                  | )                                                                                                                                                                                                      | / Q355                   | BOD-5<br>(l/s)                       | COD-Cr<br>(mg/l)                  | DAS<br>(mg/l)                             | NES-UV<br>(mg/l)    | (mg/l)                      |  |
|                                  |                                                                                                                                                                                                        |                          | (1/0)                                |                                   |                                           |                     |                             |  |
|                                  |                                                                                                                                                                                                        | 1996                     | 130,2                                | 14,3                              | 35,6                                      | 638                 | 0,85                        |  |
|                                  |                                                                                                                                                                                                        | 1995<br>1994             | 186,3                                | 14,3<br>75,2<br>95,5              | 240,6<br>350,3                            | 3691<br>3154        | 2,7<br>2,8                  |  |
|                                  |                                                                                                                                                                                                        |                          |                                      |                                   |                                           |                     |                             |  |
|                                  |                                                                                                                                                                                                        | У                        | Q355                                 | BOD-5                             | COD-Cr                                    | DAS                 | NES-UV                      |  |
|                                  |                                                                                                                                                                                                        |                          | (m <sup>3</sup> /y)<br>              | (t/y)                             | (t/y)                                     | (t/y)               | (t/y)                       |  |
|                                  |                                                                                                                                                                                                        | 1996                     | 4 117 997                            | 58,9                              | 146,6                                     | 2 627               | 3,5                         |  |
|                                  |                                                                                                                                                                                                        | 1995                     | 5 875 649                            | 58,9<br>441,8                     | 1707,5                                    | 21 687              | 15,9                        |  |
|                                  | ** (                                                                                                                                                                                                   | 1994                     | 5 666 258                            | 541,1                             | 1984,7                                    | 17 871              | 16,1                        |  |
|                                  |                                                                                                                                                                                                        |                          |                                      |                                   | o the Nitra River in                      |                     | waters after oil traps      |  |
|                                  |                                                                                                                                                                                                        |                          |                                      |                                   |                                           |                     | cy and excrements from      |  |
| Critical                         |                                                                                                                                                                                                        | VVO Kos (p               | oigs)                                | •                                 |                                           |                     |                             |  |
| Emissions                        |                                                                                                                                                                                                        |                          |                                      | scharged pollution                |                                           | D.4.0               | NEOLINA                     |  |
|                                  |                                                                                                                                                                                                        | У                        | Q355<br>(l/s)                        | BOD-5<br>(mg/l)                   | COD-Cr<br>(mg/l)                          | DAS<br>(mg/l)       | NES-UV<br>mg/l              |  |
|                                  |                                                                                                                                                                                                        |                          | (1/3)                                | (1119/1)                          | (mg/i)                                    | (1119/1)            |                             |  |
|                                  |                                                                                                                                                                                                        | 1996                     | 95,9                                 | 144,3                             | 654,2                                     | 7 361               | 3,9                         |  |
|                                  |                                                                                                                                                                                                        | 1995                     | 25,5                                 | 149,1                             | 808,1                                     | 10 526              | 3,1                         |  |
|                                  |                                                                                                                                                                                                        | 1994                     | 12,5                                 | 209,0                             | 1 033,1                                   | 7 431               | 4,6                         |  |
|                                  |                                                                                                                                                                                                        | У                        | Q 355                                | BOD-5                             | COD-Cr                                    | DAS                 | NES-UV                      |  |
|                                  |                                                                                                                                                                                                        |                          | (m <sup>3</sup> /s)                  | (t/y)                             | (t/y)                                     | ((t/y))             | (mg/l)                      |  |
|                                  |                                                                                                                                                                                                        | 1996                     | 3 033 116                            | 437,7                             | 1 085 3                                   | 22 327              | 11,8                        |  |
|                                  |                                                                                                                                                                                                        | 1995                     | 802 796                              | 119,7                             | 1 985,3<br>648,7                          | 8 450               | 2,5                         |  |
|                                  |                                                                                                                                                                                                        | 1994                     | 393 085                              | 82,2                              | 406,1                                     | 2 921               | 1,8                         |  |
|                                  | specif. l                                                                                                                                                                                              | Pollution:               |                                      |                                   |                                           |                     | *****                       |  |
|                                  |                                                                                                                                                                                                        |                          |                                      | sedim. tanks<br>mg/l t/y          |                                           | MB WWTP<br>mg/l t/y |                             |  |
|                                  |                                                                                                                                                                                                        |                          |                                      |                                   |                                           |                     |                             |  |
|                                  |                                                                                                                                                                                                        | chlorinate               |                                      | 5,14                              | 19,4                                      | 140,7               | 449                         |  |
|                                  |                                                                                                                                                                                                        | hydrocarb                |                                      | 0.50                              | 2.25                                      | 2.66                | 0.5                         |  |
|                                  |                                                                                                                                                                                                        | detergents<br>active chl |                                      | 0,59<br>0,94                      | 2,25<br>3,56                              | 2,66<br>0,29        | 8,5<br>0,94                 |  |
|                                  |                                                                                                                                                                                                        | Hg                       | orme                                 | 0,002                             | 0,00816                                   | 0,13                | 0,42                        |  |
|                                  |                                                                                                                                                                                                        |                          |                                      | hours/ 365 days i                 |                                           |                     |                             |  |
| Seasonal                         |                                                                                                                                                                                                        |                          |                                      | 3,7 upstream of p                 | ollution source NCI                       | HZ (Chemical Plant  | ants) are long term         |  |
| Variation                        | aischarg                                                                                                                                                                                               | ged as follo<br>Q355     |                                      | $m^3/s$                           |                                           |                     |                             |  |
|                                  |                                                                                                                                                                                                        | -                        |                                      | $\frac{111}{\text{m}^3/\text{s}}$ |                                           |                     |                             |  |
|                                  |                                                                                                                                                                                                        | Q270                     |                                      | $\frac{m}{s}$ /s                  |                                           |                     |                             |  |
|                                  | Maximi                                                                                                                                                                                                 | Qa<br>ım dischara        |                                      |                                   | n. on July and Augu                       | iet                 |                             |  |
|                                  | In 1992                                                                                                                                                                                                | the constru              | ction of new MR                      | WWTP has star                     | ted. It should consist                    | st of two parallel  | lines. In the frame of the  |  |
|                                  | sewage                                                                                                                                                                                                 | system reco              | onstruction it sho                   | uld have been di                  | vided into organic a                      | nd anorganic par    | t with pre-treatment        |  |
| Root Causes of                   | facilities such as facility for abstraction of mercury and two-step neutralization stations.  Due to the changes in production programme new plan of WWTP construction was design. Following this plan |                          |                                      |                                   |                                           |                     |                             |  |
| Waste Quality<br>Problems        |                                                                                                                                                                                                        |                          |                                      |                                   | an of WWTP constr<br>acity 155 l/s (91 32 |                     | n. Following this plan      |  |
| Froblems                         |                                                                                                                                                                                                        |                          |                                      |                                   |                                           |                     | financial constrains.       |  |
| Immediate of<br>Causes Emissions | Insuffic                                                                                                                                                                                               | ient capacit             | y and efficiency                     | of treatment                      |                                           |                     |                             |  |
|                                  | Samplin                                                                                                                                                                                                | g Sites for              | comparison of in                     | fluence are:                      |                                           |                     |                             |  |
| Receiving                        |                                                                                                                                                                                                        | Nitra-Opa                | -                                    | r.km 138                          | 3,7                                       | QA                  | $2,96 \text{ m}^3/\text{s}$ |  |
| Water                            |                                                                                                                                                                                                        | Nitra-Cha                |                                      | r.km 123                          |                                           | Qa                  | $6,3 \text{ m}^3/\text{s}$  |  |
|                                  | Impact                                                                                                                                                                                                 | of wastewar              | er has caused sig                    | gnificant increase                | of chloride and me                        | rcury concentrat    | ion in the Nitra river.     |  |

| Name of the Hot<br>Spots | NOVÁCKE CHEMICKE ZAVODY<br>(CHEMICAL PLANTS) NOVAKY                                                                                                                               |                                                                                                      |                                           |             |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|--|--|--|--|
| Spots                    | The mean concentration of chlorides increased from 9,84 mg/l in Nitra-Opatovce up to 128,8 mg/l in Nitra                                                                          |                                                                                                      |                                           |             |  |  |  |  |
|                          | Chalmova. Mercury contents from background concentration 0.03 microgram/l up to 3,63 microgram/l. As the                                                                          |                                                                                                      |                                           |             |  |  |  |  |
|                          | wastewaters contain c                                                                                                                                                             | tewaters contain chlorinated hydrocarbons, in sampling site Nitra-Chalmova wide range of chlorinated |                                           |             |  |  |  |  |
|                          | hydrocarbons is regula                                                                                                                                                            | arbons is regularly analyzed;                                                                        |                                           |             |  |  |  |  |
|                          | 1,1-dichloret                                                                                                                                                                     | hane                                                                                                 | 0,0005 - 0,003                            | microgram/l |  |  |  |  |
|                          | chloroform                                                                                                                                                                        |                                                                                                      | 2 -10                                     | microgram/l |  |  |  |  |
|                          | 1,2-dichloret                                                                                                                                                                     | hane                                                                                                 | 10 - 500                                  | microgram/l |  |  |  |  |
|                          | 1,1,2-trichlo                                                                                                                                                                     | rethane                                                                                              | 6,6 - 190                                 | microgram/l |  |  |  |  |
|                          | 1,1,2,2, tetra                                                                                                                                                                    |                                                                                                      | 8 - 73                                    | microgram/l |  |  |  |  |
|                          | Water quality related                                                                                                                                                             | to relevant emission                                                                                 | ns from point sources in check points:    |             |  |  |  |  |
|                          | Parameter                                                                                                                                                                         | (mg/l)                                                                                               | Nitra-Opatovce Nitra-Chalmo               |             |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 3,4                                       | 6,7         |  |  |  |  |
|                          | BOD-5                                                                                                                                                                             | 1995                                                                                                 | 2,6                                       | 4,6         |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | 3,3                                       | 5,3         |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 21,2                                      | 35,1        |  |  |  |  |
|                          | COD-Cr                                                                                                                                                                            | 1995                                                                                                 | 12,6                                      | 24,5        |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | -                                         | 20,9        |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 0,30                                      | 1,5         |  |  |  |  |
|                          | N-NH4                                                                                                                                                                             | 1995                                                                                                 | 0,38                                      | 1,2         |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | 0,18                                      | 1,0         |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 0,034                                     | 0,047       |  |  |  |  |
|                          | N-NO2                                                                                                                                                                             | 1995                                                                                                 | 0,027                                     | 0,068       |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | 0,035                                     | 0,085       |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 2,08                                      | 2,21        |  |  |  |  |
|                          | N-NO3                                                                                                                                                                             | 1995                                                                                                 | 1,92                                      | 2,00        |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | 2,26                                      | 1,86        |  |  |  |  |
|                          |                                                                                                                                                                                   | 1996                                                                                                 | 0,13                                      | 0,34        |  |  |  |  |
|                          | Tot P                                                                                                                                                                             | 1995                                                                                                 | 0,13                                      | 0,26        |  |  |  |  |
|                          |                                                                                                                                                                                   | 1994                                                                                                 | 0,12                                      | 0,22        |  |  |  |  |
|                          | From the other point sources of pollution in this stretch of river Nitra-Opatovce and Nitra-Chalmova are electric power plant Novaky (Zemianske Kostolany) and tributary Handlova |                                                                                                      |                                           |             |  |  |  |  |
| Nearby                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                           |                                                                                                      | J,                                        |             |  |  |  |  |
| Downstream               | Water of Nitra River downstream of NCHZ Novaky is not possible to use for any purpose.                                                                                            |                                                                                                      |                                           |             |  |  |  |  |
| Uses                     | 7 1 7 1                                                                                                                                                                           |                                                                                                      |                                           |             |  |  |  |  |
| transboundary            |                                                                                                                                                                                   |                                                                                                      | River basin and does not influence Danube |             |  |  |  |  |
| Implications             | 0.1                                                                                                                                                                               | ith strong negative i                                                                                | mpact on whole environment in Horna Nitra | l .         |  |  |  |  |
| Rank                     | High priority                                                                                                                                                                     |                                                                                                      |                                           |             |  |  |  |  |

# Summary of information of the industrial hot spots – high priority

| Name of the Hot<br>Spots | BUKOCEL a.s. HENCOVCE<br>(BUKOZA VRANOV NAD TOPLOU) |                |                    |                     |                   |                |                  |  |  |
|--------------------------|-----------------------------------------------------|----------------|--------------------|---------------------|-------------------|----------------|------------------|--|--|
| Spots                    | Wastewater is discharge                             |                |                    |                     | rLou)             |                |                  |  |  |
|                          | 1. from MB WWTP, r. km 48,7                         |                |                    |                     |                   |                |                  |  |  |
|                          | 2. outfall                                          | ,,Railway brid | dge", r. km        |                     |                   |                |                  |  |  |
|                          | 3. outfall,                                         | under pumpi    | ng station", r. km | 50,1                |                   |                |                  |  |  |
|                          | Waste water quality and                             |                |                    |                     |                   |                |                  |  |  |
|                          |                                                     |                | 1.                 | 2.                  |                   |                | 3.               |  |  |
|                          | Parameter                                           | mg/l           | t/y                | mg/l                | t/y               | mg/l           | t/y              |  |  |
| Critical                 | DOD 5                                               | 20             | 205.7              |                     |                   | 20.0           | 41.7             |  |  |
| Emissions                | BOD-5                                               | 28             | 295,7              | 8,0                 | 4,1               | 30,0<br>133,0  | 41,7             |  |  |
|                          | COD-Cr<br>NES-UV                                    | 240,0<br>1,58  | 2534,8<br>16,69    | 55,6<br>0.12        | 28,1<br>0,06      | 0,70           | 185,1<br>0,97    |  |  |
|                          | Cl                                                  | 300,6          | 3174.9             | 25,2                | 12,7              | 12,2           | 16,9             |  |  |
|                          | DAS                                                 | 969            | 10213,3            | 278,0               | 140,7             | 265,0          | 368,7            |  |  |
|                          | D: 1                                                | 1/             | $m^3/y$            | 1/                  | 21                | 1/             | 2.1              |  |  |
|                          | Discharge                                           | 1/s            |                    | 1/s                 | m3/y              | 1/s            | m3/y             |  |  |
|                          |                                                     | 334            | 10 561 882         | 16,0                | 505 958           | 44,0           | 139 1386         |  |  |
|                          | Regime of: the                                      | same for all   | - 24 hours, 365 d  | ays / year          |                   |                |                  |  |  |
|                          | Discharge In upstream sampling sid                  | de Ondove      | Kucin" r km 53     | O long ranga di     | echarase:         |                |                  |  |  |
| G 1                      | Q355                                                | ie "Oliuava-   |                    | ) m <sup>3</sup> /s | scharges.         |                |                  |  |  |
| Seasonal<br>Variation    | ~                                                   |                |                    | 3 m <sup>3</sup> /s |                   |                |                  |  |  |
| variation                | Q270                                                |                |                    | 7 m <sup>3</sup> /s |                   |                |                  |  |  |
|                          | Qa                                                  | t              |                    |                     |                   |                |                  |  |  |
|                          | Max. values in 1996 wer<br>MB WWTP is hydraulic     |                |                    |                     |                   |                | mation of a      |  |  |
|                          | new system of suspende                              |                |                    |                     |                   |                |                  |  |  |
|                          | thickening pressed and b                            |                |                    |                     |                   | c arter seami  | citation and     |  |  |
| Root Causes of           | It is necessary the recons                          |                |                    |                     |                   | possible to tr | eat wastewater   |  |  |
| Water Quality            | from outfalls 2 and 3, wi                           | hich are disch | arged without tre  | atment into On      | dava River at pı  | resent (rain w | aters and septic |  |  |
|                          | waters in territory of fac                          |                |                    |                     |                   |                |                  |  |  |
| Problems                 | The second till now not                             |                |                    |                     |                   |                |                  |  |  |
|                          | sludge from cellulose pr<br>High discharge could be |                |                    |                     |                   |                |                  |  |  |
|                          | dump flows into Ondava                              |                | im damage and re   | mowing to the       | accident ponuti   | on or water. I | tain water from  |  |  |
| Immediate                | The reconstruction and e                            |                | VWTP started in    | years 1992-199      | 3, but later on w | as stopped be  | ecause lack of   |  |  |
| Causes of                | money.                                              |                |                    | •                   |                   | **             |                  |  |  |
| Emissions                | Consequence: not suffic                             | ient treated w | astewater and par  | t of untreated v    | vaters discharge  | d into Ondav   | a River.         |  |  |
|                          | Water quality check poi                             | nte unetroom   | and downstream     | of source of no     | Ilution are:      |                |                  |  |  |
|                          | Ondava – Kuc                                        |                | and downstream     | r.km 5              |                   |                |                  |  |  |
|                          | Ondava – Posa                                       |                |                    | r.km 4              | *                 |                |                  |  |  |
|                          | Water quality in those pr                           | rofiles:       |                    |                     |                   |                |                  |  |  |
|                          | Parameter (mg                                       | <u>r</u> /l)   | On                 | dava-Kucin          | On                | dava-Posa      |                  |  |  |
|                          | Q mean $(m^3/s)$                                    |                |                    | 7.14                |                   | 7.20           |                  |  |  |
| Receiving                | Q mean (m /s)<br>BOD-5                              | )              |                    | 7,14<br>5,5         |                   | 7,20<br>6,6    |                  |  |  |
| Waters                   | COD-Cr                                              |                |                    | 5,5<br>16,6         |                   | 28,9           |                  |  |  |
|                          | N-NH4                                               |                |                    | 0,20                |                   | 0,44           |                  |  |  |
|                          | N-NO2                                               |                |                    | 0,013               |                   | 0,023          |                  |  |  |
|                          | N-NO3                                               |                |                    | 1,17                |                   | 1,29           |                  |  |  |
|                          | total P                                             |                |                    | 0,06                |                   | 0,14           |                  |  |  |
|                          | formaldehyde                                        |                |                    | 0,034               |                   | 0,63           |                  |  |  |
|                          | formaldehyde<br>phenols vol,                        | tot,           |                    | 0,061<br>0,024      |                   | 1,00<br>0,026  |                  |  |  |
| Nearby                   | Upstream uses of water                              | : by Chemko    | Strazske and Buk   |                     | <u> </u>          | 0,020          |                  |  |  |
| Downstream               | Downstream uses of water                            |                |                    |                     |                   | emand for wa   | ter quality as   |  |  |
| Uses                     | well                                                |                |                    |                     |                   |                |                  |  |  |
| Transboundary            | Ondava River with main                              | tributaries is | the second branc   | h of Bodrog Ri      | ver, our transbo  | undary river   | with Hungary.    |  |  |
| Implications             | Sampling site Ondava-P                              | osa is one of  | tne most polluted  | river stretch, t    | ogether with pro  | ondava-        | Nızny Hrusov     |  |  |
| Rank                     | High priority                                       |                |                    |                     |                   |                |                  |  |  |
|                          |                                                     |                |                    |                     |                   |                |                  |  |  |

NOTE: Data of years 1994 - 1997, which include the flow conditions associated with the concentrations of substances in the receiving water are on extra disk and will be used for water quality modeling. Names of files related to hot spots are as follow:

WWTP Kosice: Horkras.txt, Horzdana.txt

WWTP Nitra: Nitluzi.txt, Nitcechy.txt

Novaky Chemical Plants: Nitop.txt, Nitchal.txt

Bukocel a.s.Hencovce: Onkuc.txt, Onposa.txt

File "Code of parameters" gives information, which parameter is under code /e.g. code A02 belongs to BOD5.

# 3. Identification of Diffuse Sources of Agricultural Pollution

## 3.1. Land Under Cultivation

Pollution from diffuse sources can be related to weathering of minerals, erosion of lands and forest including residues of natural vegetation, or artificial or semiartificial sources. The last one can be related to human activities such as fertilizer application or use of agricultural chemicals controlling weeds or insects, erosion of soil materials from agricultural farming areas and animal feedlots, construction sites, transportation cumulating of dust and litter on urban surfaces, strip mining, and others.

One of most important diffuse pollution sources with strong negative impact to water quality is agriculture. Greatness of pollution depends of the extent and utilization of soil. The structure of the land in relation to river basins is marked out in following table.

Table 3.1. Main rivers in the SR, their basins and length of bordering watercourses and structure of land

| River basin | Length of<br>Stream | Length of<br>border<br>Stretch | River<br>basin area | Total<br>Agricul.<br>Land | Arable<br>Agricul.<br>Land | Forest Area | Water<br>Area |
|-------------|---------------------|--------------------------------|---------------------|---------------------------|----------------------------|-------------|---------------|
|             | (km)                | (km)                           | (km <sup>2</sup> )  | (ha)                      | (ha)                       | (ha)        | (ha)          |
| Morava      | 107,2               | 107,2                          | 2 282               | 119 642                   | 95 876                     | 79 332      | 3 897         |
|             |                     |                                |                     |                           |                            |             |               |
| Danube      | 172,0               | 149,9                          | 1 138               | 195 264                   | 169 881                    | 40 544      | 13 004        |
| Vah         | 367,2               | -                              | 14 268              | 581 843                   | 332 166                    | 492 758     | 22 491        |
| Nitra       | 168,4               | -                              | 4 501               | 314 449                   | 258 169                    | 144 068     | 10 868        |
| Hron        | 278,3               | -                              | 5 465               | 265 342                   | 120 866                    | 259 041     | 5 616         |
| Ipel        | 197,9               | 108,7                          | 3 649               | 157 349                   | 91 700                     | 132 132     | 3 879         |
| Slana       | 92,5                | -                              | 3 217               | 150 542                   | 70 597                     | 171 708     | 2 956         |
| Hornad      | 178,5               | 10,4                           | 4 414               | 174 032                   | 96 851                     | 175 581     | 4 414         |
| Bodrog      | 153,8               |                                | 7 265               | 381 550                   | 217 648                    | 271 288     | 19 827        |
| Tisa        | 5,2                 | 5,2                            | 7                   |                           |                            |             |               |
| Bodva       | 48,8                | -                              | 858                 | 40 306                    | 30 336                     | n,a,        | 1 244         |

NOTE: Data concerning Morava, Danube, Bodrog and Tisa Rivers are related only to Slovak territor n.a. ..not available"

REFERENCES TO TABLE: Length of the streams, river basin areas and length of bordering water courses - Statistical Office of the SR, 1997. Structure of Land -Office of Geodesy, Cartography and Land Register of the SR, 1997

Due to the decline of agriculture production and decrease of industrial nutrient application on agricultural soils, nitrogen and phosphorus concentrations in surface waters have been decreased. The application of pure nutrients (N, P and K) was 251,6 kg/ha in years 1986/87, but in years 1991/92 63,9 kg/ha only (that means farming lands). Next table shows evolution of fertilizer consumption in the Slovak Republic within period 1990-1996 (kg per ha of agricultural soil)

Table 3.2. Fertilizer consumption

| Year        | Sum of N, P, K | N    | P    | K    |
|-------------|----------------|------|------|------|
| 1986 – 1987 | 251,6          |      |      |      |
| 1990 – 1991 | 123,1          | 62,8 | 30,7 | 29,6 |
| 1991 – 1992 | 63,9           | 39,5 | 12,6 | 11,8 |
| 1992 – 1993 | 41,6           | 28,4 | 7,2  | 6,0  |
| 1993 – 1994 | 43,5           | 30,1 | 7,3  | 6,1  |
| 1994 – 1995 | 45,0           | 30,6 | 7,8  | 6,6  |
| 1995 – 1996 | 48,9           | 32,8 | 8,8  | 7,3  |

Reason of decrease of applied fertilizers and pesticides are changes in national economy and higher prices and it became evident on surface water quality (nutrients), but is not significant on ground water quality. To assess this fact with regard to ground water is more complicated.

Part of nutrients from agriculture applied to land penetrates into surface water by erosion, mainly water erosion. Research Institute of Soil Fertility has prepared a map "Water Erosion Risk on Slovakia Agricultural Soils" where are figured data from next table.

Table 3.3. Water erosion risk on Slovakia agricultural soils

| Intensity of soil loss | Area      | Farming land |
|------------------------|-----------|--------------|
| (t/ha.year)            | Ha        | ( % )        |
| 0 - 4                  | 1 065 420 | 45,0         |
| 4 - 10                 | 473 520   | 20           |
| 10 - 30                | 426 170   | 18           |
| more than 30           | 402 490   | 17           |

Calculation of nutrients flowing into surface water flow from above mentioned data is difficult from next viewpoints: under term "farming land" are included arable soils and pasture as well. But between them there is different approach concerning fertilizer application and thus nutrient carried away from arable land is much higher. Other source of difficulties for calculation of nutrients flowing into water stream is that eroded soil is not removed only into surface water.

Another kind of erosion (e.g. wind erosion etc.) is much lower in our country and for this reason is not monitored.

Danubian Lowland (765.000 ha of agricultural soil and 678.000 ha of arable land) may be considered as relatively most intensive part of Danube Catchment Area.

Agricultural production in the Slovak Republic (of which Danube River basin covers 96 %) is listed in table as follows:

Table 3.4. Average yield of selected crops within period 1990 to 1996 (tons/ha)

| Year    | Winter | Barley | Grain maize | Potatoes | Sugar beet | Legumes | Oil crops |
|---------|--------|--------|-------------|----------|------------|---------|-----------|
|         | wheat  |        |             |          |            |         |           |
| 1989-90 | 5,00   | 4,82   | 3,56        | 14,12    | 30,82      | 2,16    | 1,90      |
| 1990-91 | 5,22   | 4,59   | 5,40        | 12,26    | 31,07      | 2,26    | 2,22      |
| 1991-92 | 4,80   | 4,13   | 4,50        | 12,86    | 29,35      | 2,42    | 1,90      |
| 1992-93 | 3,85   | 3,33   | 4,62        | 18,15    | 34,26      | 1,88    | 1,70      |
| 1993-94 | 4,85   | 3,67   | 4,14        | 9,67     | 34,53      | 2,91    | 1,78      |
| 1994-95 | 4,44   | 3,40   | 4,90        | 10,07    | 34,26      | 2,17    | 1,90      |
| 1995-96 | 4,13   | 3,18   | 5,75        | 21,54    | 39,54      | 2,09    | 1,89      |

Research Institute of Soil Fertility deals with co-operation with agriculture sector in the area of fertilizer, waste and pesticide rations and their application conditions, but does not provide inspection activities.

There are not available present data concerning nutrient escape into waters from whole territory of Slovakia.

Ministry of Soil Management of the Slovak Republic has approved solution of research works concerning important water management areas: river basin of the water supply reservoir Klenovec and Nitra River basin. Reason for it was to ensure ecological and economical optimum management with water and water sources. Work was realized in co-operation of the Water Research Institute and the Research Institute of Soil Fertility. On the basis of research the methodology of work processes was elaborated, in which are included proposals for lowering of agricultural diffuse pollution of water.

Report of Water Engineer contents list of Regulations and Methodologies and research reports focused to sustainable agriculture and forest management and pollution reduction from this sector.

After year 1989 live stock has significantly decreased and those farms are not more important point sources of pollution, but could be diffuse pollution sources with regard to used practice (e.g. percolation from septic tanks represents about 40 % of the collected wastewater). At present Regulation concerning handling of manure etc. exists, but in reality does not exist inspection for it. In event of water quality threat or deterioration, Slovak Water Inspectorate starts activity. Weakness of this policy is that handling with fertilizers, manure etc. depends on human behavior, which is in relationship to his awareness. This problem would be solved in agricultural sector.

# 3.2. Grazing Area

Since 1993 pastureland is statistically assessed together with permanent grass-field. The area of permanent grassland in 1996 was 840.000 ha and pasture represents approximately one third of this area.

Due to low status of the animals pastureland is often extensively and sporadic. Typical pastureland dominates in hill area of the Slovak Republic.

In period 1995 on 1 ha of agricultural soil was in average 0,55 of cattle number.

Requested data to this Chapter, which were not available at present, we complete from the Final Report "Nutrient Balances for Danube Countries" (Project EU/AR/ 102 A/91) prepared under the Danube Environmental Programme - Applied Research Programme. In Report are published latest data of year 1992.

## There is stated:

- in whole Danube River basin main pollution source of nitrogen is agriculture (51 %), of which great part represents erosion/runoff 17 %
- in whole Danube River basin main pollution source of phosphorus is agriculture as well (57 %), of which erosion/runoff represents 28 %.

Table 3.5. Nutrient emission into surface water from Slovak Danube River basin

| Emission               |          | Nitrogen | Phosphorus |
|------------------------|----------|----------|------------|
| diffuse sources        | kt       | 39       | 2          |
| % of the total load    |          | 66       | 37         |
| point sources          | kt       | 20       | 3          |
| % of the total load    |          | 34       | 63         |
| total                  | kt       | 59       | 5          |
| area specific emission | kg/ha.y  | 12       | 1,2        |
| head specific emission | kg/cap.y | 11,8     | 1,0        |

erosion, including fertilizer washout: 1t/ha.y and N, P content therein.

Fertilizer washout: 20 % of the rest of applied N on agricultural soil

(2,5-10 kg N/ha y) and 2-3 % of the rest of P

is washed out

percolation (agriculture):
 percolation (septic tanks):
 10-20 kg N/ha. y and 0,5-1,0 kg P/ha .y
 40 % of the collected wastewater percolates

# 4. Updating and Validation of Water Quality Data

# 4.1. Index of Water Quality Monitoring Records

From territory of the Slovak Republic (49.035 km²) belong to Danube River basin 47 064 km². Length of flows in the Danube River basin represents 4017 km, of which 18 % are important from viewpoint of water management.

In the framework of environmental monitoring in whole Slovakia is the Slovak Hydrometeorological Institute the responsible body for partial monitoring system "Water". There are monitored:

- surface water quality and quantity
- > ground water level, quantity of water of wells and bores
- ground water quality

30-35 years old data are available for chosen profiles concerning characteristic discharges and basic water quality determinants.

Periodical measurement and assessment of discharges has been started in Bratislava (Danube River) in year 1901.

The list of available data for 20 monitoring stations on the flows, which characterize volumes and water quality flowing from Slovak territory into Danube River, is published in Annex 4.1.

In year 1996 430 gauging stations were upon the flows, which belong to the Danube River basin, of which:

| $\triangleright$ | Morava River basin | 25  |
|------------------|--------------------|-----|
| >                | Danube River basin | 41  |
| >                | Vah River basin    | 106 |
| >                | Nitra River basin  | 36  |
| >                | Hron River basin   | 68  |
| >                | Ipel River basin   | 30  |
| >                | Slana River basin  | 31  |
| >                | Hornad River basin | 37  |
| >                | Bodva River basin  | 10  |
| >                | Bodrog River basin | 46  |

The list of Gauging Stations or Quantity Profiles Corresponding with Water Quality Check Points is in Annex 4.2.

The Slovak Hydrometeorological Institute regularly publishes "Hydrological annual report" where it is possible to obtain data concerning hydrological evaluation of each relevant year. That means data of the gauging stations where discharges were measured whole year, e.g. average month value discharge and extreme hydrological characteristics as well.

Detailed hydrological evaluation on the basis of average daily discharges is worked out for 30 gauging stations. Those stations are part of the monitoring network, purpose of which is to monitor hydrological regime changes, and belong to the frame of the National Climatic Programme of the Slovak Republic.

Annual water temperature assessment is worked out for chosen 9 gauging stations and annual sediment discharges assessment in 9 stations as well.

For the purpose to calculate sediment discharges balance in the Danube River basin, the following 9 profiles are suitable:

- Morava River, profile Zahorska Ves, r. km 32,52
- > Danube River, profile Bratislava, r km 1868,75
- ➤ Hron River, Brehy, r. km 93,9
- ➤ Ipel River, profile Slovenske Darmoty, r. km 89,5
- Slana River, profile Lenartovce, r.km 3,6
- ➤ Hornad River, profile Zdana, r.km 17,2

Relevant data of those stations of years 1996 are in Table 4.1.

# 4.2. Data Quality Control and Quality Assurance

# 4.3. Data Consistency, Compatibility and Transparency

Slovak Hydrometeorological Institute (SHMI) is responsible for the surface water quality monitoring in the Slovak Republic. Sampling and analytical measurements are realized on the basis of contract between SHMI and Slovak Water Management Authority, actually by its four river basin authorities: Danube River Basin Authority, Vah River Basin Authority, Hron River Basin Authority and Bodrog and Hornad River Basin Authority.

Surface water quality in Slovakia was monitored during year 1997 in 243 profiles belonging to the Danube River basin. The list of basic profiles is in Annex 4.2. There is information about discharge as well: average daily discharge and immediate discharge that belongs to sampling of water. Annex contents the list of surface water sampling stations and gauging stations, or quantity profiles. Sampling stations in year 1997 are in enclosed map.

Surface water quality is assessed by the norm STN 75 7221 "Classification of Surface Water Quality" (Annex 4.3).

The standards describe criteria for sampling and calculations of water quality statements in relation to a complex set of limiting values consisting of different parameters. These parameters are grouped into the following designated groups:

- A. Oxygen regime
- B. Basic chemical and physical parameters
- C. Supplementary chemical parameters
- D. Biological and microbiological parameters
- E. Radioactivity

The water quality class being applied to a certain point of the river can thus be determined of values obtained in one or several of the groups of water quality parameters.

The Slovak Hydrometeorological Institute defines to the laboratories requirements on the detection limit values for water quality determinants (which should correspond to 10% of limit value set up for I class of water quality in accordance with Slovak classification system) and requirements on using of the standardized methods. The laboratories have also an obligation to provide information about quality system established in laboratory.

The laboratories send data to SHMI in defined structure and units (codes of river basins, rivers, sampling sites, determinants and analytical methods are unified). Apart of data control by laboratories, control is also performed by SHMI. Data needed to be checked (outliners, data that

don't conform to general pattern of a data set) are consulted with representatives of the laboratories. After checking the data are recorded into database system MAGIC and are archived. Also secondary data concerns sampling location, time and date of sampling, analysis methods, etc. are stored. Statistical analyze of data is performed by computerized processing. Limit of detection value is used for statistical treatment in cases when value below detection limit was measured.

The laboratories of River Basin Authorities have developed their internal QA/QC system. Despite of the Hron River Basin Authority, the laboratories are under the accreditation process, realized by Slovak National Accreditation System. The Hron River Basin Authority is planning to start with this process during a year 1998. In the Danube River Basin Authority and the Vah River Basin Authority persons responsible for quality management are already set up. Quality manuals are under preparation process in the Danube River Basin Authority, the Vah River Basin Authority and the Bodrog and Hornád River Basin Authority.

Standardized methods are used exclusively to analytical measurements of surface water samples in each laboratory. The results are well documented and archived. Documentation on maintenance of equipment and calibration is registered in logbooks. Principles of storage and maintenance of used chemicals are set up by each laboratory. Control and documentation in regard with the chemicals are performed by responsible persons.

Surface water sampling, transport conditions, sample conservation and storage before analytical measurements are in accordance with Slovak Technical Standard STN 83 0530, which is in Annex 4.4. Standardized sampling protocols are filled in during the sampling process.

The type of sampling bottle and cleaning procedure are set up for different types of analyses.

Internal quality control is ensured using control charts and analysis of control samples (blanks, spiked samples, replicates) in participating laboratories.

External quality control is realized by participating of laboratories in between-laboratory performance testing, which is organized mainly by National Reference Laboratory for Water in the Slovak Republic. The National Reference Laboratory for Water is also the methodological center for quality assurance of water and water related media analyses and is a part of Water Research Institute in Bratislava. Between-laboratory performance testing is organized in accordance with standards valid in European Union.

NOTE: Slovak Republic is regular member of ISO and affiliated member of the European Commission for Standardization (CEN). In spite of this there is a tendency to take over the European Standards (ES) and incorporate them into Slovak Technical Standards (STN) in field of water and wastewater management.

Great importance is given to continuous increasing of staff qualification in laboratories. The information on completed training courses or studies creates a part of personal documentation of the laboratory staff.

In the frame of the Danube Environmental Programme one of the existing activities is establishing of the Trans National Monitoring Network (TNMN). There are collected water quality data from Danubian countries in selected structure and upon chosen sampling sites. First report, prepared by "Monitoring" working group should be finalized by end of year 1998.

Analytical data produced for TNMN are measured in laboratories using standard QA/QC measures. The analytical methods applied for the analyses are mostly based on valid Slovak standards (former Czechoslovak standards), analytical procedures for organic micropollutants employ chromatographic techniques. Below is listed set of STNs including basic principles of used methods. Regarding the particular problem of phosphorus analysis it has to be stated that phosphorus is analyzed in non-filtered water and is determined as phosphates and total phosphorus.

The data produced by laboratories do not include flood discharges. However, this can be easily done by comparison of chemical and hydrological data.

# Slovak Technical Norms applied for surface water analyses:

| STN 75 7360 | Water Q             | quality. Determination of Absorbency                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (UV spec            | trometry at 254 nm)                                                                                                                                                                                                                                                                                                                                                                                                             |
| STN 75 7530 | Water Q             | uality. Determination of Extractable Organic Halogens.                                                                                                                                                                                                                                                                                                                                                                          |
|             | (LLE, Na<br>aqueous | dechlorination in isopropanol, photometric determination with mercury thiocyanate and FeIII in phase)                                                                                                                                                                                                                                                                                                                           |
| STN 75 7550 | Water Q             | quality. Determination of Chloroform.                                                                                                                                                                                                                                                                                                                                                                                           |
|             | (GC)                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| STN 75 7554 | Water Q             | uality. Determination of Fluoranthene.                                                                                                                                                                                                                                                                                                                                                                                          |
|             | (#1 GC;             | #2 HPLC)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STN 75 7600 | Water Q             | uality. Determination of Radionuclides. General Regulations.                                                                                                                                                                                                                                                                                                                                                                    |
| STN 75 7611 | Water Q             | uality. Determination of Radionuclides. Gross Activity α.                                                                                                                                                                                                                                                                                                                                                                       |
|             | (Evapora            | ation, proportional counter)                                                                                                                                                                                                                                                                                                                                                                                                    |
| STN 75 7612 | Water Q             | uality. Determination of Radionuclides. Gross Activity B.                                                                                                                                                                                                                                                                                                                                                                       |
|             | (Evapora            | ation, proportional counter)                                                                                                                                                                                                                                                                                                                                                                                                    |
| STN 75 7614 | Water Q             | uality. Determination of Radionuclides. Uranium.                                                                                                                                                                                                                                                                                                                                                                                |
|             | (Adsorpti           | ion on Silica-gel, complexation with Arsenaso III, photometric detection)                                                                                                                                                                                                                                                                                                                                                       |
| STN 75 7622 | Water Q             | uality. Determination of Radionuclides. Radium 226.                                                                                                                                                                                                                                                                                                                                                                             |
|             | (Copreci)           | pitation with barium (II) sulphate, scintillation counter)                                                                                                                                                                                                                                                                                                                                                                      |
| STN 75 7711 | Water Q             | puality. Biological Analysis. Determination of Microscopic View.                                                                                                                                                                                                                                                                                                                                                                |
|             | (Determi            | nation of groups and species and their number by fluorescent microscopy)                                                                                                                                                                                                                                                                                                                                                        |
| STN 75 7712 | Water Q             | puality. Biological Analysis. Determination of Abioseston.                                                                                                                                                                                                                                                                                                                                                                      |
|             | (Microsc            | opic distinguishing of detrite, inorganic particles, etc.)                                                                                                                                                                                                                                                                                                                                                                      |
| STN 83 0530 | Physical            | and Chemical Analysis of Surface Water.                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Part 1.             | General Regulations.                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Part 2.             | Sampling.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | Part 3.             | Determination of Temperature.                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | Part 4.             | Determination of pH.                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Part 5.             | Determination of Odour.                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Part 6.             | Determination of Colour.                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | Part 7.             | Determination of Turbidity. (Comparation with formazine suspension)                                                                                                                                                                                                                                                                                                                                                             |
|             | Part 8.             | Determination of Transparency.                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                     | (Height of the water column, readability of 3.5 cm letters)                                                                                                                                                                                                                                                                                                                                                                     |
|             | Part 9.             | Determination of Dissolved and Non-dissolved substances.                                                                                                                                                                                                                                                                                                                                                                        |
|             |                     | (Filtration, evaporation, drying at 105oC)                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Part 10.            | Determination of Electrolytic Conductivity.                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Part 11.            | Determination of Dissolved Oxygen.                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                     | (#1 Winkler method with Alsterberg azide modification, reaction with Mn (OH) 2, reduction with iodide, titration with thiosulfate with starch as indicator; #2 sensor methods)                                                                                                                                                                                                                                                  |
|             | Part 12.            | Determination of Alkalinity.                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                     | (Titration with strong acid to pH 8.3 [apparent alkalinity] and to pH 4.5 [total alkalinity])                                                                                                                                                                                                                                                                                                                                   |
|             | Part 13.            | Determination of Acidity.                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                     | (Titration with strong basis to pH 4.5 [apparent acidity] and to pH 8.3 [total acidity])                                                                                                                                                                                                                                                                                                                                        |
|             | Part 14.            | Determination of Carbon Dioxide (its forms).                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                     | (#1 free carbon dioxide calculated from total acidity [see Part 8.]; #2 carbonates and hydrogencarbonates calculated from total and apparent alkalinity [see Part 7]; #3 total carbon dioxide calculated from concentrations of particular forms; #4 aggressive carbon dioxide calculated from total alkalinity and acidity according to Lehmann and Reuss; #5 determination of aggressive carbon dioxide by marble Heyer test) |
|             | Part 15.            | Determination of Hardness.                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                     | (EDTA titration with Eriochrome black T)                                                                                                                                                                                                                                                                                                                                                                                        |
|             | Part 16.            | Determination of Calcium.                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                     | (#1 EDTA titration with murexid; #2 flame AAS)                                                                                                                                                                                                                                                                                                                                                                                  |

Part 19.

Part 20.

Part 17. Determination of Magnesium.

(#1 calculation: hardness-calcium; #2 flame AAS)

Part 18. Determination of Sodium.

(Emission flame photometry)

Determination of Potassium.

(*Emission flame photometry*) Determination of Chlorides.

(#1 argentometric titration; #2 merkurimetric titration with Hg(II) nitrate and diphenylcarbazone)

Part 21. Determination of Sulfates.

(#1 Titration with Lead (II) nitrate and dithizone; #2 Titration with barium (II) perchlorate and thorine)

Part 22. Determination of Phosphates.

(Reaction with ammonium molybdate (VI), reduction with ascorbic acid, photometry at 690 nm)

Part 23. Determination of Silicates.

(#1 Orthosilicates - reaction with ammonium molybdate, photometry at 430 nm; #2 Total silicates - alkali hydrolysis to orthosilicates, then see #1)

Part 24. Determination of Nitrites.

(Diazotation of sulphanilic acid and reaction with N-(1-naphthyl)-ethyldiaminohydrochloride, photometry at 550 nm)

Part 25. Determination of Nitrates.

(Reaction with sodium salicylate, photometry at 410 nm)

Part 26. Determination of Ammonium.

(#1 Reaction with hypochlorite and phenol, photometry at 630 nm; #2 Reaction with Nessler agent , photometry at 425 nm)

Part 27. Determination of Iron.

(#1 Reaction with bipyridile, photometry at 520 nm; #2 flame AAS; #3 Reaction with thiocyanate, photometry at 500 nm)

Part 28. Determination of Manganese.

(#1 Oxidation with peroxosulphate, photometry at 525 nm; #2 flame AAS)

Part 29. Determination of Chemical Oxygen Demand.

(#1 Oxidation with potassium (1) permanganate; #2 Oxidation with potassium dichromate, titration of excessive dichromate with Fe(NH4)2(SO4)2 and ferrosin)/non filtrared water sample/

Part 30. Determination of Fluorides.

(#1 Reaction with Zr(IV), photometric indication with alizarine at 520 - 550 nm; #2 Ionoselective electrodes; #3 Reaction with Zr(IV), photometric indication with Xylenol orange at 540 nm)

Part 31. Determination of Sulphides.

(Reaction with N,N-dimethyl-p-phenylenediamine, photometry at 660 nm; #2 Iodometric titration)

Part 32. Determination of Total Cyanides.

(Reaction with Chloramine T providing chlorocyane that reacts with barbituric acid and pyridine, photometric detection at 580 nm)

Part 33. Determination of Phenols (I)

(#1 Distillation/steam distillation, reaction with 4-aminoantipyrine and ferricyanide, chloroform extraction, photometric detection at 540 nm; #2 Reaction with diazoted p-nitroaniline, photometric detection at 530 nm)

Part 34. Determination of Detergents.

(#1 Anionactive - complexation with methylene blue, chloroform extraction, photometry at 650 nm; #2 Non-ionic - complexation with calcium and tungstatephosphoric acid, reaction with hydrochrome, photometry at 500 nm)

Part 35. Determination of Humic Substances.

(Extraction with amylalcohol, reextraction with sodium hydroxide, photometry at 420 nm)

Part 36. Determination of Oil and Oil Substances.

(#1 acidification, , extraction with carbon tetrachloride or trifluorotrichloroethane, clean-up on silicagel, photometry at 270 nm; #2 acidification, extraction with carbon tetrachloride or trifluorotrichloroethane, clean-up on silicagel, IR spectrophotometry at 3150 - 2750 cm-1)

Part 37. Determination of Biochemical Oxygen Demand.

(#1 5 x 24 hrs, 20oC, no oxygen and light, aerobic conditions; #2 as previous, with suppression of nitrification)/water sample could be filtareted: 2.5-3.5 micrometer filter, or non-filtrated, Or analyzed after sedimentation. Used method depends on purpose of the analyze/Part 38. Determination of Aluminium (#1 Complexation with Eriochromcyanine R, photometry at 535 nm; #2 Reaction with Aluminon, photometry at 525 nm)

Part 39. Determination of Copper.

(#1 Reaction with dikupral, photometry at 435 nm; #2 MIBK extract, flame AAS)

Part 40. Determination of Silver.

(#1 Reaction with p-dimethylaminobenzilidenrhodanide, photometry at 530 nm; #2 flame AAS)

Part 41. Determination of Zinc.

(#1 Ion exchange isolation, elution by sodium ions, reaction with zinkone, photometry at 625 nm; #2 flame AAS)

Part 42. Determination of Cadmium.

(#1 Reaction with dithizone in carbon tetrachloride, photometry at 515 nm; #2 methylisobutylketone extraction, flame AAS)

Part 43. Determination of Mercury.

(Mineralization, cold vapor flame AAS)

Part 44. Determination of Lead.

(#1 Reaction with diethyldithiocarbamate, carbon tetrachloride extraction, photometry at 435 nm; #2 flame AAS)

Part 45. Determination of Chromium.

(#1 Cr (VI) - reaction with diphenylcarbazide, photometry at 540 nm; Cr total - as previous after peroxosulphate oxidation; #2 Cr (III) - by calculation)

Part 46. Determination of Nickel.

(#1 Reaction with dimethylglyoxime, photometry at 540 nm; #2 flame AAS)

Part 47. Determination of Vanadium.

(Reaction with 8-hydroxychinoline, chloroform extraction, photometric detection at 550 nm)

Part 48. Determination of Arsenic.

(Reduction with hydrogen, reaction with silver diethyldithiocarbamate, photometry at 560 nm)

Part 49. Determination of Selenium.

(Reaction with 3,3'-diaminobenzidine, toluene extraction, photometry at 420 nm)

Part 50. Determination of Barium.

(Flame emission spectrometry)

## STN 83 0531 Microbiological Analysis of Surface Water.

Part 1. General Regulations.

Part 2. Sampling and Sample Preparation.

Part 3. Determination of Coliform Bacteria.

(Membrane filtration, cultivation, cytochromeoxidase test)

Part 4. Determination of Mesophilic Microbes - Total Plate Count at 37oC

(Cultivation at 37oC, counting)

Part 5. Determination of Psychrophyllic Microbes - Totl Plate Count at 20oC

(Cultivation at 20oC, counting)

Part 6. Determination of Faecal Coliform Bacteria.

(Direct setting, cultivation at 43oC, cytochromeoxidase test)

Part 7. Determination of Enterococci.

(Direct setting with sodium azide, cultivation at 37oC)

### STN 83 0532 Biological Analysis of Surface Water.

Part 1. General Data.

Part 2. Determination of Bioseston.

(#1 Small bioseston; #2 Larger bioseston; #3 Reoseston; #4 Flowing bacteria & fungi)

Part 3. Determination of Abioseston.

(Microscopic distinguishing of detrite, inorganic particles, etc.)

Part 4. Determination of Bentos.

(#1 Macrofauna of slowly flowing waters; #2 Macrofauna of fast flowing waters; #3 Macroflora; #4 Small bioseston of the contact zone)

Part 5. Determination of Periphyton.

(#1 On natural background; #2 On artificial background)

Part 6. Determination of Saprobic Index.

(Calculation according to Pantle and Buck)

Part 7. Prognosis of the Phytoplankton Development.

(Growth of the water flower)

Part 8. Determination of Biogenic Oxygen Production.

(Difference between concentrations of dissolved oxygen after some time with and without contact with light)

REMARK: At present, photometric standardized methods for determination of heavy metals are not widely used in practice. There is increased use of instrumental techniques based on AAS of ICP.

Additional to above mentioned monitoring activities there exists monitoring of surface water quality with all neighboring countries, which was set up on the basis of co-operation on transboundary rivers. This monitoring is performed by Water Research Institute and some relevant river basin authorities.

This co-operation is treated by bilateral agreement on transboundary waters. The Slovak Republic has signed treaties with all neighboring countries (except the Czech Republic, but treaty is under preparation).

Data from bilateral monitoring in the Danube River basin are available as well, but it is presupposed agreement of both parties. Used analytical methods are agreed by both parties and in some cases are different as in the national monitoring network.

# 4.4. River Channel Characteristics

## **4.4.1.** Network

Danube River basin covers 96 % territory of the Slovak Republic. Only Poprad and Dunajec River basins belong to other catchment area. The part of Slovak rivers are the direct tributaries of the Danube River at the territory of Slovakia (Morava, Vah, Hron, Ipel, Slana Rivers) and the remaining part of major Slovak rivers (Slana, Bodva, Hornad, Bodrog Rivers) are drained by the Tisa River, which is the tributary of the Danube River at the territory of Hungary.

| River                   | Danube | Morava | Vah    | Hron  | Ipel  | Slana | Bodva | Hornad | Bodrog |
|-------------------------|--------|--------|--------|-------|-------|-------|-------|--------|--------|
| Catchment<br>area (km²) | 1 138  | 2 282  | 18 769 | 5 465 | 3 649 | 3 217 | 858   | 4 414  | 7 272  |

The length of the common Slovak-Austrian reach of the Danube is 7,5 km, the length of the Slovak reach is 23,7 km and the length of the common Slovak-Hungarian reach is 140,8 km. The total length of the Danube River from the confluence with the Morava River to the confluence with Ipel River is 172 km (river km 1880,2-1708,2). The whole reach is navigable. The scheme of the river network in Slovakia is given on map "Surface Water Resources"

# 4.4.2. Channel Cross Sections<sup>1</sup>

The administration of major recipients and their tributaries is in the competence of four river basin authorities in Slovakia:

- The Danube River Basin Authority (including sub-basins of the Morava River and the Small Danube, which is the side river branch of the Danube)
- > The Vah River Basin Authority (including sub-basins of the Nitra and Zitava Rivers)
- The Hron River Basin Authority(including sub-basins of the Ipel and Slana)
- The Bodrog and Hornad River Basin Authority (including sub-basins of the Bodva and Hornad Rivers)

<sup>&</sup>lt;sup>1</sup> NOTE to the availability of cross sections:

Channel cross section documentation belongs to individual river basin authorities and its state is very different. Some data are old and they are included in so called "passportization" form. Requested information concerning cross section must be pick up from this papers by qualified specialist in this field. New documentation could be in digitized form, e.g. such exists for Danube and Morava Rivers. To obtain requested data, it is necessary to specify channel cross sections and address Slovak Water Management Enterprise, which administers river basin authorities, with request.

In the frame of field investigations, the above mentioned authorities prepared geodetic documents of the rivers in their administration, which contain the following items:

- the cross-sections of both river channels and floodplains
- detailed longitudinal sections of rivers (including tributaries, hydraulic structures, bridges, levees, the sites of water withdrawal, water conduits etc.)
- photogrammetry images, cartographic layouts
- geodetic data of polygons, situated along the rivers, as well as of survey points, situated at the banks of reservoirs.

These documents have been renewed, based at the engineering activities. The Water Research Institute (in co-operation with other institutes, involved in geodesy, geophysics, geology, hydrogeology, petrography, hydrometeorology, radiology, etc.) established publishing of the edition "Hydro-morphological Atlas of Slovak Rivers". Till now, two atlases have been issued in this edition - the Hron and Nitra Rivers (both from the whole river, from spring to mouth). These atlases contain detailed data of river photogrammetry, cartography, geodesy, hydrology, hydraulics, morphology (including characteristic of river bed material - petrography and mineralogy), analysis of both plain and vertical development (aggravation and degradation) of river bed. The travel time of water in the rivers has been determined for the emergency cases, by means of hydrological, hydraulic and radionuclide methods. The edition of next issues has been stopped because of lack of finances.

The Danube, Morava and Vah Rivers have been investigated mainly from point of view of navigation. The development of the Danube River bed is annually (in the sites of fords more frequently, according to needs) monitored in the whole, 172 km long river reach (in co-operation with Austrian and Hungarian sides), therefore, the cross-sections (in the distance approx. each 50 m) and echosounder contour images(ATLAS SUSY 30) of river bed are available. The deformations of riverbed, caused by the dredging are also monitored in detail. Similar investigations, focused at the possibilities of navigation, have been carried out at the Morava and Vah River (density of cross-sections 50-100m). The research works of both biotic and abiotic processes in the Morava River channel and floodplains, focused at the river training and river restoration, have been carried out in the frame of the project "Introductory solution of the Morava River restoration" (year 1997).

Special documents, dealing with the actual and perspective intentions in the field of water management, so called Water Management Master Plans, which also contain databases, required by the GEF Project, have been prepared.

Hydrological service of the Slovak Hydrometeorological Institute has characteristics of the cross-sections of the gauging stations. With regard to chosen hot spots there are following stations:

Table 4.2. List of gauging stations

| Profile             | Flow            | r. km   | Catchment area (km²) |  |
|---------------------|-----------------|---------|----------------------|--|
| Senica              | Teplica         | 1,00    | 152,01               |  |
| Bratislava          | Danube          | 1868,70 | 131 331,10           |  |
| Sturovo             | Danube          | 1718,60 | 172 438,00           |  |
| Liptovsky Mikulas   | Vah             | 346,60  | 1 106,64             |  |
| Hlohovec            | Vah             | 99,6    | 10 356,90            |  |
| Nove Zamky          | Nitra           | 12,30   | 4 063,66             |  |
| Banska Bystrica     | Hron            | 175,20  | 1 766,48             |  |
| Harmanec            | Bystrica        | 9,00    | 59,60                |  |
| Zvolen              | Slatina         | 1,89    | 790,16               |  |
| Zvolen              | Zolna           | 0,50    | 200,74               |  |
| Lucenec             | Krivansky potok | 5,40    | 204,67               |  |
| Roznava             | Slana           | 51,90   | 301,53               |  |
| Spis. Nova Ves      | Hornad          | 132,00  | 336,53               |  |
| Humenne             | Laborec         | 73,50   | 1 266,60             |  |
| Michalovce-Stranany | Laborec         | 39,20   | 1 450,07             |  |
| Michalovce-Medov    | Laborec         | 105,27  | 1 629,36             |  |
| Svidnik             | Ondava          | 113,90  | 167,50               |  |

## 4.4.3. Gradients

Geological conditions and processes influenced the development of two river systems of the Danube River at the territory of Slovakia:

- Western Slovakian
- Eastern Slovakian

The gradients of Slovak rivers, given below, reflect this division.

## Danube River:

The average gradient of riverbed in the 400 km long river reach between Passau (Germany) and Sap (former Palkovicovo in Slovakia) is 0,4 per mile. The short transient reach with the gradient of 0,18-0,08 per mile follows then to Komarno. The average gradient drops to 0,06 per mile in the reach 430 km long (to Vukovar in Yugoslavia). At the common Slovak-Hungarian river reach between the river km 1810 and 1820, the river bed gradient suddenly decreases from 0,4 per mile to one third of this value and then to one sixth. The altitude of the Danube riverbed is 157,20 m a.s.l. when entering the territory of Slovakia and 101,43 m a.s.l. when leaving it.

Table 4.3. Morava River

| r. km   | River bed gradient<br>(per mile) |
|---------|----------------------------------|
| 67 – 45 | 0,20                             |
| 45 – 25 | 0,170 - 0,178                    |
| 25 – 0  | 0,23 - 0                         |

Table 4.4. Vah River

| r. km     | River bed gradient<br>(per mile) |
|-----------|----------------------------------|
| 352 – 320 | 5,42 - 3,12                      |
| 320 – 265 | 3,54 -2,5                        |
| 265 – 240 | 2,02 -1,43                       |
| 240 – 110 | 1,51 - 1,12                      |
| 110 – 42  | 0,81 - 0,61                      |
| 42 – 0    | 0,16 - 0,06                      |

Table 4.5. Hron River

| r. km     | River bed gradient<br>(per mile) |
|-----------|----------------------------------|
| 292 –266  | 18,75 - 8,98                     |
| 266 – 245 | 4,58                             |
| 245 – 215 | 3,95 - 3,18                      |
| 215 – 177 | 2,99 - 2,71                      |
| 177 – 80  | 1,95 - 1,32                      |
| 80 – 0    | 1,11 - 0,62                      |

Table 4.6. Ipel River

| r. km        | River bed gradient<br>(per mile) |
|--------------|----------------------------------|
| 233 - 177,2  | 13,28                            |
| 177,2 - 67,2 | 0,44                             |
| 67,2 - 0     | 0,26                             |

Table 4.7. Slana River

| r. km    | River bed gradient<br>(per mile) |
|----------|----------------------------------|
| 102 – 95 | 28,3 - 19,12                     |
| 95 – 86  | 10,6 - 8,06                      |
| 87 – 67  | 5,69 - 4,82                      |
| 67 – 62  | 3,49                             |
| 62 – 58  | 6,66                             |
| 58 – 50  | 3,53                             |
| 50 – 0   | 2,92 - 0,46                      |

Table 4.8. Hornad River

| r. km       | River bed gradient<br>(per mile) |
|-------------|----------------------------------|
| 173,3 - 170 | 42,03                            |
| 170 - 163   | 13,84                            |
| 163 - 158   | 6,5                              |
| 158 - 155   | 13,80                            |
| 155 - 133   | 4,54 - 4,45                      |
| 133 - 127   | 11,31                            |
| 127 - 102   | 3,13 - 2,35                      |
| 102 - 89    | 1,70 - 1,45                      |
| 89 - 86     | 3,80                             |
| 86 - 50     | 4,22 - 2,16                      |
| 50 - 10     | 1,86 - 1,11                      |
| 10 - 0      | 0,58                             |

# Bodrog River:

The Bodrog River basin is the most complicated Slovak basin from the hydrological viewpoint. It is a fan shaped basin, the axis of which is represented by the Ondava River. The Bodrog River is created by confluence of Ondava and Latorica Rivers. The total length of the Bodrog River is 65 km, 16 km of which is at the territory of Slovakia.

The Latorica River is the longest (188 km) river in the Bodrog River basin. Its gradient is 0,05 per mille. The Latorica River joins with the right-sided tributary Laborec River, 15 km upstream the mouth. Gradient of Laborec River in the upper part is 7 - 9 per mille and 0,7 per mille in the lowland part.

# 4.4.4. Flood Plains

Upon the rivers with big reservoirs (e.g. Liptovská Mara, Zemplínska Šírava etc.) usually there are not flood problems.

Flood occurrence is recorded:

- on the rivers and flows stretches, which are not canalized, usually on smaller flows (e. g. Kysuca, Rajčianka, Torysa).
- on the rivers and flows, which enter to our territory (Morava River) and there are not any reserve space or reservoirs (Latorica and Uh Rivers)

In water management sector there exist 2.780 km of dykes with purpose of flood protection. Following table shows surface of territory, which is endangered by floods and territory protected from floods:

Table 4.9. Surface of territory endangered and protected by flood

|             |                            | Volume of reservoirs (thousand m <sup>3</sup> ) |                                |       |             |           |
|-------------|----------------------------|-------------------------------------------------|--------------------------------|-------|-------------|-----------|
| River basin | basin Territory endangered |                                                 | protected reservoirs territory |       | manipulated | Retentive |
|             | By flood                   |                                                 | from foods                     |       |             |           |
|             | $Q_{10}$                   | $Q_{100}$                                       |                                |       |             |           |
| D           | 230,5                      | 273,3                                           | 2 632                          | 1,1   | 3 735       | 210       |
| V           | 554                        | 1 306,6                                         | 1 090                          | 91,6  | 912 296     | 79 099    |
| Н           | 287,8                      | 306,2                                           | 220,8                          | 8,4   | 70 889      | 3 604     |
| BaH         | 397                        | 1 087                                           | 950                            | 73,3  | 574 389     | 107 666   |
| total       | 1 469,3                    | 2 973,1                                         | 4 892,8                        | 174,4 | 1 561 309   | 190 579   |

Note:

D – Danube

V – Váh H – Hron BaH - Bodrog and Hornád

 $O_{10}$ ,  $Q_{100}$  - discharge which occur one time per 10, 100 years

Hydrological conditions and characteristics of Danube tributaries are described in detail in report *National Review - Slovakia*.

There is not at disposal more information and map, which are requested for this part of report. Only map from Master Plans is available - "Surface Water Resources"- on which inundation areas are marked. These information in detail contents set of 134 maps /whole SR/ water management maps, 1: 50 000. These maps sells Water Research Institute.

Flood plains areas are marked in "passports", which are in ownership of individual river basin authorities.

## 4.4.5. Wetlands

# Ramsar Localities in Slovakia

The following wetlands are in Slovakia that are considered internationally unique wetlands, wetlands important for biodiversity, containing ecological or hydrological functions.

 $\dot{S}\acute{u}r$  (Nature reserve) - forest and meadow wetlands. Located between the Danube Lowland and Small Carpathian Mountains. Total are is 83.139 ha.

**Paris swamps** (Nature reserve) - extensive wetland system with reeds and sedges. The Paris steam is located in the southeast part of the Danube Lowlands. This area is an important habitat for nesting and migrating birds and others animals. Total area is 14.059 ha.

Čičov oxbow lake (nature reserve) - Danube oxbow lake, which was cut from the main stream by the creation of a dike. This area is a meadow and bush community. The area is dominated by reeds, cat-tales, sedges and water plants. Important habitat for rare plants and animals. Total area is 7.987 ha.

**Senné ponds** (Nature reserve) - A series of ponds built in a previously flooded area of the Okna River in the Eastern Slovakian Lowland. This is one of the most significant areas for nesting and migrating birds in Slovakia. This area consists of wet meadows and pastures around ponds with rare vegetation and animal species. Total area is 21.331 ha.

**Morava River floodplain area** (Protected landscape area of Záhorie) - situated along the Slovak part of the Morava River between the village Brodské and the confluence of the Morava and Danube Rivers. This area preserves a unique system of oxbow lakes, wet meadows and floodplain forests, which maintain a species-rich community of plants and animals. Total area is 4.971 ha.

**Danube River floodplain area** - area of wetland, forests, oxbow lakes and wet meadows. Within this total area of 14.335 ha are 19 small protected areas.

**Latorica** - 22 km stretch along the Latorica River in the Protected Landscape Area Latorica. This area is located in the southern part of the Eastern Slovakian Lowland and is composed of wetland forest, oxbow lakes and wet meadows. The total area is 4.358 ha.

SR has sent a request to put new 5 localities into Ramsar register (letter of February 11, 1998). Proposed localities are as follow: Orava River and its tributaries, Poiplie (area along Ipel' River), Rudava River Aluvium, Wetlands in Turiec area and Wetlands in Orava River basin.

Map of the wetlands in the Slovak Republic is under preparation.

References: Wetlands for Life, publication of DAPHNE Foundation, Bratislava,1996, Ministry of Environment of the Slovak Republic, nature and Landscape Protection Department

Programme "Mapping of Wetlands" is running in Slovakia, responsible is Slovak Environmental Agency. Map is not yet finished, because financial problems. In the SR do not exist data about hydraulic loading of wetlands.

# 4.4.6. Erosion and Degradation

Modification of Slovak water streams was solved predominantly from point of view of local interests and flood protection. This approach led to "channelization" of water streams, which are not morphological stable. For this reason in many streams water community was significantly changed and selfpurification process of water went down.

Today the intensity of erosion upon more water streams is critical. Deepen stream bottom is in some cases higher than 1 meter. Deep stream erosion has negative influence upon riverbank stability.

Other negative consequence of channel erosion is change in ground water level.

Erosion processes are elaborated (both from the viewpoint of quality and quantity) in the separate documents - Atlases of erosion - sedimentation process, according to their character (sheet erosion, rill erosion, river erosion etc.) and location (Slovak river basins and their main recipients).

#### **Dams and Reservoirs** 4.5.

#### 4.6. **Other Major Structures and Encroachments**

The locations of dams and reservoirs including information concerning reservoir purpose, type of dam, its height and length, spillway, gate volume etc. are published in book Slovak Dams and Reservoir. Overview about reservoirs with total volume over 1 mill. m<sup>3</sup> is in Table 4.10. and the enclosed map "Surface Water Resources"

Water reservoirs in Slovakia with total volume over 1 mill. m<sup>3</sup> **Table 4.10.** 

| No. | Basin  | Stream            | Reservoir             | Total<br>volume<br>/ mill. M <sup>3</sup> / | Max.<br>flooded area /<br>km² | Decisive<br>purposes |
|-----|--------|-------------------|-----------------------|---------------------------------------------|-------------------------------|----------------------|
| 1.  | Morava | Teplica           | Kunov                 | 2,5                                         | 0,63                          | P, O, R              |
| 2.  |        | Hrudky            | Buková                | 1,2                                         | 0,36                          | Z, R, O              |
| 3.  | Danube | Danube            | Gabčíkovo             | 195,5                                       |                               | E, Pl, R             |
| 4.  | Váh    | Váh               | Liptovská Mara        | 345,5                                       | 21,6                          | O, E, P, Z, R        |
| 5.  |        | Váh               | Bešeňová              | 7,4                                         | 1,93                          | E, O                 |
| 6.  |        | Orava             | Orava                 | 345,9                                       | 35,06                         | E, O, P, Z, R        |
| 7.  |        | Orava             | Tvrdošín              | 4,4                                         | 0,92                          | E, O                 |
| 8.  |        | Váh               | Krpeľany              | 8,3                                         | 1,26                          | Е                    |
| 9.  |        | Bystrica          | Nová Bystrica         | 36,9                                        | 1,91                          | V, O                 |
| 10. |        | Váh               | Hričov                | 8,5                                         | 2,53                          | Е                    |
| 11. |        | Váh               | Nosice                | 36,0                                        | 5,7                           | E, R                 |
| 12. |        | Váh               | Dolné Kočkovce        | 2,1                                         | 0,5                           | Е                    |
| 13. |        | Váh               | Trenčianske Biskupice | 3,3                                         | 0,9                           | Е                    |
| 14. |        | Váh               | Sĺňava                | 12,3                                        | 4,3                           | E, P, Z, R           |
| 15. |        | Váh               | Kráľová               | 51,8                                        | 11,7                          | Z, E, R, P, O        |
| 16. |        | Kostolník         | Dubník                | 1,1                                         | 0,22                          | O, R, Z              |
| 17. |        | Holeška           | Čerenec               | 1,4                                         | 0,46                          | O, P, Z, R           |
| 18. |        | Trnávka           | Boleráz               | 2,5                                         | 0,78                          | O, P, Z, R           |
| 19. | Nitra  | Nitrica           | Nitrianske Rudno      | 3,7                                         | 0,72                          | P, R, O              |
| 20. | Hron   | Slatina           | Hriňová               | 8,2                                         | 0,51                          | V                    |
| 21. |        | Slatina           | Môťová                | 2,8                                         | 0,59                          | P, R, O              |
| 22. |        | Hron              | Veľké Kozmálovce      | 4,7                                         | 1,48                          | P, Z, R              |
| 23. |        | Jabloňovka        | Bátovce               | 1,0                                         | 0,26                          | Z, R                 |
| 24. | Ipeľ   | Ipeľ              | Málinec               | 24,9                                        | 1,38                          | V, O                 |
| 25. |        | Budínsky potok    | Ružiná                | 13,7                                        | 1,7                           | P, Z, R, O           |
| 26. | Slaná  | Klenovecká Rimava | Klenovec              | 8,9                                         | 0,68                          | V, O                 |
| 27  |        | Blh               | Teplý Vrch            | 5,2                                         | 1,2                           | Z, R, O              |
| 28. | Bodva  | Ida               | Bukovec               | 23,4                                        | 1,05                          | V, O                 |
| 29. |        | Ida               | Pod Bukovcom          | 2,2                                         | 0,32                          | R, P                 |
| 30. |        | Turňa             | Hrhov                 | 3,8                                         | 2,49                          | R                    |
| 31. | Hornád | Hnilec            | Palcmanská Maša       | 11,1                                        | 0,86                          | E, R                 |
| 32. |        | Hornád            | Ružín                 | 59,0                                        | 3,9                           | E, P, R, O           |
| 33. |        | Hornád            | Malá Lodina           | 3,7                                         | 0,65                          | E, O                 |
| 34. | Bodrog | Cirocha           | Starina               | 48,7                                        | 2,76                          | V, O                 |
| 35. |        | Laborec           | Zemplínska Šírava     | 304,0                                       | 32,1                          | P, Z, R, O           |
| 36. |        | Okna              | Senné                 | 1,3                                         | 1,0                           | R                    |
| 37. |        | Laborec           | Beša                  | 53,0                                        | 29,03                         | O - dry polder       |
| 38. |        | Ondava            | Veľká Domaša          | 187,5                                       | 14,9                          | P, Z, R, E, O        |
| 39. |        | Ondava            | Malá Domaša           | 1,0                                         | 0,54                          | Е                    |
| 40. |        | Chlmec            | Veľké Ozorovce        | 1,2                                         | 0,38                          | R                    |

O - flood protection Pl - navigation

For drinking water supply are used reservoirs: Bukovec, Hriňová, Klenovec, Málinec, Nová Bystrica, Rozgrund and Stariná. Area of these reservoirs has a special regime with the aim to protect hygienic quality of water.

P - industry

Z - irrigation

E - hydropower

V - public drinking water supply R - recreation

Detail information about reservoirs in each river basin and sub-basin and about utilization of hydroenergy is published in report *National Review-Slovakia*.

During more than 30 years of the operation almost 12,7 million m<sup>3</sup> of reservoir volume have been lost due to sedimentation. This amount represents 35 % of the original reservoir volume.

The most significant volume of the sand and gravel bed material was dredged on the river Danube in order to protect the riverbed from sedimentation (the river reaches with sediment aggravation), for navigation purposes and also for commercial purposes /Annex 4.4./. The volumes of dredged and gravel mining occurred on the Danube River over the period of 60<sup>th</sup> and 70<sup>th</sup>. Since 80<sup>th</sup> the annual amounts of dredged material continually has decreased.

The volumes of a dredged material on the further Slovak rivers were substantially smaller and these amounts do not effected the morphological development of the river channel significantly.

# 4.7. Major Water Transfers

Water transfers, like water reservoirs facilitate regulation of outlet upon the flows and this way better utilization of water sources. Water management contribution of water transfers is possible to heighten substantially in connection with reservoirs. Purposes of water transfer are as follows: drinking water supply, irrigation, hydropower using, improvement of water quality in other catchment, supply small reservoirs and ponds etc.

Water transfers in year 1996 including information concerning relevant river basins shows Table 4.4.

| N  | From flow       | River basin | Into flow      | River basin  | Volume                     | Discharge |
|----|-----------------|-------------|----------------|--------------|----------------------------|-----------|
| 0. |                 |             |                |              | (thousand m <sup>3</sup> ) | $(m^3/s)$ |
| 1  | Danube          | Danube      | Small Danube   | Small Danube | 697 980,7                  | 22,072    |
| 2  | Turiec          | Vah         | Hron           | Hron         | 13 367,117                 | 0,423     |
| 3  | Nitra           | Vah         | Mala Nitra     | Vah          | 22 101,119                 | 0,699     |
| 4  | Zitava          | Vah         | Stara Zitava   | Vah          | 5 918,227                  | 0,187     |
| 5  | Hron            | Hron        | Perec          | Hron         | 68 468,547                 | 2,165     |
| 6  | Krivansky creek | Ipel        | Budinsky creek | Ipel         | 3 883,42                   | 0,123     |
| 7  | Hnilec          | Hornad      | Slana          | Hron         | 42 422,486                 | 1,342     |
| 8  | Topla           | Bodrog      | Manov channel  | Bodrog       | 18 094,579                 | 0,572     |

Table 4.11. Water transfer in year 1996

# 4.8. Preferred Sampling Stations and Data Sets

For top ten municipal and industrial hot spots average values of chosen water quality parameters in upstream and downstream checking profiles are listed in Tables 2.8. and 2.13. Data were taken over from annual report "Surface Water Quality in Slovakia" from years 1995-1996, published by SHMI.

List of upstream and downstream municipal pollution source profiles is in Table 2.9. and in Table 2.14. for industrial pollution sources. Profiles relevant to hot spots are marked in the map "Significant Pollution Sources and main Profiles of the State Water Management Balance".

It is necessary to take in consideration the fact, that qualitative downstream check profiles include not only pollution source impact, but they could include other factors as well (e.g. tributary etc.)

Data sets for years 1994 - 1997 for discharges related to Danube water quality in profiles of entering and leaving our territory are published in Tables 4.12. and 4.13.

Water quality of the Danube tributaries short of Danube confluence (Morava, Váh and Hron Rivers) and in profiles short of Slovak border leaving (Ipeľ, Slaná, Bodva, Hornád, Bodrog) is in Table s 4.14. and 4.20.

Trans National Monitoring Network (TNMN) includes on our territory following profiles on Danube and Vah Rivers:

- Danube Bratislava, r. km 1869
- Danube Medved'ov/Medve, r. km 1806
- Danube Komárno/Komarom, r.km 1768
- Váh Komárno, r. km 1,0

TNMN was set up in the framework of the Danube Environmental Programme and Sub-Group for Monitoring, Laboratory and Information Management is responsible for the preparation /namely working group Monitoring/. The Final Yearbook 1996 should be at disposal about by end of 1998. For this reason it is not necessary to collect more information in this report.

The Slovak Hydrometeorological Institute in Bratislava, belonging to guidance of the Ministry of Environment of the Slovak Republic, is responsible for water quantity and quality monitoring and collects data from responsible institutions /river basin authorities, regional hydrometeorological institutions/ from whole SR. Also it publishes annual and other relevant reports.

Address: Slovak Hydrometeorological Institute, Jeseniova 17, Bratislava

NOTE: For purpose of GEF project solution /e.g. request for some additional data etc./ it is necessary to contact responsible persons in the Water Protection Department of the Ministry of Environment

# 4.9. Water Discharges

List of gauging stations in the Danube River basin on Slovak territory is in Annex 4.5.

Hydrographs:

In Annex 4.6. are published hydrological data for years 1994 - 1996 /data of year 1997 will be available later this year/ related to water quality monitoring stations - Danube and its tributaries.

Discharge measurement exists for following of water quality monitoring stations:

Danube – Bratislava /r.km 1879,78/

Slaná – Lenártovce /r.km 3,6/ Hornad – Ždana /r.km 17,2/

Bodrog - Streda nad Bodrogom /r.km 5,2/

NOTE: small differences exist in r.km in some of above listed profiles

Tables in Annex include:

Daily discharge average month discharge year maximum discharge year minimum discharge year average discharge average daily discharge curve /except Danube-Bratislava,1996/ To other water quality monitored localities do not exist discharge measuring. There is more or less far discharge measuring or measuring of "water stage" /H/, or do not exist in form as above /e.g. Hron/

Morava

Devínska Nova Ves H /r.km 8,28/ discharge is measured in r. km 9,6-Borinka

Váh

Komárno H /r.km 0,05/ discharge is measured in r.km 58,5 -Sala

Hron

Kamenín 4discharge measured in r. km 10,9

Ipel'

Vyškovce nad Iplom discharge measured in r. km 46

Bodva

Hosťovce discharge measured in r. km 0,20

Dunaj

Šturovo H /in r. km 1718,6/ discharge measured in r. km 1763,96 -Iza

To those 5 stations with measuring of discharge /does not exist for Morava-Devinska Nova Ves/ are tables "Average Month and Extreme Discharges" published in the report "Hydrological Annual Report - Surface Waters, 1996" /issued by the Slovak Hydrometeorological Institute, Bratislava,1997/.

For solution of some other requests is necessary to consult with relevant department of this institute, if it is possible to handle existing data with aim to fulfill requests.

For some profiles there exist following tables:

"Maximal mean daily discharges in month" /years 1994-1996/ - Annex 4.7.

"Minimal mean daily discharges in month" /years 1994-1996/ - Annex 4.8.

Basic available data for flow duration curves /curves are not prepared/ of the Danube and its tributaries from years 1994 - 1996 are published in Annex 4.9.

Data of year 1997 are not yet handled.

# 4.10. Sediment Discharges

# 4.11. Suspended Sediment Concentration

Sediment discharge balance for last available year 1996 is in Table 4.1. Daily measuring of sediment discharged is performed only in few stations:

Danube - Bratislava

Morava - Záhorská Ves

Hron - Brehy

Ipeľ - Slovenské Ďarmoty

Slaná - lenartovce

Hornád - Ždaňa

Data of years 1994 - 1996 are in Annex 4 - 10. Each table contains:

daily concentration of sediment discharge /mg/l/ sum for month and year average, maximum and minimum values for individual month and for year mean sediment discharge /kg/s/, in tables as **MSD** year runoff of sediment discharge /t/, in tables as **YRSD** specific year runoff of sediment discharge /t/km²/, in tables as **SYRSD** curve for year

NOTE: from viewpoint of this report the data from the following stations important:

Danube-Bratislava, Hron-Brehy, Ipel-Slovenske Darmoty, Slana-Lenartovce, Hornad-Zdana.

Others, which are not listed in the annex, are: Poprad-Chmelnica, Nitra-Nitrianska Streda, Kysuca-Kysucke Nove Mesto, Topla-Hanusovce. On disk exists whole information.

# 4.12. Water Quality Data

Water quality data related to chosen 10 municipal and 10 industrial hot spots are published in this report as well as data of main Danube tributaries and key profiles of the Danube that means inflow and outflow from country. Those data give picture about water quality.

Beside of mentioned Final Report on Nutrient Balances for Danube Countries", following reports should be mentioned:

- Study on Removal of Phosphate from Detergents in Countries in the Danube Basin
- Quality of Sediments and Biomonitoring
- Danube Regional Pesticide Study

In the frame of national research was prepared report "Solution of Agricultural Non Point Sources Reduction with regard to Surface and Ground Water. Report was prepared by Mr. M. Lichvár and issued by Water Research Bratislava, 1995.

Research in this report was realized on small river basin with aim to prepare proposals for good agricultural practice.

# 5. Legal and Institutional Framework for Water Quality Control

# Relevant umbrella legislation, enabling legislation and regulations

Environmental protection in Slovakia (until December 31, 1992 Czechoslovakia) has been started mainly after year 1990.

The main document of the Slovak Republic - Constitution - defines the main principle in article 45 that every citizen has a right to a favorable environmental has a duty to protect this environment.

Complete list of laws and regulations concerning environment protection is at disposal at the Ministry of Environment of the Slovak Republic. This part of the report is focused to water protection legislation and related laws.

## Relevant umbrella legislation:

17/1992 Coll., Act on Environment (Amendment: 127/1994 Coll. and 287/1994 Coll.) stipulates the basic concepts and determines the basic principles of environment protection and improvement of environment conditions and for the utilization of natural resources as well as it follows from the principles of permanently sustainable development.

595/1990 Coll., Act. on State Administration for Environment (Amendment: 494/1991 Coll., 134/1992 Coll., 87/1994 Coll., 222/1996 Coll.)

The State Administration in the matters of creation and conservation of environment is executed by

- the Ministry of Environment as central body of state environmental administration and
- District Offices
- Regional Offices
- Slovak Inspectorate for Environment
- > municipalities (in case of commission by law)

The care for environment according to the Act should be comprehended as: nature protection, protection of the quality and quantity of waters and their rational utilization, air protection, spatial planning and Building Order, waste management.

Ministry of Environment secures a unified information system on environment including spatial monitoring in the territory of Slovak Republic.

138/1973 Coll., Act on the Water (Water Act) is basic law in water protection branch, which sets up basic duties in water management. The aim of this Act is to widely preserve water for its notability to be replaced and whole society meaning, to plan its usage and other handling with it, so that the balance between usage of water and the capacity of water resources is achieved, to take care of its purity and the most effective usage, to arrange protection against flooding and at the same time to preserve the nature, recreation, shipping and other important interests of society.

# The distribution of key mandates through the government hierarchy

Water resource management and exploitation in the Slovak Republic is divided between three section ministries: the Ministry of Environment, the Ministry of Soil Management and the Ministry of the Interior.

The Ministry of Environment controls decision process in the area of state administration (legislation, law enforcement), inspection, and the preparation of technical documentation for state administration.

The Ministry of Soil Management is more body of economic management in the area of watercourse management, maintenance and development, public water supply, village and city sewerage.

In the sector of the Ministry of the Interior are established Regional and District Offices, part of which are Environment Departments (air, water and nature protection, waste management). Methodological guidance of these departments is administered by the Ministry of Environment.

From point of view of the water branch the Ministry of Environment governs Environment Department in the District and Regional Offices (in case of commission by law - on municipal level as well), the Slovak Environmental Inspection and the Slovak Hydrometeorological Institute. The sector of the Ministry of Soil Management includes Slovak Water Management Enterprise, state river basin enterprises, Water Research Institute, Hydroconsult and Water Management Construction.

## **Ministry of Environment:**

The current water management legislation constitutes water management authorities, which perform the state administration of water. District and regional environmental authorities perform state administration on the regional level. The Ministry of Environment of the Slovak Republic is the supreme body of the state administration of water and is the highest appeal body as well.

Water management authorities decide about the withdrawal of surface and ground water, as well as about wastewater discharge into surface and ground water. They are special construction authorities, which authorize the construction of water management facilities, and issue certificates. They are in charge of issuing planning permissions and permissions for activities that may influence the water situation. This concerns especially objects built on waterways, long distance pipelines, storage places for substances dangerous to water quality, and the construction of communications. Bodies issuing such planning permissions are bound by an approval from the corresponding water management authority.

An important responsibility of water management authorities, required by the Water Law, is water management inspection. Within the framework of this inspection activity, water management authorities verify whether duties imposed by the Water Act or by water management authorities are performed. The Ministry of Environment of the Slovak Republic is in charge of the main water management inspection. In the order to carry out this responsibility, the Ministry runs the Slovak Environmental Inspection, which verifies whether requirements specified in permissions are fulfilled, especially in the area of water protection and management. Water management authorities are authorized to impose measures in order to correct discovered shortcomings. They are obliged to sanction those who do not perform their duties. Fines are imposed according to the actual illegal activity specified in the Water Act.

Under auspices of the Ministry of Environment are regularly prepared "Drainage Areas Hydroecologic Plans" and "State Water Management Balance".

Slovak Hydrometeorological Institute is sectoral institute, which deals with problems of the area: meteorology, climatology and hydrology and nature environment protection. From point of view of water, there are solved water quality and water quantity aspects, water balance, international information exchange concerning water in accordance with the agreement, e.g. performs monitoring, prepares and publishes annual reports "Water Quality in Slovak Rivers" and "Ground Water Quality in Slovakia" and other documents and reports for section of the Ministry of Environment.

# **Ministry of Soil Management:**

The length of the Slovak river network is about 44.000 km. The Slovak Water Management Enterprise governs 4 state river basin enterprises. Besides them watercourse management is performed also by state forest organizations, and army forest organizations.

At present the river basin enterprises manage more than 24,000 km of rivers, out of which about 29 % is regulated. The enterprises manage 260 water reservoirs, which include 42 big water reservoirs. The reservoir volume under control represents about 1.803 mil. m<sup>3</sup>. Besides this they manage 562 pump stations, 11 locks etc.

Basic duties of the river basin enterprises (and also other administrators) in watercourse management are specified by the Water Act and relevant regulations. River basin enterprises are responsible for:

- the management, operation and maintenance of watercourses, dams, and water management facilities built on them
- conditions for surface water supply to all sectors of the national economy, including the construction of new water supply systems
- performance of surface water quality monitoring on the basis of agreement with Slovak Hydrometeorological Institute
- preventive work in the vicinity of waterways and water dams in order to provide protection against unfavorable influence of water
- performing tasks required by flood plans and decision taken by flood committees during flood activity
- > performing construction and erection works, and extraction of riverbed material
- activities connected to the managed border rivers, and activities, that are required by special agreements about border waters
- water carriage, creating conditions for the exploitation of the hydroenergetic potential of rivers
- the management, operation, maintenance, repairs, reconstruction, and modernization of irrigation and drainage systems

Water works is the complex of the objects and facilities for mass supplying of citizens with water, and for covering the need for water for national economy and villages, towns and cities sewerage. At current starts process of change of the ownership from the state to the municipalities.

Water Research Institute is sectoral institute that deals with many aspects of water quality and quantity, including preparation regular reports for ministries, scientific research, monitoring of transboundary rivers etc.

The National Reference Laboratory for water analyses was established in the Water Research Institute in co-operation of the Ministry of Environment, the Ministry of Soil Management and the Ministry of Health.

Hydroconsult is project organization for the water management sector and the Water Management Construction realizes structures in the same sector.

In the scope of the Ministry of Soil Management are regularly prepared "Water Management Plans".

Under auspices of both Ministries was prepared a "General Plan for the Protection and Effective Utilization of Water". It is unifying document with a national wide scope and is approved by the Slovak Government.

# Applicable standards

Most important Laws and Regulations from water management sector and related to this sector are as follows:

## **General Environment:**

127/1994 Coll., Act on Environmental Impact Assessment regulates the procedure for the overall expert and public assessment of constructions and facilities under construction and other activities specified under this Act.

128/1991 Coll., Act on the State Fund of the Environment of the Slovak Republic (Amendment: 311/1992 Coll. and 58/1995 Coll.). The State Fund of the Environment of the Slovak Republic has been established with the purpose to gather financial resources and use them for the support of the environment.

The Fund sources in the protection of water quality and quantity and their rational using are especially:

- charges for wastewater discharges to surface waters
- > penalties imposed by the state administration authorities in the water management
- contribution from the state budget SR

176/1992 Coll., Regulation of the Slovak Commission for the Environment on Condition for the Provision and Use of Finances of the State Fund of the Environment of the Slovak Republic adjusts conditions for the provision of finances of the State Fund of the Environment of the Slovak Republic. The Fund is internally structured as follows:

- > a section for the protection of the quality and quantity of water and water rational use
- > a section for air protection
- > a section for nature protection
- > a section for waste management
- > a general section

## **Water Protection Legislation:**

318/1991 Coll., Act on State Water Management Fund of the Slovak Republic (Amendment: 58/1995 Coll. and 304/1995 Coll.). The Fund is used to cover concrete developmental water management constructions, hydro-geological research, removal of accidents in water structures, development of sciences and technologies.

Sources of this Fund are as follows:

- charges for the ground water consumption
- > subsidies from the state budget SR for development
- > loans from financial institutions
- interests from the Fund sources
- > gifts and contributions by legal and physical entities

23/1977 Coll., Regulation of the Ministry of Forest and Water Management of the Slovak Socialist Republic on Protection of the Quality of Surface and Ground Water deals with the manipulation of the materials, endangering the quality or health harmless quality of water. This Regulation sets up detail conditions for water protection and list of harmful substances.

**242/1993** Coll., Governmental Order of the Slovak Republic, which provides the indicators of the permissible degree of contamination of waters. In permitting of discharging of waste and special waters into surface waters the water management authority proceeds according to indicators of the admissible degree of contamination of waters which have been specified in annexes No. 1 to 3 of this decree.

135/1974 Coll., Act on State Administration in Water Management in paragraph 16 sets up function of the factory and business water managers. The organizations, which withdraw, or otherwise use the water or drain waste, respectively extraordinary water, in the quantity and the quality, over the level determined by the Ministry, after the agreement with relevant central bodies, are obliged to take actions, in order to arrange qualified workers (factory and business water manager) for professional managing with water and cleaning waste water.

31/1975 Coll., Governmental Order on Penalties for infringing of obligations provided in the sector of water management defines cases in which water management authorities impose penalties. It especially concerns:

- water withdrawal without permit issued by the water management authority
- discharge of waters without permit issued by the water management authority or contrary to it
- pollution of surface or ground waters or endangering their quality or health unexceptionable through manipulation with the substances harmful to water
- damage of the public water supply or public sewage
- breaching of other duties determined by the above acts or duties imposed by them

35/1979 Coll. Governmental Order on the Charges in the water management (Amendment: 91/1988 Coll. and 235/1996 Coll.) sets up system of charges, valid equally for the whole territory SR:

- the charges for the water consumption from water streams
- the charges for the ground water consumption
- the charges for discharging of wastewater to surface water

154/1978 Coll., Regulation of the Ministry of Forest and Water Management of the Slovak socialist Republic on Public water supply and public sewerage (Amendment: 15/1989 Coll.) sets up management and operation of the public water supply and public sewerage and general conditions for this operation as well. There is established the obligation of the payment for drinking water supply from public water supply and for waste or rain water draining.

NOTE: All above mentioned Acts, Regulations and Governmental Orders are at disposal in special report "Legal Framework for Water Quality", which is annex of main documents prepared in the frame of the GEF Project "Pollution Reduction in the Danube River Basin".

## Other Regulations from water management area:

- > 117/1976 Coll. Regulation of the Ministry of Forest and Water Management of the Slovak socialist Republic on Slovak Water Management Inspection
- > 66/1976 Coll. Regulation of the Ministry of Forest and Water Management of the Slovak Republic on Water Managers
- > 32/1975 Coll. Governmental Regulation on the Protection against flooding
- > 46/1978 Coll., Act on Protected Region of Natural Accumulation of Water in the Žitný Ostrov as amended by the Act 52/1981
- > 13/1987 Coll., Act on some Protected Regions of Natural Water Accumulation

- > 169/1975 Coll., Regulation of the Ministry of Forestry and Water Management on professional technical and safety supervision at some water management works and on technical and safety supervision of national committees
- > 170/1975 Coll., Regulation of the Ministry of Forestry and Water Management on obligations of organizations to deliver reports on findings of underground waters and to report information about supplying the same
- > 158/1976 Coll., Regulation of the Ministry of Forestry and Water Management on water guards as amended by Regulation 112/1978
- 24/1977 Coll., Regulation of the Ministry of Forestry and Water Management on water management records
- > 34/1977 Coll., Regulation of the Ministry of Forestry and Water Management on use of surface water for the sail of motor boats
- > 6/1978 Coll., Regulation of the Ministry of Forestry and Water Management stipulating obligations of water flow managers and some issues related to water flows

At present time a new Water Act and related Regulations and Governmental Orders are being prepared.

## Relevant International Agreement

The Slovak Republic has signed bilateral agreement with all neighboring countries except the Czech Republic. This agreement is under preparation and will be signed soon.

For each bilateral co-operation was established the Committee for Transboundary Waters, which deals with all aspects of water quality and quantity.

From point of view of water resources protection and their sustainable use are most important:

- > Convention on the Protection and Use of Transboundary Watercourses and International Lakes
- Convention on Cooperation for the Protection and Sustainable Use of the Danube River

Convention on the Protection and Use of Transboundary Watercourses and International Lakes:

The Slovak Republic is in the process of accession to this Convention now. Under auspices of the UN/ECE was set up Task Force for Monitoring and Assessment of Transboundary Waters, which governs activities concerning monitoring and assessment of surface and ground transboundary water. In the practice has been started co-operation on pilot projects with three neighboring countries:

Ipel' River (Hungary) Morava River (Czech Republic) Latorica and Uh (Ukraine)

Objective of the pilot projects is verification of the "Guidelines for Monitoring and Assessment of Transboundary Rivers" that was prepared by the Task Force.

# Convention on Cooperation for the Protection and Sustainable Use of the Danube River (Danube Convention):

The Slovak Republic ratified this Convention in year 1997. Under auspices of the Heads of Delegations of the Danubian countries was in the frame of this Convention set up Expert Group "Emission"

Since year 1992 is working the Danube Environmental Programme, which is very extensive and well known in the Danube region. Activities of this Programme will take over Danube Convention.

The representatives of the Slovak Republic are members of all relevant expert and working groups.

## Other relevant agreement:

The Slovak Republic has acceded to the following international Conventions (Protocol to the Conventions):

- > Convention on Wetlands of International Importance Especially as waterfowl Habitat (Ramsar Convention)
- Convention on the Protection of the World Culture and Natural Heritage
- > Convention on International Trade in Endangered Species of Wild fauna and Flora
- **Convention on Long-Rang Transboundary Air Pollution** (and other air protection relevant conventions and protocols)
- > Convention on Biological Diversity
- > Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention)
- > Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention)

# **Tables**

to the Chapter 2 "Updating of Hot Spots"

to the Chapter 3 "Identification of Diffuse Source of Agricultural Pollution"

to the Chapter 4 "Updating and Validation of Water Quality Data"

#### List of Tables<sup>1</sup>

| Table 2.1.  | Municipal hot spots proposed in SAP, SIP and NAP                                                    | /R/      |
|-------------|-----------------------------------------------------------------------------------------------------|----------|
| Table 2.2.  | Industrial hot spots proposed in SAP, SIP and NAP                                                   | /R/      |
| Table 2.3.  | Agricultural hot spots proposed in SAP, SIP and NAP                                                 | /R/      |
| Table 2.4.  | Regulation of the Government of SR No 242/1993 Coll. (also in part 5)                               | /R/      |
| Table 2.5.  | Order of urgency for solution of municipal hot spots                                                | /R/      |
| Table 2.6.  | Order of urgency for solution of industrial hot spots                                               | /R/      |
| Table 2.7.  | Municipal hot spots (year 1996), Emission into the Danube River basin                               |          |
| Table 2.8.  | Municipal hot spots (year 1996), Water quality deterioration                                        |          |
| Table 2.9.  | Municipal hot spots check river points of receiving water                                           |          |
| Table 2.10. | Municipal hot spots (year 1996), State of treatment                                                 |          |
| Table 2.11. | Municipal hot spots (year 1996), Downstream uses of water                                           |          |
| Table 2.12. | Industrial hot spots (year 1996), Emission into the Danube River basin                              |          |
| Table 2.13. | Industrial hot spots (year 1996), Water quality deterioration                                       |          |
| Table 2.14. | Industrial hot spots check river points of receiving water                                          |          |
| Table 2.15. | Industrial hot spots (year 1998), State of treatment                                                |          |
| Table 2.16. | Industrial hot spots (year 1998), Downstream uses of water                                          |          |
| Table 2.17. | Selected municipal hot spots                                                                        | /R/      |
| Table 2.18. | Selected industrial hot spots                                                                       | /R/      |
| Table 3.1.  | Main river sin the SR, their basins and length of bordering water courses and structure of land     | /R/      |
| Table 3.2.  | Fertilizer consumption                                                                              | /R/      |
| Table 3.3.  | Water erosion risk on Slovakia agricultural soils                                                   | /R/      |
| Table 3.4.  | Average yield of selected crops within period 1990-1996                                             | /R/      |
| Table 3.5.  | Nutrient emission into surface water from Slovak Danube River basin                                 | /R/      |
| Table 4.1.  | Sediment discharges of chosen profiles (year 1996)                                                  |          |
| Table 4.2.  | List of gauging stations for hot spots, in which are available characteristic of the cross-sections | c<br>/R/ |
| Table 4.3.  | Morava River bed gradients                                                                          | /R/      |
| Table 4.4.  | Vah River bed gradients                                                                             | /R/      |
|             |                                                                                                     |          |

<sup>&</sup>lt;sup>1</sup>/R/ table in text part of report

| Table 4.5.  | Hron River bed gradients                                                                                          | /R/ |
|-------------|-------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.6.  | Ipel River bed gradient                                                                                           | /R/ |
| Table 4.7.  | Slana River bed gradient                                                                                          | /R/ |
| Table 4.8.  | Hornad River bed gradient                                                                                         | /R/ |
| Table 4.9.  | Surface of territory endangered and protected by flood                                                            | /R/ |
| Table 4.10. | Water reservoirs with total volume over 1 mill. m <sup>3</sup>                                                    | /R/ |
| Table 4.11. | Water transfer in year 1996                                                                                       | /R/ |
| Table 4.12. | Water quality in the main check point "DANUBE-NAD BRATISLAVOU", r.km 1877,30                                      |     |
| Table 4.13. | Water quality in the main check point "DANUBE-STUROVO", r.km 1718,80                                              |     |
| Table 4.14. | Water quality in the main check point "MORAVA-DEVINSKA NOVA VES", r.km 1,5                                        |     |
| Table 4.15. | Water quality in the main check point "VAH-KOMARNO", r.km 2,5                                                     |     |
| Table 4.16. | Water quality in the main check point "HRON-KAMENIN", r.km 10,9                                                   |     |
| Table 4.17. | Water quality in the main check point "IPEL-IPELSKY SOKOLEC", r.km 35,20 in year 1997, "IPEL-KUBANOVO", r.km 38,3 |     |
| Table 4.18. | Water quality in the main check point "SLANA-LENARTOVCE", r.km 3,6                                                |     |
| Table 4.19. | Water quality in the main check point "BODVA - HOSTOVCE", r.km 0,00                                               |     |
| Table 4.20. | Water quality in the main check point "BODROG -STREDA N.BODROGOM", r.km 6,00                                      |     |

Table 2.7. Municipal hot spots (year: 1996) Emission into the Danube River basin

| No | Name of Hot-<br>Spot      | Receiving W                                                                                                                    | ater                                  | Number of<br>Inhabitants | Share of Industrial<br>Waste Water |
|----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|------------------------------------|
|    | Locality                  | Name r.km                                                                                                                      | Q <sub>355</sub><br>m <sup>3</sup> /s | connected to WWTP (PE)   | %                                  |
| 1  | VK Kosice                 | Hornad<br>24.3                                                                                                                 | 6,28                                  | 219.864                  | 23                                 |
| 2  | VK Nitra                  | Nitra<br>52.5                                                                                                                  | 3,50                                  | 88.206                   | 43,6                               |
| 3  | VK Malacky                | Malina branch<br>1.6                                                                                                           | 0,380                                 | 11.326                   | 26,6                               |
| 4  | VK Banska<br>Bystrica     | Hron<br>168.4-181-172.1<br>Selcian.creek<br>2.3-2.2-2.1-2.0-1.8<br>Bystrica<br>3.2-2.6-1.8-1.5-0.8<br>Malach. creek<br>2.0-1.6 | 8,1                                   | 81.572                   | 60,6                               |
| 5  | VK Michalovce             | Laborec<br>34.2                                                                                                                | 1,474                                 | 41.297                   |                                    |
| 6  | VK Svidnik                | Ondava<br>117.2<br>115.3                                                                                                       | 0,216                                 |                          |                                    |
| 7  | VK Trencin,<br>Right bank | Zlatov. creek<br>2.8                                                                                                           | 33,270                                |                          |                                    |
| 8  | VK Humenne                | Laborec<br>63.4                                                                                                                | 1,247                                 | 36.102                   |                                    |
| 9  | VK<br>Ruzomberok          | Vah<br>314.8                                                                                                                   | Qg: 10                                | 122.774                  |                                    |
| 10 | VK Topolcany              | Nitra<br>93.4                                                                                                                  | 2,943                                 | 29.560                   | 63                                 |

Table 2.7. continued

| No | Name of Hot-                                                    | Wastewater                      |                        | Discharged Pollution<br>t/y |                        |                       |                       |                     |                      |  |  |  |  |  |
|----|-----------------------------------------------------------------|---------------------------------|------------------------|-----------------------------|------------------------|-----------------------|-----------------------|---------------------|----------------------|--|--|--|--|--|
|    | Spot<br>Locality                                                | Volume<br>T. m³/y               | BOD (5 d )             | COD<br>(Cr)                 | susp.<br>solids        | NEL                   | N-NH4                 | Total N             | Total P              |  |  |  |  |  |
| 1  | VK Kosice                                                       | 39420,000                       | 1182,6                 | 2956,9                      | 2759,4                 | 59,13                 | 245,67                |                     | 36,24                |  |  |  |  |  |
| 2  | VK Nitra                                                        | 11687,940                       | 1262,3                 | 2037,2                      | 1085,8                 | 2,45                  | 170,64                |                     | 26,65                |  |  |  |  |  |
| 3  | VK Malacky                                                      | 2 333,24                        | 151,7                  | 315                         | 170,3                  | 2,4                   | 27,07                 |                     |                      |  |  |  |  |  |
| 4  | VK Ban.Bystrica Hron Selciansky creek Bystrica Malachovsk y cr. | 17975,520<br>283,836<br>331,128 | 1092,9<br>13,7<br>10,5 | 2876,1<br>39,1<br>33,1      | 1006,6<br>16,8<br>14,1 | 30,02<br>0,25<br>0,15 | 76,22<br>1,71<br>1,71 | 194,1<br>3,4<br>2,9 | 19,59<br>0,2<br>0,34 |  |  |  |  |  |
| 5  | VK Michalovce                                                   | 7096,600                        | 425,7                  | 922,4                       | 319,3                  | 17,74                 | 83,83                 |                     | 15,43                |  |  |  |  |  |
| 6  | VK Svidnik                                                      | 630,720<br>378,432              | 69,4<br>45,4           | 176,6<br>98,4               | 61,3<br>37,8           |                       | 0,95                  |                     |                      |  |  |  |  |  |
| 7  | VK Trencin, r. b.                                               | 1856,241                        | 455,9                  | 942,8                       | 146,6                  | 1,37                  | 15,96                 |                     | 1,47                 |  |  |  |  |  |
| 8  | VK Humenne                                                      | 9618,480                        | 500,2                  | 865,7                       | 432,8                  | 14,43                 | 97,93                 |                     | 18,32                |  |  |  |  |  |
| 9  | VK Ruzomberok                                                   | 25 349,9                        | 529,8                  | 4471,7                      | 1622,4                 | 10,55                 | 55,77                 |                     | 10,7                 |  |  |  |  |  |
| 10 | VK Topolcany                                                    | 3326,220                        | 194,5                  | 326,3                       | 171,3                  | 0,40                  | 74,17                 |                     | 8,55                 |  |  |  |  |  |

NOTE: EL: non-polar extractable substances

S: suspended solods g: guarantee discharge

Table 2.8. Municipal hot spots (year 1996) Water quality deterioration

| No. | Name of Hot Spot       | Dillution facto  | or (l/s) |       | Lenght of Receiving Water Influenced by |
|-----|------------------------|------------------|----------|-------|-----------------------------------------|
|     | Locality               | Q <sub>355</sub> | up down  | Qmean | Hot Spotd                               |
| 1   | VK Kosice              | 4383             | 6280     | 1250  | more than 20 km                         |
| 2   | VK Nitra               | 3420             | 3500     | 371   | more than 15 km                         |
| 3   | VK Malacky             | 203              | 380      | 74    | more than 20 km                         |
| 4   | VK Banska Bystrica     | 6155             | 8100     | 570   | more than 15 km                         |
| 5   | VK Michalovce          | 1300             | 1474     | 225   | more than 15 km                         |
| 6   | VK Svidnik             | 78               | 216      | 32    | more than 20 km                         |
| 7   | VK Trencin, right bank | 33120            | 33370    | 59    | more than 20 km                         |
| 8   | VK Humenne             | 613              | 1247     | 305   | more than 20 km                         |
| 9   | VK Ruzomberok          | 8050             | 10000    | 803   | more than 20 km                         |
| 10  | VK Topolcany           | 2735             | 2943     | 105   | more than 15 km                         |

Qmean: mean discharge of waste water

Table 2.8. continued

|    | Name of<br>Hot Spot |            |       |            |       |            |       |            |       |                   |       |            |       |
|----|---------------------|------------|-------|------------|-------|------------|-------|------------|-------|-------------------|-------|------------|-------|
| N  | Locality            | BOD        | 5     | BOD        | Cr    | NEL        |       | N-NH       | 4     | N-NO <sub>3</sub> |       | Total l    | P     |
| 0  |                     | Up<br>down | Class | up<br>down | Class | up<br>down | Class | up<br>down | Class | up<br>down        | Class | up<br>down | Class |
| 1  | VK Kosice           | 5,4        | III   | 12,7       | II    | -          | -     | 0,143      | I     | 2,756             | III   | 0,1171     | III   |
|    |                     | 6,3        | III   | 17,0       | III   | 0,033      | III   | 0,724      | IV    | 2,946             | III   | 0,2420     | IV    |
| 2  | VK Nitra            | 4,7        | III   | 19,4       | III   | 0,057      | IV    | 0,788      | IV    | 3,054             | III   | 0,2546     | III   |
|    |                     | 5,7        | III   | 21,1       | III   | 0,988      | IV    | 1,000      | IV    | 2,916             | III   | 0,3008     | IV    |
| 3  | VK                  | -          | -     | -          | -     | -          | -     | -          | -     | -                 | -     | -          | -     |
|    | Malacky             | 4,9        | III   | 22,3       | III   | 0,053      | IV    | 0,691      | IV    | 4,045             | IV    | 0,3063     | IV    |
| 4  | VK Banska           | 5,4        | III   | 22,2       | III   | 0,148      | IV    | 0,544      | III   | 1,257             | II    | 0,1217     | III   |
|    | Bystrica            | 5,9        | III   | 22,0       | III   | 0,282      | V     | 0,521      | III   | 1,300             | II    | 0,1458     | III   |
| 5  | VK                  | 3,4        | II    | 13,5       | II    | 0,055      | III   | 0,681      | III   | 1,888             | II    | 0,0285     | II    |
|    | Michalovce          | 3,5        | II    | 14,6       | II    | 0,124      | IV    | 0,843      | III   | 1,579             | II    | 0,0314     | II    |
| 6  | VK Svidnik          | 3,7        | III   | 10,9       | II    | 0,039      | III   | 0,137      | I     | 1,092             | II    | 0,0455     | II    |
|    |                     | 4,7        | III   | 11,7       | II    | 0,040      | III   | 0,335      | III   | 1,465             | II    | 0,1161     | III   |
| 7  | VK                  | 3,3        | II    | 12,9       | II    | 0,040      | IV    | 0,253      | II    | 1,943             | II    | 0,0858     | II    |
|    | Trencin,r.b         | 10,7       | IV    | 31,6       | IV    | 0,150      | V     | 0,759      | III   | 1,923             | II    | 0,1979     | IV    |
| 8  | VK                  | 3,1        | II    | 12,3       | II    | -          | -     | 0,283      | III   | 1,336             | II    | 0,0256     | II    |
|    | Humenne             | 3,5        | II    | 13,8       | II    |            |       | 0,604      | III   | 1,591             | II    | 0,0294     | II    |
| 9  | VK                  | 3,4        | II    | 11,5       | II    | 0,010      | -     | 0,161      | II    |                   |       | 0,0442     | II    |
|    | Ruzomberok          | 2,9        | II    | 17,1       | II    | 0,0153     | III   | 0,285      | II    |                   |       | 0,0826     | II    |
| 10 | VK                  | 4,4        | III   | 28,7       | IV    | 0,125      | V     | 1,031      | IV    | -                 | -     | 0,2746     | IV    |
|    | Topolcany           | 4,5        | III   | 22,8       | IV    | 0,121      | V     | 0,826      | IV    |                   |       | 0,2414     | III   |

NOTE up: upstream down: downstram Cl: class

Table 2.9. Municipal hot spots check river points of receiving water

|    | Hot Spots<br>Lokality | Receiving water            | Check R         | iver Point    |                                                               |
|----|-----------------------|----------------------------|-----------------|---------------|---------------------------------------------------------------|
| N  | [Name of              | Name                       | Upstream        | Downstream    | Remark                                                        |
| 0  | Catchment]            | r.km                       | r.l             | km            |                                                               |
| 1  | VK Košice             | Hornád                     | Hornád          | Hornád        | r.km 22,1 tributary Torysa - Q <sub>355</sub> 1,235           |
|    | [Hornad]              | 24,3                       | Krásná n.Hor.   | Ždaňa         | $m^3/s$                                                       |
|    |                       |                            | 27,0            | 17,2          | r.km 18,2 tributary Olšava - $Q_{355}$ 0,088 $m^3/s$          |
| 2  | VK Nitra              | Nitra                      | Nitra           | Nitra         |                                                               |
|    | [V8h]                 | 52,5                       | Lužianky        | Čechynce      |                                                               |
|    |                       |                            | 65,1            | 47,8          |                                                               |
| 3  | VK Malacky            | Rameno Maliny              | -               | Malina        |                                                               |
|    | [Morava]              | 1,6                        |                 | Zohor         |                                                               |
|    |                       | (Malina - 23,6)            |                 | 4.2           |                                                               |
| 4  | VK Banská             | Hron                       | Hron            | Hron          |                                                               |
|    | Bystrica<br>[Hron]    | 168,4 - odtok z<br>ČOV;    | Banská Bystrica | Sliač         |                                                               |
|    | [HIOII]               | 181,0; 172,1               | 175.8           | 161.1         |                                                               |
|    |                       | Selčiansky p.              |                 |               |                                                               |
|    |                       | 2,3; 2,2; 2,1;             |                 |               |                                                               |
|    |                       | 2,0;1,8                    |                 |               |                                                               |
|    |                       | Bystrica                   |                 |               |                                                               |
|    |                       | 3,2; 2,6; 1,8; 1,5;<br>0,8 |                 |               |                                                               |
|    |                       | Malachovský p.             |                 |               |                                                               |
|    |                       | 2,0; 1,6                   |                 |               |                                                               |
| 5  | VK Michalovce         | Laborec                    | Laborec         | Laborec       | r.km 37,2 tributary Zálužický kanál                           |
|    | [Bodrog]              | 34,2                       | Petrovce        | Lastomír      | (outlet from Zemplínska Šírava                                |
|    |                       |                            | 45,1            | 31,0          | reservoir)                                                    |
| 6  | VK Svidník            | Ondava                     | Ondava          | Ondava        |                                                               |
|    | [Bodrog]              | 115,3                      | nad Svidníkom   | pod Svidníkom |                                                               |
|    |                       |                            | 125,1           | 113,9         |                                                               |
| 7  | VK Trenčín            | Zlatovský p.               | Váh             | Váh           | r.km 162,5 WWTP Trenčín-ľavá str.                             |
|    | prav8 strana          | 2,8                        | Trenčín         | Opatovce      |                                                               |
|    | [V8h]                 | (Váh - 159,6)              | 165,1           | 157,2         |                                                               |
| 8  | VK Humenné            | Laborec                    | Laborec         | Laborec       | r.km 68,5 tributary Cirocha - Q <sub>355</sub>                |
|    | [Bodrog]              | 63,4                       | nad Cirochou    | Beckov        | $0,504 \text{ m}^3/\text{s}$                                  |
|    | _                     |                            | 69,9            | 59,9          |                                                               |
| 9  | VK                    | Váh                        | Váh             | Váh           | r.km 322,4 CELPAP                                             |
|    | Ružom berok           | 314,8                      | Lisková         | Hubová        | r.km 321,5 SUPRA                                              |
|    | [Váh]                 |                            | 324,9           | 308,8         | r.km 320,95 tributary Revúca - Q <sub>355</sub><br>1,280 m³/s |
| 10 | VK Topoľčany          | Nitra                      | Nitra           | Nitra         | r.km 94,0 tributary Chotina - Q <sub>355</sub> 0,116          |
| -  | [V8h]                 | 93.4                       | Práznovce       | Nitr. Streda  | $m^3/s$                                                       |
|    | [ . 5]                | , , , ,                    | 98,0            | 91,1          |                                                               |
|    |                       |                            | 70,0            | 71,1          |                                                               |

Municipal hot spots (year 1996), State of treatment **Table 2.10.** 

|       | Locality           |     | Curr | Current Treatment | afmen | + | State of Treatment Facilities                                                                                                                                                                                                                         | Problems and                                                                                                                                               |
|-------|--------------------|-----|------|-------------------|-------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Hot Spots          | z F | M    | MB                | СН    |   | 0                                                                                                                                                                                                                                                     | Measures                                                                                                                                                   |
| 1     | VK Kosice          |     | ×    | ×                 |       |   | - Municipal wastewater is transported into Central WWTP in Koksov-Baksa. It                                                                                                                                                                           | Ill structure part of biological treatment to finish                                                                                                       |
|       |                    |     |      |                   |       |   | consists of MB level. In 1998 new mechanical part was put into operation.                                                                                                                                                                             |                                                                                                                                                            |
|       |                    |     |      |                   |       |   | Transported waste waters are divided before treating-about 1000 m <sup>3</sup> /s water flow through MB WWTP and the rest 200-400 l/s flows through the new mechanical part and without biolog, treatment is discharged into the receiving water body |                                                                                                                                                            |
| 2     | VK Nitra           |     | X    | x                 | •     | • | WWTP built in 1968 has insufficient capacity and out-moded technology new WWTP is under construction                                                                                                                                                  | WWTP under construction  reconstruction of the other properties                                                                                            |
|       |                    |     |      |                   |       |   |                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| 3     | VK Malacky         |     |      | x                 |       | • | ➤ out-moded MB WWTP ➤ under reconstruction now, 1 <sup>st</sup> stage should be finished in 1998                                                                                                                                                      | ➤ present problems: wastewater is discharged into Malina branch with Q355=0,001m³/s                                                                        |
| 4     | VK Banska Bystrica |     |      | ×                 |       | ' | A I                                                                                                                                                                                                                                                   | is n                                                                                                                                                       |
|       |                    |     |      |                   |       |   | <ul> <li>Insurricent capacity</li> <li>part of wastewater is discharged into recipient without treatment</li> </ul>                                                                                                                                   | to reconstruct and extend WWTP (some properties of                                                                                                         |
| 5     | VK Michalovce      |     |      | ×                 |       | ' | > WWTP has insufficient capacity and low effect                                                                                                                                                                                                       | ure zitu reconstruction were put to tess operation)  improvement of treatment process has been started in 1993, but is not finished because lark of money. |
| 9     | VK Svidnik         | ×   |      | •                 | •     | 1 | wastewater discharged directly into recipient Ondava                                                                                                                                                                                                  | 4 outlets together Finalization of sewerage is necessary WWTP is under construction Financial budget is not provided                                       |
| 7     | VK Trencin, r.b.   | x   |      |                   |       | • | wastewater without treatment is discharged directly into Zlatovsky creek (Q355=0,03m <sup>3</sup> /s)                                                                                                                                                 |                                                                                                                                                            |
| ∞     | VK Humenne         |     |      | ×                 |       | ' | AA                                                                                                                                                                                                                                                    | ➤ lack of money                                                                                                                                            |
| 6     | VK Ruzomberok      |     |      | ×                 |       | Ľ | insufficient treatment process of COD                                                                                                                                                                                                                 | Sownership is not clear at present                                                                                                                         |
| 10    | VK Topolcany       |     |      | ×                 |       | • | WWTP is hydraulic and material overloaded foaming in biological treatment cludge disposal is not function                                                                                                                                             | Project work is finalized WWTP reconstruction and upgrading started in 1996                                                                                |
| NOTE: | NT = no treatment  | it  |      |                   |       |   | 922                                                                                                                                                                                                                                                   |                                                                                                                                                            |

mechanical mech.-biological chemical others M = MB = CH = O = O = O = O

Table 2.11. Municipal hot spots (Year 1996), Downstream uses of water

| ž     | Name<br>Locality   | Downstream                                        | Downstream Use of Water                     | Season<br>Variat.     | Canalis.                                         | Selfpurification                         | Trans-<br>boundary Effect<br>Distance to the<br>border | Diffuse                                     |
|-------|--------------------|---------------------------------------------------|---------------------------------------------|-----------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------|
|       | •                  |                                                   |                                             |                       | of River                                         | of Stream                                |                                                        | Pollution Effect                            |
|       |                    | water withdrawals                                 | other activities                            |                       |                                                  |                                          | (km)                                                   |                                             |
| 1     | VK<br>Kosice       | for industry which has not high demand on quality | fishing - zone of. Hygienic                 | ou                    | min. trained stream channel                      | stream gradient higher than 3 per milles | 14,3                                                   | middle intensive<br>agricultural activities |
|       |                    |                                                   | Protection of Water<br>Resources            |                       |                                                  | meandering tributaries                   |                                                        | protection of water resources up to Miskolc |
| 2     | VK                 | irrigation                                        | guitshing 4                                 | from food             | partly trained stream channel                    | -gradient 0,4 per milles                 | 82                                                     | intensive agricultural                      |
|       | Nitra              |                                                   | contaminated water resources (ground water) | industry<br>(cannery) |                                                  | -small tributaries                       |                                                        | activities                                  |
| 3     | VK                 | irrigation                                        | Protected                                   | low                   | mostly artificial bottom and                     | uniform small gradient                   | 27                                                     | middle agricultural                         |
|       | Malacky            |                                                   | Landscape<br>Area "Zahorie"                 | discharge             | bank                                             | 0,4 per milles                           |                                                        | activities Forests                          |
| 4     | VK                 | الله irrigation                                   | Zone of Protection                          | ou                    | min. artificial bottom                           | gradient                                 |                                                        | low intensive                               |
|       | Banska<br>Bystrica | For industry with lower demands on quality        | of Mineral Springs (Sna)                    |                       |                                                  | per mille<br>meandering tributaries      |                                                        | agricultural activities                     |
| 5     | VK                 | Irrigation                                        | (Spr.)                                      | no                    | mostly artificial banks and                      | gradient lower than                      | 65                                                     | minimum agricultural                        |
|       | Michalov.          | )                                                 | Zone of Hygienic                            |                       | bottom                                           | 0,4 per milles                           |                                                        | activities                                  |
|       |                    |                                                   | Protection of Water<br>Resources.           |                       |                                                  | direct stream without tributaries        |                                                        |                                             |
| 9     | VK                 | 1                                                 | > bathing                                   | ou                    | min. trained stream                              | gradient 2,2 per milles                  | 132                                                    | minimum                                     |
|       | Svidnik            |                                                   | recreation                                  |                       | channel                                          | tributaries meandering                   |                                                        | agricultural activities                     |
|       |                    |                                                   | F fishing                                   |                       | water reservoir "Domasa"                         |                                          |                                                        |                                             |
| 7     | VK                 | 1                                                 | Fishing fishing                             | ou                    | min. trained stream channel                      | Sgradient lower than                     | 160                                                    | low intensity of agricultural               |
|       | Trencin,           |                                                   | Zone of Hygienic                            |                       |                                                  | 3 per milles                             |                                                        | activities                                  |
|       | right bank         |                                                   | Protection of Water<br>Resources            |                       |                                                  | tributaries meandering                   |                                                        |                                             |
| ∞     | VK                 | industry with lower                               | recreation                                  | ou                    | water reservoir                                  | Saradient 1,5 per milles                 | 88                                                     | low intensity of                            |
|       | Humenne            | demand on water quality                           | Fishing Figure 1                            |                       | "Zemplinska Sirava"  minimum artificial          | tributaries meandering                   |                                                        | agricultural activities                     |
|       |                    | )                                                 |                                             |                       | bottom                                           |                                          |                                                        |                                             |
| 6     | VK                 | -                                                 | Protected Area of                           | ou                    | water reservoir "Kraelonu"                       | Sgradient lower than 3 per               | 315                                                    | nearly natural vegetation                   |
|       | Maconicolor        |                                                   | Accumulation                                |                       | min. artificial hottom                           | Tributaries meandering                   |                                                        | 1000                                        |
|       |                    |                                                   | Fishing 4                                   |                       |                                                  | 0                                        |                                                        |                                             |
| 10    | VK                 | Irrigation                                        | fishing                                     | ou                    | min. trained stream channel                      | gradient lower than 1 per                | 123                                                    | high intensity of agricultural              |
|       | торогану           |                                                   |                                             |                       |                                                  | tributaries meandering                   |                                                        | acuvines                                    |
| NOTE: |                    | Season Variat.= Seasonal Variation                | Canalis. of River = Canalisation of River   |                       | Selfpurif.of Stream = Selfpurification of Stream | of Stream                                |                                                        |                                             |

Industrial hot spots (year 1996), Emission into the Danube River basin **Table 2.12.** 

| No. | Name of Hot<br>Spot                           | Receiving                       | Water                                               | Discharged Specific Pollution                               |                                                  |                                     |                       |  |
|-----|-----------------------------------------------|---------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------|-----------------------|--|
|     | Locality                                      | Name<br>r.km                    | Q <sub>355</sub><br>m <sup>3</sup> .s <sup>-1</sup> |                                                             | t/y                                              |                                     |                       |  |
| 1   | Novaky<br>Chemical Plants-<br>Novaky          | Nitra<br>130,0-129,7            | 1,179                                               |                                                             | 68                                               | Cl:<br>active C:<br>detergents:     | 14874<br>4.5<br>10,75 |  |
| 2   | Bukocel Vranov<br>nad<br>Toplou<br>(Hencovce) | Ondava<br>50,1-48,7-48,65       | Qg:<br>1,034                                        | 3                                                           | 39,2                                             | C1:<br>15,2<br>19,1                 | 2455,3                |  |
| 3   | Povaz. Chemical<br>Plants-Zilina              | Vah<br>255,0                    | Qg: 8,443                                           | N-NH4: 168,3                                                |                                                  |                                     |                       |  |
| 4   | Istrochem<br>Bratislava                       | Danube<br>1863,6                | Qg.:<br>838                                         |                                                             | - ' /                                            | SO4:<br>Cl:                         | 6610,4<br>5316,5      |  |
| 5   | Slovensky<br>hodvab<br>Senica nad<br>Myjavou  | Teplica<br>1,8                  | O,043                                               | N-NH4:<br>Cl: 35                                            | ,                                                | SO4:<br>Zn :                        | 3400 2,2              |  |
| 6   | Chemko Strazske                               | Ondava<br>43,2                  | 1,037                                               | Tot.Fe: 13<br>NH3: 2<br>cyclohexane: lo<br>cyclohexanol: lo | 33,4<br>27,8<br>ower than 0,19<br>ower than 0,19 | NO2:<br>phenols volat:<br>methanol: | 6,6<br>0,77           |  |
|     |                                               |                                 |                                                     | acetaldehyde: lo<br>phenols: lower t                        | ower than 0,39<br>than 0,04                      | SO4:                                | 917,9                 |  |
| 7   | ASSI DOMAN<br>Sturovo                         | Danube: 1722,0<br>Obidsky chan. | 917,0                                               | 104.                                                        | 7,3                                              |                                     |                       |  |
| 8   | Bucina -Zvolen                                | Hron: 153,8<br>Slatina<br>Zolna | 8,235<br>0,34<br>0,291                              | Tot. phenols:<br>(Hron: 0,99, Sla<br>formaldehyde re        | 3,13<br>atina: 2,8, Zolna: 0)                    |                                     |                       |  |
| 9   | Biotika<br>Slovenska Lupca                    | Hron                            | 5,993                                               | Cl: 37<br>DAS                                               | ,                                                | N-NH4:<br>RL                        | 151                   |  |
| 10  | Tanning Factory<br>Bosany                     | Nitra                           | 2,735                                               | SO4: 42                                                     | - / -                                            | Tot. Cr:<br>S2:                     | 1,05<br>3,7           |  |

**Table 2.12.** continued

|     | Name of Hot Spot              | Wastewate  |        |        | Disc   | harged Polli | ıtion |        |
|-----|-------------------------------|------------|--------|--------|--------|--------------|-------|--------|
| No. | Locality                      | Volume     |        |        |        | t/y          |       |        |
|     |                               | $T. m^3/y$ |        | BOD5   | CODCr  | SS           | NES   | DIS    |
| 1   | Novaky Chemical Plants-       | 4          | 117,9  | 58,9   | 146,6  | 82,4         | 3,5   | 1 458  |
|     | Novaky                        | 3          | 033,1  | 437,7  | 1984,3 | 210,6        | 11,8  | 21 844 |
| 2   | Bukocel Vranov nad Toplou     | 505        | ,958   | 4,1    | 28,1   | 28,3         | 0,06  |        |
|     | _                             | 10         | 561,8  | 295,7  | 2534,9 | 549,2        | 16,69 |        |
|     |                               | 1          | 391,3  | 41,7   | 185,1  | 87,7         | 0,97  |        |
| 3   | Povaz. Chemical Plants-Zilina | 1          | 556,74 | 104,0  | 400,2  | 82,5         | 2,12  | 656,9  |
| 4   | Istrochem Bratislava          | 4          | 018,5  | 638,9  | 1904,8 | 172,8        | 2,451 |        |
| 5   | Slovensky hodvab              | 2          | 209,3  | 132,6  | 351,3  | 95,0         | 1,17  |        |
|     | Senica nad Myjavou            |            |        |        |        |              |       |        |
| 6   | Chemko Strazske               | 3          | 956,3  | 138,5  | 735,9  | 360, 0       | 1,78  |        |
| 7   | ASSI DOMAN Sturovo            | 13         | 997,7  | 2292,4 | 6 771  | 1733, 2      | 33,50 |        |
| 8   | Bucina Zvolen                 | Hron: 54   | ,000   | 16,2   | 45,0   | 2,5          | 0,49  |        |
|     |                               | 1          | 324,5  | 34,4   | 107,3  | 54,3         | 1,86  |        |
|     |                               | Slat: 240  | ,580   | 8,2    | 15,6   | 9,6          | 0,43  |        |
|     |                               | Zolna: 74  | ,650   | 1,5    | 5,2    | 1,8          | 0,28  |        |
| 9   | Biotika Slovenska Lupca       | 1          | 198,3  | 185,8  | 587,2  | 76,7         | 1,95  | 1 038  |
| 10  | Tanning Factory Bosany        | 1          | 504,0  | 48,1   | 312,8  | 57,2         | 0,26  |        |

NOTE: Qg: DIS: NES: non-polar extractable substances guarantee discharge

dissolved inorganic salts SS: suspended solids

**Table 2.13.** Industrial hot spots (year 1996), Water quality deterioration

| No. | Name of Hot Spot<br>Locality         | Dil    | lution factor (l | /s )  | Influenced Lenght<br>( km ) |
|-----|--------------------------------------|--------|------------------|-------|-----------------------------|
|     |                                      | Q355   | up down          | Qmean |                             |
| 1   | Novaky Chemical Plants-Novaky        | 550    | 1179             | 226   | more than 20                |
| 2   | Bukocel-Vranov nad Toplou (Hencovce) | 1000   | 1034             | 395   | more than 20                |
| 3   | Povaz. Chemical Plants-Zilina        | 24500  | -                | 49    | more than 20                |
| 4   | Istrochem-Bratislava                 | 83000  | 838000           | 127   | less than 5                 |
| 5   | Slovensky hodvab Senica nad Myjavou  | 41     | 43               | 70    | more than 20                |
| 6   | Chemko-Strazske                      | 1034   | 1037             | 125   | more than 5                 |
| 7   | ASSI DOMAN-Sturovo                   | 916000 | 917000           | 444   | less than 5                 |
| 8   | Bucina-Zvolen                        | 8100   | 8235             | 54    | more than 5                 |
| 9   | Biotika-Slovenska Lupca              | 4684   | 5993             | 38    | more than 5                 |
| 10  | Tanning Factory-Bosany               | 1179   | 2735             | 48    | more than 5                 |

|    |                              |         | A    | mbient Wate | er Qualit | y (1995-199 | 6 )** mg | g/l     |      |
|----|------------------------------|---------|------|-------------|-----------|-------------|----------|---------|------|
| No | Name of Hot Spot             | BOD 5   | 70   | COD-Cr      | 70        | NEL         |          | Cl      | 70   |
|    | Locality                     | up down | Clas | up down     | Clas      | up down     | Clas     | up down | Clas |
| 1  | Novaky Chem. Plants-Novaky   | 3,0     | III  | 17,0        | III       |             |          | 11,6    | I    |
|    |                              | 5,5     |      | 29,9        | IV        | 0,218       | V        | 132,9   | III  |
| 2  | Bukocel-Vranov nad Toplou    | 4,8     | III  | 15,4        | II        | -           | -        | 15,4    | I    |
|    | _                            | 6,5     |      | 29,4        | IV        | -           | -        | 30,7    | I    |
| 3  | Povaz. Chem. Plants-Zilina   | 3,6     | III  | 14,4        | II        | 0,023       | III      | 12,6    | I    |
|    |                              | 3,2     | III  | 17,7        | III       | 0,012       | II       | 9,5     | I    |
| 4  | Istrochem Bratislava         | 2,1     | II   | 11,7        | II        | 0,021       | II       | 18,6    | I    |
|    |                              | 1,9     | II   | 10,0        | I         | 0,015       | II       | 18,2    | I    |
| 5  | Slovhodvab-Senica n. Myjavou | 2,1     | II   | 9,6         | V         | 0,025       | II       | 25,4    | I    |
|    |                              | 14,2    | V    | 35,1        |           | 0,119       | IV       | 54,2    | II   |
| 6  | Chemko-Strazske              | 6,5     | III  | 29,4        | IV        | -           | -        | 30,7    | I    |
|    |                              | 6,6     | III  | 30,9        | IV        | 0,083       | IV       | 31,1    | I    |
| 7  | ASSI DOMAN-Sturovo           | 2,3     | II   | 10,2        | I         | 0,025       | II       | 21,9    | I    |
|    |                              | 2,4     | II   | 10,4        | I         | 0,053       | IV       | 19,9    | I    |
| 8  | Bucina Zvolen                | 5,9     | III  | 22,0        | III       | 0,282       | V        | 12,8    | I    |
|    |                              | 4,7     | III  | 18,6        | III       | 0,180       | V        | 12,7    | I    |
| 9  | Biotika-Slovenska Lupca      | 3,0     | II   | 13,5        | II        | 0,333       | V        | 8,9     | I    |
|    | _                            | 5,1     | III  | 22,3        | III       | -           | -        | 9,7     | I    |
| 10 | Tanning Factory-Bosany       | 5,5     | III  | 29,9        | IV        | 0,218       | V        | 132,9   | III  |
|    |                              | 4,4     | III  | 28,7        | IV        | 0,125       | V        | 86,9    | II   |

|     |                               |         | A    | mbient Wate | er Qualit | y (1995-199 | 6 )** mg | g/l     |      |
|-----|-------------------------------|---------|------|-------------|-----------|-------------|----------|---------|------|
| No. | Name of Hot Spot              | SO4     |      | Hg*         |           | Zn*         |          | N-NH4   |      |
|     | Locality                      | up down | Clas | up down     | Clas      | up down     | Clas     | up down | Clas |
| 1   | Novaky Chemical Plants-Novaky | 48,4    | I    | -           | -         | -           | -        | 0,328   | III  |
|     |                               | 98,4    | III  | 3,187       | -         |             | -        | 1,328   | IV   |
| 2   | Bukocel-Vranov nad Toplou     | 54,8    | I    | -           | -         | -           | -        | 0,155   | II   |
|     |                               | 69,0    | II   | -           | -         | -           | -        | 0,394   | III  |
| 3   | Povaz. Chemical Plants-Zilina | 29,7    | I    | 0,16        | II        | 20,6        | -        | 0,43    | III  |
|     |                               | 24,9    | I    | 0,13        | II        | 18,2        | II       | 0,54    | III  |
| 4   | Istrochem-Bratislava          | 32,5    | II   | 0,133       | II        |             | II       | 0,258   | II   |
|     |                               | 30,0    | I    | 0,117       | II        |             | II       | 0,211   | II   |
| 5   | Slovhodvab-Senica n. Myjavou  | 81,3    | II   | 0,411       | -         |             | -        | 0,295   | III  |
|     |                               | 363,5   | V    | 1,780       | V         |             | V        | 1,260   | IV   |
| 6   | Chemko-Strazske               | 69,0    | II   | -           | -         | -           | -        | 0,394   | III  |
|     |                               | 69,8    | II   | 0,165       | III       |             | -        | 0,360   | III  |
| 7   | ASSI DOMAN-Sturovo            | 44,4    | I    | 0,173       | -         |             | -        | 0,344   | III  |
|     |                               | 38,4    | I    | 0,225       | -         |             | -        | 0,320   | III  |
| 8   | Bucina-Zvolen                 | 32,8    | I    | 0,075       | I         |             | II       | 0,521   | III  |
|     |                               | 33,8    | I    | -           | -         |             | -        | 0,440   | III  |
| 9   | Biotika-Slovenska Lupca       | 24,7    | I    | -           | -         |             | II       | 0,168   | II   |
|     |                               | 27,7    | I    | -           | -         |             | -        | 0,556   | III  |
| 10  | Tanning Factory-Bosany        | 98,4    | III  | 3,187       | -         |             | -        | 1,308   | IV   |
|     |                               | 85,0    | II   | -           | -         |             | -        | 1,030   | IV   |

NOTE: that means concentration microgram/l

average of waste water discharge than means average concentration up: upstr.
downstream NES: non-polar exctractable substances that means no data in 1995-1996 upstream down:

Table 2.14. Industrial hot spots check river points of receiving water

|    | Hot Spots<br>Lokality              | Receiving water                                  | Check Ri                                   | iver Point                        |                                                                                                                                                                            |
|----|------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N  | [Name of                           | Name                                             | Upstream                                   | Downstream                        | Remark                                                                                                                                                                     |
| 0  | Catchment]                         | r.km                                             | r.l                                        | cm .                              |                                                                                                                                                                            |
| 1  | NCHZ Nováky<br>[Váh]               | <b>Nitra</b><br>131,0; 129,7                     | Nitra Opatovce n.Nitr. 138.7               | <i>Nitra</i><br>Chalmová<br>123.8 | r.km 135,7 tributary Handlovka - Q <sub>355</sub><br>0,366 m³/s<br>(WWTP Prievidza)                                                                                        |
| 2  | Bukóza Vranov<br>[Bodrog]          | <b>Ondava</b> 50,1                               | Ondava<br>Kučín<br>53,9                    | Ondava<br>Poša<br>45,4            |                                                                                                                                                                            |
| 3  | PCHZ Žilina<br>[Váh]               | <b>Váh</b><br>255,0                              | <i>Váh</i><br>nad Žilinou<br>260,7         | <b>Váh</b><br>Budatín<br>252,7    |                                                                                                                                                                            |
| 4  | Istrochem<br>Bratislava<br>[Dunaj] | <b>Dunaj</b><br>1863,6                           | <b>Dunaj</b><br>Bratislava-stred<br>1869,0 | <b>Dunaj</b><br>Rajka<br>1848,0   | r.km 1863,7 Slovnaft Bratislava- MCHB<br>r.km 1862,2 WWTP Bratislava -<br>Petržalka                                                                                        |
| 5  | SH Senica<br>[Morava]              | Teplica<br>1,8                                   | Teplica<br>nad Senicou<br>7,5              | Teplica<br>pod Senicou<br>0,8     | r.km 1,6 WWTP Senica                                                                                                                                                       |
| 6  | Chemko<br>Strážske<br>[Bodrog]     | Ondava<br>43,2<br>(Kyjovský p.)                  | <i>Ondava</i><br>Poša<br>45,4              | <i>Ondava</i><br>Hrušov<br>42,0   |                                                                                                                                                                            |
| 7  | JCP Štúrovo<br>[Dunaj]             | <b>Dunaj</b><br>1722,0                           | <b>Dunaj</b><br>Radvaň<br>1748,0           | <b>Dunaj</b><br>Štúrovo<br>1718,8 |                                                                                                                                                                            |
| 8  | Biotika Slov.<br>Ľupča<br>[Hron]   | <b>Hron</b> 183,8                                | Hron<br>Nemecká<br>200,8                   | <i>Hron</i><br>Šálková<br>181,4   |                                                                                                                                                                            |
| 9  | Bučina Zvolen<br>[Hron]            | Hron<br>153,8                                    | <b>Hron</b><br>Sliač<br>161,1              | Hron Zvolen MB ČOV 153,6          |                                                                                                                                                                            |
|    |                                    | Slatina<br>3,7<br><b>Zolná</b><br>1,5; 1,5; 1,2; | -                                          | Slatina - ústie                   | r.km 3,5 tributary Zolná - Q <sub>355</sub> 0,291<br>m <sup>3</sup> /s                                                                                                     |
| 10 | Koželužne<br>Bošany<br>[V8h]       | Nitra<br>100,9                                   | <i>Nitra</i><br>Chalmová<br>123,8          | Nitra<br>Práznovce<br>98,0        | r.km 111,9 tributary Nitrica - Q <sub>355</sub> 0,408 m <sup>3</sup> /s r.km 111,1 WWTP Partizánske r.km 98,5 tributary Bebrava - Q <sub>355</sub> 0,812 m <sup>3</sup> /s |

Industrial hot spots (year 1998), State of treatment **Table 2.15.** 

| No.   | Name                | Č     | Current Treatment | Treat | ment |                       | State of  | State of Treatment Facilities                   | Problems and Measures                                          |            |
|-------|---------------------|-------|-------------------|-------|------|-----------------------|-----------|-------------------------------------------------|----------------------------------------------------------------|------------|
|       | Locality            | Z     | M                 | B M   | СН   | 0                     |           |                                                 |                                                                |            |
| 1     | Novaky Chem.        |       |                   | x     | 1    | sediment.             | .п<br>Д   | insufficient MB WWTP effect                     | to build technolog. water pipes and pumping station for sewage | for sewage |
|       | Plants-Novaky       |       |                   |       |      | Ponds                 | A         | WWTP extention (treatment of all                | water from administrative buildings                            |            |
|       |                     |       |                   |       |      |                       | te        | technologywater)                                | changes in technological process                               |            |
| 2     | Bukocel             | ı     | -                 | x     | 1    |                       |           | insufficient WWTP effect ( susp. solids and     | reconstruction of mechan. part of WWTP                         |            |
|       | Vranov n. Toplou    |       |                   |       |      |                       | ٨         | COD-Cr)                                         | measures in production technology                              |            |
| 3     | Povaz.Chem. Plant-  |       | 1                 | х     | Х    | dump of contaminated  | .п<br>Д   | insufficient efficiency                         | measures in production technology                              |            |
|       | Zilina              |       |                   |       |      | waste                 |           |                                                 | upgrading of WW IP                                             |            |
| 4     | Istrochem           |       | X                 |       | X    |                       |           | BOD and COD limit values are exceeded           | to complete biol. part of WWTP (project prepared)              |            |
|       | Bratislava          |       |                   |       |      |                       | о<br>Д    | biolog. treatment is missing                    |                                                                |            |
| 5     | Slovhodvab          |       | -                 | x     | x    | lagoons for chemical  | <b>х</b>  | WWTR is out of date from point of view of       | > 20 years old sewage is considerably corroded                 |            |
|       | Senica n Myjavou    |       |                   |       |      | and biological sludge |           | technology and under dimension                  | to improve effect of biolog. Treatment                         |            |
|       |                     |       |                   |       |      |                       | d<br>A    | problems with chem. and biolog. sludge          |                                                                |            |
| 9     | Chemko              | ı     |                   | ×     |      | sludge                | Δ<br>Δ    | general reconstruction of activation            | measures in production process                                 |            |
|       | Strazske            |       |                   |       |      | storing               | a<br>A    | part of facilities is under reconstruction      | technology of alkalinity water neutralization                  |            |
|       |                     |       |                   |       |      | lagoon<br>"Posa"      |           |                                                 |                                                                |            |
| 7     | ASSI DOMAN          | ı     | ,                 | ×     |      | oil removal           | A         | COD and susp. Solids limit values are exceeded  | reconstruction and bring up to date of production              |            |
|       | Sturovo             |       |                   |       |      |                       |           |                                                 | to complete WWTP                                               |            |
| 8     | Bucina Zvolen       |       | -                 | -     |      | electro               | о<br>Д    | other water to connect to electroflotation      | to complete biolog. Treatment                                  |            |
|       |                     |       |                   |       |      | flotatation           |           |                                                 | protection measures for territoty "white impregnation"         | nu.,       |
| 6     | Biotika             |       | -                 | x     | -    |                       | <b>Р</b>  | WWTP is overloaded and treats part of municipal | WWTP extension (activation)                                    |            |
|       | Slov. Lupca         |       |                   |       |      |                       |           | wastewater as well                              | to build anaerobic part of WWTP                                |            |
|       |                     |       |                   |       |      |                       | .=<br>A / | insufficient treatment                          |                                                                |            |
|       |                     |       |                   |       |      |                       | a<br>A    | effect                                          |                                                                |            |
| 10    | Tanning Factory     | ı     | ,                 | ×     |      |                       | A         | contaminated sludge with Cr                     |                                                                |            |
|       | В                   |       |                   |       |      |                       |           |                                                 | reconstruction of biolog.part of WWTP                          |            |
| NOTE: | : NT = no treatment | tment |                   |       |      |                       |           |                                                 |                                                                |            |

 $egin{aligned} NI = \ M = \ MB = \ CH - \ O = \end{aligned}$ 

no treatment mechanical mech.-biological chemical other

Table 2.16. Industrial hot spots (1998), Downstream uses of water

| No | Name                                   | Downstre                                             | Downstream Use of Water                                                       | Eutrop. | Canalis. of River                                | Selfpurification of Stream                                     | Transboundary Effect        | Diffuse Pollution Effect                       |
|----|----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|---------|--------------------------------------------------|----------------------------------------------------------------|-----------------------------|------------------------------------------------|
|    | Locality                               | water withdrawals                                    | other activities                                                              |         |                                                  |                                                                | Distance to the border (km) |                                                |
| -  | Novaky<br>Chemical<br>Plants<br>Novaky | for industry with lower demand on quality irrigation | ۲ fishing                                                                     | ои      | channel is partly regulated                      | Stream gradient higher than 3 per milles  tributaries          | 160                         | middle intensive<br>agricultural activities    |
| 2  | Bukocel<br>Vranov-<br>Hencovce         | no                                                   | F fishing F Hygienic Protection of water sources                              | ou      | partly regulated channel                         | P gradient 0,7 per milles P tributaries P direct flow dominant | 59                          | middle agricultural activities                 |
| 8  | Istrochem<br>Bratislava                | no                                                   | P recreation (reservoir Gabcikovo), fishing P Protected Water Management Area | yes     | swell out                                        | S gradient lower than 0,2 per milles                           | transboundary river         | no<br>(minimal river basin)                    |
| 4  | SH Senica<br>nad<br>Myjavou            | F for industry with lower demands on quality         |                                                                               | ou      | partly regulated channel<br>(bank fortification) | Stadient lower than per mille tributaries                      | 29,7                        | -middle intensive agricultural<br>activities   |
| w  | Chemko<br>Strazske                     | no                                                   | Fishing Cone of Hygienic Protection of Water Resources.                       | ou      | partly regulated channel                         | Y gradient 0,5 per milles Y direct stream Y tributaries        | 58                          | middle agricultural activities                 |
| 9  | ASSI<br>DOMAN<br>Sturrovo              | For industry with lower demand                       | Fishing                                                                       | yes     | min. trained stream channel                      | Y gradient 0,2 per milles Y tributaries                        | transboundary river         | middle<br>agricultural activities              |
| 7  | Bucina<br>Zvolen                       | For industry with lower demand                       | F fishing  Zone of Hygienic Protection of Health Water Resources              | ou      | Hron : nature flow<br>Slatina : regulated flow   | P -gradient lower than P 3 per milles P -tributaries           | 153,8                       | low intensity of agricultural activities       |
| ∞  | Biotika<br>Slovenska<br>Lupca          | industry with lower demand on water quality          | Y fishing                                                                     | ou      | partly regulated stream                          | P gradient lower than 3,0 per milles P tributaries             | 183,6                       | low intensity of agricultural activities       |
| 6  | Tannery<br>Bosany                      | no                                                   | ۶ fishing                                                                     | no      | partly regulated flow                            | P gradient lower than 3 per milles P tributaries P meandering  | 131                         | middle intensity of<br>agricultural activities |

Table 4.1. Sediment discharges of chosen profiles (year 1996)

| River Station            | r. km   | Mean Sediment<br>Discharge<br>( kg/s) | Runoff of Sediment<br>Discharge (t/y) | Specific Runoff of<br>Sediment Discharge<br>(t/km²) |
|--------------------------|---------|---------------------------------------|---------------------------------------|-----------------------------------------------------|
| Morava - Zahorska Ves    | 32,52   | 9,849                                 | 311 435,0                             | 12,2                                                |
| Danube - Bratislava      | 1868,65 | 114,0687                              | 36 07125,0                            | 27,5                                                |
| Hron - Brehy             | 89,5    | 1,277                                 | 40 377,9                              | 14,6                                                |
| Ipel - Slovenske Darmoty | 93,9    | 4,919                                 | 155 560,0                             | 40,7                                                |
| Slana - Lenartovce       | 3,6     | 1,365                                 | 43169,0                               | 23,6                                                |
| Hornad - Zdana           | 17,2    | 5,330                                 | 168 455,0                             | 39,8                                                |

Water quality in the main check point "DANUBE-NAD BRATISLAVOU", r.km 1877,30 **Table 4.12.** 

| year |        | Q (m <sup>3</sup> /s) |        |      | BOD-5 (mg/l) |      |            | COD-5 (mg/l) | (          |      | NES (mg/l) |      |
|------|--------|-----------------------|--------|------|--------------|------|------------|--------------|------------|------|------------|------|
|      | min.   | max.                  | mean   | min. | max.         | mean | min.       | max.         | mean       | min. | max.       | ueau |
| 1997 |        |                       |        |      |              |      |            |              |            |      |            |      |
| 1996 | 859,3  | 5595,0                | 2157,4 | 1,0  | 6,5          | 2,7  | 3,0        | 30,8         | 12,7       | 0,05 | 0,13       | 90,0 |
| 1995 | 1237,2 | 3649,9                | 2237,5 | 0,5  | 2,7          | 1,6  | 5,8        | 20,4         | 10,2       | 90,0 | 0,08       | 0,03 |
| 1994 | 951,7  | 4495,3                | 2017,9 | 1,0  | 3,8          | 2,2  | COD Mn 2,8 | COD Mn 7,7   | COD Mn 4,3 | 0,03 | 0,03       | 0,03 |

| year |      | N-NH4 (mg/l)    |      |        | N-NO2 (mg/l)     |       |      | N-NO3 (mg/l)   |      |      | Norg. (mg/l)   |      |
|------|------|-----------------|------|--------|------------------|-------|------|----------------|------|------|----------------|------|
|      | min. | max.            | mean | min.   | max.             | mean  | min. | max.           | mean | min. | max.           | mean |
| 1997 |      |                 |      |        |                  |       |      |                |      |      |                |      |
| 1996 | 0,16 | 0,66            | 0,38 | 0,015  | 0,050            | 0,034 | 1,72 | 5,96           | 2,96 | 0,56 | 2,90           | 1,32 |
| 1995 | 0,10 | 0,81            | 0,29 | 0,008  | 0,090            | 0,034 | 1,70 | 4,00           | 2,92 | 0,07 | 1,40           | 0,99 |
| 1994 | 0,10 | 0,35            | 0,24 | 0,008  | 0,054            | 0,027 | 1,40 | 4,10           | 2,46 |      |                |      |
|      |      |                 |      |        |                  |       |      |                |      |      |                |      |
| vear |      | Total P ( mg/l) |      | Chlore | ophyl ( microgra | m/l ) | H    | g (microgram/l | (    | )    | 'd (microgram/ | (1   |
|      |      |                 |      |        |                  |       |      |                |      |      |                | ,    |

mean

min.

mean

max.

mean

max.

min.

mean

max.

min.

0,07 0,04 0,03

0,12 0,13 0,03

0,01

0,27 0,83 0,05

0,55 2,57 0,05

 $0.10 \\ 0.05 \\ 0.05 \\ 0.05$ 

31,976 18,176

59,670 29,920

7,95

0,17

0,38

0,08

1997 1996 1995 1994 mean

0,68 1,24 1,10

| year | P    | b (microgram/l | )    | A    | As (microgram/l | )    | )    | 'u (microgram/ | (1)  | )    | ¦r ( microgram/l |
|------|------|----------------|------|------|-----------------|------|------|----------------|------|------|------------------|
|      | min. | max.           | mean | min. | max.            | mean | min. | max.           | mean | min. | max.             |
| 1997 |      |                |      |      |                 |      |      |                |      |      |                  |
| 1996 | 0,53 | 2,06           | 1,34 | 1,00 | 1,75            | 1,19 | 1,83 | 8,93           | 4,06 | 0,10 | 1,49             |
| 1995 | 0,70 | 3,80           | 1,55 | 0,50 | 2,07            | 1,04 | 2,07 | 4,65           | 3,16 | 0,37 | 2,14             |
| 1994 | 1,15 | 1,88           | 1,52 |      |                 |      | 3,03 | 5,01           | 4,02 | 1,04 | 1,10             |

| year | N    | Ni (microgram/l | )    | Z    | Zn (microgram/l | (1   |
|------|------|-----------------|------|------|-----------------|------|
|      | min. | max.            | mean | min. | max.            | mean |
| 1997 |      |                 |      |      |                 |      |
| 1996 | 1,13 | 3,84            | 2,26 | 10,0 | 43,0            | 20,5 |
| 1995 | 0,05 | 3,46            | 1,79 |      |                 |      |
| 1994 | 2,05 | 2,44            | 2,25 | 36,0 | 37,0            | 36,5 |

Water quality in the main check point "DANUBE-STUROVO", r.km 1718,80 **Table 4.13.** 

| year |        | $Q (m^3/s)$ |        |      | BOD-5 (mg/l) |      |      | COD-Cr (mg/l |            |      | NES (mg/l) |      |
|------|--------|-------------|--------|------|--------------|------|------|--------------|------------|------|------------|------|
|      | min.   | max.        | mean   | min. | max.         | ueau | min. | max.         | mean       | min. | max.       | mean |
| 1997 | 1158,0 | 7054,9      | 2396,5 | 2,3  | 5,0          | 3,15 |      | 12,7         | 6,6        | 0,03 | 0,07       | 0,05 |
| 1996 | 1150,4 | 4489,0      | 2244,6 | 1,0  | 3,5          | 2,3  | 5,4  | 16,8         | 11,1       | 0,05 | 0,11       | 90,0 |
| 1995 | 1355,1 | 4283,9      | 2516,6 | 0,5  | 4,4          | 2,5  |      | 12,9         | 9,6        | 0,03 | 0,30       | 0,05 |
| 1994 | 1028,9 | 5573,7      | 2273,3 | 0.5  | 5.2          | 2.3  |      | COD Mn 9,4   | COD Mn 5,5 | 0.03 | 0,10       | 0,03 |

| year |      | N-NH4 (mg/l)    |      |       | N-NO2 (mg/l)    |       |      | N-NO3 (mg/l)     |      |      | Total P ( mg/l ) |      |
|------|------|-----------------|------|-------|-----------------|-------|------|------------------|------|------|------------------|------|
|      | min. | max.            | mean | min.  | max.            | mean  | min. | max.             | mean | min. | max.             | man  |
| 1997 | 0,11 | 0,85            | 0,28 | 0,015 | 0,063           | 0,034 | 0,79 | 3,32             | 2,00 | 0,05 | 0,19             | 0,12 |
| 1996 | 0,20 | 0,62            | 0,33 | 0,030 | 0,054           | 0,042 | 1,51 | 3,68             | 2,44 | 0,07 | 0,16             | 0,11 |
| 1995 | 0,11 | 0,67            | 0,31 | 0,008 | 0,070           | 0,039 | 1,30 | 3,60             | 2,42 | 0,12 | 0,20             | 0,16 |
| 1994 | 0,12 | 0,37            | 0,25 | 0,008 | 0,060           | 0,040 | 1,00 | 3,50             | 2,18 |      |                  |      |
|      |      |                 |      |       |                 |       |      |                  |      |      |                  |      |
| year | 1    | Hg (microgram/l | )    | )     | Cr (microgram/l | )     | I    | Ni (microgram/l) |      | Z    | Zn (microgram/l  | )    |
|      | min. | max.            | mean | min.  | max.            | mean  | min. | max.             | mean | min. | max.             | mean |
| 1997 | 0,17 | 0,32            | 0,23 | 0,14  | 0,19            | 0,17  | 0,93 | 3,74             | 1,92 | 10,0 | 18,0             | 13,8 |
| 1996 | 0,10 | 0,50            | 0,23 | 0,10  | 1,11            | 0,54  | 0,71 | 2,39             | 1,32 | 10,0 | 31,0             | 17,8 |
| 1995 |      |                 |      | 0,44  | 1,61            | 96'0  | 0,14 | 1,96             | 1,07 | 13,0 | 36,0             | 21,7 |
| 1994 | 0,05 | 0,05            | 0,05 | 0,49  | 1,03            | 0,76  | 1,91 | 3,30             | 2,11 | 19,0 | 23,0             | 21,0 |

| Cd (microgram/l) | 7d (microgram/l) | ( )  | F!       | b ( microgram/l | )    | Ö    | Cu (microgram/ | ()   |
|------------------|------------------|------|----------|-----------------|------|------|----------------|------|
| min. max. mean   | ıx.              | mean | min.     | max.            | mean | min. | max.           | mean |
|                  |                  |      |          |                 |      |      |                |      |
| 0,02             | 72               | 0,01 | <br>0,61 | 1,22            | 0,92 | 2,12 | 2,81           | 2,47 |
| 0,03 0,05 0,04   |                  | 0,04 | <br>1,14 | 1,48            | 1,31 | 2,39 | 2,97           | 2,68 |
|                  |                  |      |          |                 |      |      |                |      |

Water quality in the main check point "MORAVA-DEVINSKA NOVA VES", r.km 1,5 **Table 4.14.** 

| 1997         |                 | Q (m <sup>3</sup> /s)     |                 |       | BOD-5 (mg/l)          |              |                   | COD -Cr (mg/l)    | (1)                 |        | NES (mg/l)            |         |
|--------------|-----------------|---------------------------|-----------------|-------|-----------------------|--------------|-------------------|-------------------|---------------------|--------|-----------------------|---------|
| 1997         | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
| 1996         |                 |                           |                 | 2,5   | 6,7                   | 4,4          | 12,3              | 18,9              | 14,9                | 0,05   | 0,11                  | 0,07    |
|              | 46,09           | 376,74                    | 143,28          | 2,1   | 5,3                   | 3,5          | 10,0              | 28,0              | 16,8                | 0,05   | 0,15                  | 0,07    |
| 1995<br>1994 | 42,,65<br>19,13 | 157.37                    | 109,74<br>80.66 | 2,7   | o, o,                 | 4 v<br>v, v, | 9,4<br>COD Mn 6.1 | 28,0<br>COD Mn 24 | 17,8<br>COD Mn 10.5 | 0,03   | 0,19                  | 0,04    |
|              | ,               |                           | ,-              | -,-   | -,-                   |              | -,-               |                   | ,                   | ,      |                       |         |
| year         |                 | N-NH4 (mg/l)              |                 |       | N-NO2 (mg/l)          |              |                   | N-NO3 (mg/l)      |                     |        | N-organ. (mg/lm       | (1      |
|              | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
| 1997         | 0,19            | 2,39                      | 0,81            | 0,024 | 0,063                 | 0,039        | 2,24              | 5,67              | 3,58                | 0,50   | 2,80                  | 1,97    |
| 1996         | 0,18            | 1,66                      | 0,58            | 0,015 | 0,096                 | 0,059        | 2,24              | 2,69              | 4,07                |        |                       |         |
| 1995         | 0,17            | 1,42                      | 0,44            | 0,008 | 0,140                 | 0,054        | 2,80              | 5,40              | 4,10                |        |                       |         |
| 1994         | 0,06            | 1,98                      | 0,48            | 0,008 | 0,160                 | 0,064        | 0,45              | 6,20              | 4,17                |        |                       |         |
| year         | H               | Hg ( microgram/l          |                 | Ö     | Cd (microgram/l       | 1)           |                   | Pb (microgram/l   | 1)                  |        | As (microgram/l       |         |
|              | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
| 1997         | 0,23            | 0,44                      | 0,32            |       |                       |              |                   |                   |                     |        |                       |         |
| 1996         | 0,10            | 0,85                      | 0,30            |       |                       |              |                   |                   |                     |        |                       |         |
| 1995         | 0,05            | 2,75                      | 0,95            | 0,005 | 0,05                  | 0,026        | 0,023             | 3,62              | 1,27                | 1,22   | 2,84                  | 2,0     |
| 1994         | 0,05            | 0,05                      | 9,05            | 0,09  | 0,09                  | 0,09         | 0,91              | 1,21              | 1,06                |        |                       |         |
| Vear         |                 | Cu (microoram/l           |                 |       | Cr ( microoram/l      |              |                   | Ni ( microoram/l  |                     |        | Zn (microgram/l       |         |
| 1            | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
| 1997         |                 |                           |                 | 0.10  | 0.35                  | 0.18         | 2 63              | 5 29              | 3.46                | 10.00  | 20.00                 | 23.80   |
| 1996         |                 |                           |                 | 2,6   | 3,5                   | 2,6          | 9,1               | j.                | 0,1                 | 10,00  | 28,00                 | 18,17   |
| 1995         | 2,46            | 6,23                      | 3,84            | 0,52  | 1,89                  | 1,27         | 2,23              | 4,75              | 3,05                | 17,00  | 119,00                | 40,17   |
| 1994         | 2,15            | 4,14                      | 3,15            | 1,14  | 1,95                  | 1,55         | 3,95              | 4,57              | 4,26                | 35,00  | 37,00                 | 35,99   |
|              |                 | (B) (B)                   |                 |       | 7                     |              |                   |                   |                     |        | . / 11011             | ( 10    |
| year         |                 | total F ( mg/1 )          |                 | 3     | oropnyi ( merogram/i  | alli/1)      |                   | TCD (Interogram/i | U/I )               | gaille | gama nen (merogram/i) | alli/1) |
|              | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
| 1997         | 0,17            | 0,54                      | 0,30            | 8,44  | 48,31                 | 33,05        | 0,001             | 0,001             | 0,001               | 0,002  | 0,002                 | 0,002   |
| 1996         | 0,14            | 0,62                      | 0,42            |       |                       |              |                   |                   |                     |        |                       |         |
| 1995         | 0,17            | 0,54                      | 0,35            |       |                       |              |                   |                   |                     |        |                       |         |
| 1994         | 0,16            | 0,61                      | 0,39            |       |                       |              |                   |                   |                     |        |                       |         |
| Voor         | honte           | hantachlor ( microaram/l) | ( <b>//m</b>    | n u   | n_n DDT ( microaram/l | ( I/m        |                   | PCB ( microaram/l |                     | Ĺ      | TOC (microacan) 1     |         |
|              | min.            | max.                      | mean            | min.  | max.                  | mean         | min.              | max.              | mean                | min.   | max.                  | mean    |
|              | •               | war.                      | moun            | •     | . varu                | mean.        |                   | THE WAY           | IIICIIII            |        | TIMEN.                | III     |
| 1997         | 0,01            | 0,01                      | 0,01            | 0,01  | 0,01                  | 0,01         |                   |                   |                     |        |                       |         |
| 1995         |                 |                           |                 |       |                       |              |                   |                   |                     | 4,0    | 6,9                   | ,5,8    |
| 1994         |                 |                           |                 |       |                       |              | 0,010             | 0,010             |                     |        |                       |         |

Water quality in the main check point "VAH-KOMARNO", r.km 2,5 **Table 4.15.** 

| vear |       | O (m <sup>3</sup> /s) |       |        | BOD-5 (mg/l)           |          |            | COD-Cr (mg/l)           |            |                                         | NES (mg/l)        |         |
|------|-------|-----------------------|-------|--------|------------------------|----------|------------|-------------------------|------------|-----------------------------------------|-------------------|---------|
|      | min   | max                   | mean  | min    | max                    | mean     | min        | max                     | mean       | min                                     | max.              | mean    |
|      |       | www.                  | шкаш  | •      | THE WAY                | mean     |            | THE WAY                 | праш       | *************************************** | ·vmiii            | IIICAII |
| 1997 |       |                       |       | 1,9    | 6,5                    | 3,9      | 8,9        | 19,5                    | 15,0       | 0,05                                    | 0,12              | 0,05    |
| 1996 |       |                       |       | 6,0    | 13,0                   | 4,5      | 0,6        | 54,5                    | 17,6       | 0,01                                    | 0,08              | 0,02    |
| 1995 |       |                       |       | 0,7    | 9,9                    | 2,9      |            | 29,6                    | 15,3       | 0,01                                    | 0,04              | 0,03    |
| 1994 |       |                       |       | 1,4    | 4,7                    | 3,0      | COD Mn 3,4 | COD Mn 6,9              | COD Mn 4,8 | 0,03                                    | 0,03              | 0,03    |
|      |       | NI NITIA ( / D.)      |       |        | Charles of the In      |          |            | CON N                   |            |                                         | ( I )             |         |
| year |       | N-NH4 ( mg/l )        |       |        | N-NO2 ( mg/I )         |          |            | N-NO3 ( mg/l )          |            |                                         | N-organ. (mg/l)   |         |
|      | min.  | max.                  | mean  | min.   | max.                   | mean     | min.       | max.                    | mean       | min.                                    | max.              | mean    |
| 1997 | 0,04  | 1,24                  | 0,54  | 600'0  | 0,074                  | 0,044    | 1,27       | 3,28                    | 2,12       | 0,01                                    | 2,66              | 0,78    |
| 1996 | 0.29  | 1.18                  | 0.63  | 0.022  | 0,103                  | 0,046    | 1.54       | 3,43                    | 2.41       | 0.01                                    | 1.23              | 0.27    |
| 1995 | 0.06  | 1.14                  | 0.57  | 0.020  | 0.240                  | 0.046    | 0.61       | 3.61                    | 2.28       | 0.01                                    | 1.66              | 0.60    |
| 1994 | 0,17  | 0,63                  | 0,32  | 0,020  | 0,000                  | 0,049    | 1,00       | 2,70                    | 2,00       | ,                                       | )                 | ,       |
|      |       |                       |       |        |                        |          |            |                         |            |                                         |                   |         |
| year |       | total N ( mg/l )      |       |        | total P ( mg/l )       |          | 1          | Hg ( microgram/l        | ()         | )                                       | Cd (microgram/l   | )       |
|      | min.  | max.                  | mean  | min.   | max.                   | mean     | min.       | max.                    | mean       | min.                                    | max.              | mean    |
| 1007 | 70.0  | 01/2                  | 2.21  | 000    | 00.0                   | 0.15     | 00.0       | 1 00                    | 70.0       | 000                                     | CC 0              | 000     |
| 1997 | 2,04  | 84,0                  | 3,31  | 0,02   | 0,29                   | 0,13     | 0,70       | 1,00                    | 0,87       | 0,02                                    | 0,22              | 0,09    |
| 1996 | 2,05  | 4,85                  | 3,36  | 0,0    | 0,6/                   | 0,24     | 0,10       | 0,10                    | 0,10       | 0,01                                    | 0,17              | 0,06    |
| 1995 | 2,30  | 5,22                  | 3,53  | 0,10   | 0,32                   | 0,21     | 0.10       | 0,40                    | 0.16       | 0.02                                    | 0.15              | 0,08    |
| 1994 |       |                       |       |        |                        |          | 0,05       | 0,05                    | 0,05       | 0,01                                    | 0,04              | 0,03    |
|      |       |                       |       |        |                        |          |            |                         |            |                                         |                   | ,       |
| year | 1     | Pb ( microgram/l )    |       |        | As ( microgram/l       | (        |            | Cu ( microgram/l)       | []         | )                                       | Cr (microgram/l)  | )       |
|      | min.  | max.                  | mean  | min.   | max.                   | mean     | min.       | max.                    | mean       | min.                                    | max.              | mean    |
| 1997 | 0,10  | 5,4                   | 1,15  | 0,01   | 4,9                    | 2,59     | 1,00       | 2,70                    | 1,73       | 09'0                                    | 2,00              | 1,02    |
| 1996 | 0,10  | 1,4                   | 0,58  | 1,00   | 1,7                    | 1,22     | 1,60       | 2,50                    | 2,02       | 0,20                                    | 1,00              | 0,65    |
| 1995 | 0,20  | 2,4                   | 0,82  | 2,1    | 4,8                    | 3,58     | 1,20       | 6,00                    | 2,56       | 0,10                                    | 1,60              | 0,52    |
| 1994 | 0,91  | 0,94                  | 0,93  |        |                        |          | 2,17       | 3,81                    | 3,00       | 0,84                                    | 1,00              | 0,92    |
|      |       |                       |       |        |                        |          |            |                         |            |                                         |                   |         |
| year |       | Ni (microgram/l       |       | 7      | Zn ( microgram/l       | ()       | H          | HCB (microgram/l        | Л)         | H                                       | Heptachlor (mg/l  | ( )     |
|      | min.  | max.                  | mean  | min.   | max.                   | mean     | min.       | max.                    | mean       | min.                                    | max.              | mean    |
| 1997 | 2,30  | 8,70                  | 3,87  | 20,0   | 0,89                   | 28,0     | 0,005      | 0,005                   | 0,005      | 900'0                                   | 0,005             | 0,005   |
| 1996 | 1,40  | 7,80                  | 3,53  | 20,0   | 30,0                   | 22,7     | 0,005      | 0,005                   | 0,005      | 0,005                                   | 0,005             | 0,005   |
| 1995 | 0,80  | 3,80                  | 2,20  | 20,0   | 20,0                   | 20,0     | 0,005      | 0,005                   | 0,005      | 0,005                                   | 0,005             | 0,005   |
| 1994 | 2,44  | 2,82                  | 2,63  | 21,0   | 30,0                   | 25,5     |            |                         |            |                                         |                   |         |
|      |       |                       |       |        |                        |          |            |                         |            |                                         |                   |         |
| year | [ d-d | p-p DDT (microgram/l  | m/l ) | Chlork | rbenzene (microgram/l) | gram/l ) | Chlor      | Chloroform (microgram/l | ram/l)     | )d                                      | PCB (microgram/l) | 1)      |
|      | min.  | max.                  | mean  | min.   | max.                   | mean     | min.       | max.                    | mean       | min.                                    | max.              | mean    |
| 1997 | 0,01  | 0,01                  | 0,01  | 1,00   | 1,00                   | 1,00     | 0,001      | 0,113                   | 0,031      | 0,01                                    | 0,01              | 0,01    |
| 1996 | 0,01  | 0,01                  | 0,01  | 1,00   | 2,50                   | 1,38     | 0,001      | 0,011                   | 0,005      |                                         |                   |         |
| 1995 | 0,01  | 0,01                  | 0,01  | 1,00   | 1,00                   | 1,00     | 0,001      | 0,002                   | 0,002      |                                         |                   |         |
| 1994 |       |                       |       |        |                        |          |            |                         |            |                                         |                   | 0,01    |

Water quality in the main check point "HRON-KAMENIN"; r.km 10,9 **Table 4.16.** 

| year |       | Q (m <sup>3</sup> /s) |       |      | BOD-5 (mg/l) |      |            | COD-5 (mg/l) |            |      | TOC (mg/l) |      |
|------|-------|-----------------------|-------|------|--------------|------|------------|--------------|------------|------|------------|------|
|      | min.  | max.                  | mean  | min. | max.         | mean | min.       | max.         | mean       | min. | max.       | ueau |
| 1997 |       |                       |       | 2,9  | 4,3          | 3,3  | 13,0       | 21,0         | 16,3       |      |            |      |
| 1996 | 15,97 | 159,86                | 57,21 | 2,7  | 7,2          | 3,9  | 12,0       | 0,4          | 20,8       |      |            |      |
| 1995 | 19,05 | 151,67                | 60,20 | 2,0  | 4,9          | 2,9  | 9,0        | 17,0         | 12,8       |      |            |      |
| 1994 | 13,68 | 105,80                | 49,88 | 2,0  | 3,9          | 2,8  | COD Mn 4,3 | COD Mn 8,0   | COD Mn 5,8 | 5,6  | 14,9       | 8,8  |

| min.<br>0,11<br>0.12 | mean | min.  |       |       |      | N-NO3 (mg/l) |      |      | N-organ. ( mg/l ) |      |
|----------------------|------|-------|-------|-------|------|--------------|------|------|-------------------|------|
| 0,11                 | 0.30 |       | max.  | mean  | min. | max.         | mean | min. | max.              | mean |
| 0.12                 | 0,00 | 0,007 | 0,085 | 0,030 | 66'0 | 2,54         | 1,96 | 2,10 | 3,50              | 2,74 |
| 11(0)                | 0,46 | 0,004 | 0,052 | 0,032 | 1,30 | 2,82         | 1,86 | 1,70 | 2,20              | 1,90 |
| 1995 0,06 0,35       | 0,19 | 0,003 | 0,044 | 0,023 | 1,10 | 2,20         | 1,69 | 0,88 | 1,40              | 1,15 |
| 0,02                 | 0,18 |       |       |       | 1,30 | 2,30         | 1,83 |      |                   |      |

| year |      | total P ( mg/l ) |      | Chlor | ophyl (microgr | .am/l ) |
|------|------|------------------|------|-------|----------------|---------|
|      | min. | max.             | mean | min.  | max.           | mean    |
| 1997 | 0,12 | 0,28             | 0,21 | 0,100 | 5,920          | 3,803   |
| 1996 | 0,13 | 0,30             | 0,26 | 0,100 | 4,440          | 1,470   |
| 1995 | 0,09 | 0,24             | 0,15 | 0,370 | 14,060         | 3,38    |
| 1994 | 0,07 | 0,22             | 0,16 |       |                |         |

Water quality in the main check point "IPEL-IPELSKY SOKOLEC", r.km 35,20 in year 1997 "IPEL-KUBANOVO, r.km 38,3 **Table 4.17.** 

| year |            | Q (m <sup>3</sup> /s)   |           |       | BOD-5 (mg/l)    |       |           | COD-Cr (mg/l)          |            |      | N-NH4 (mg/l)             |        |
|------|------------|-------------------------|-----------|-------|-----------------|-------|-----------|------------------------|------------|------|--------------------------|--------|
|      | min.       | max.                    | mean      | min.  | max.            | mean  | min.      | max.                   | mean       | min. | max.                     | mean   |
| 1997 |            |                         |           | 3,1   | 4,0             | 3,6   | 88,5      | 104,8                  | 95,8       | 0,15 | 1,41                     | 0,59   |
| 1996 | 2,42       | 22,95                   | 9,26      | 2,3   | 4,6             | 3,7   | 10,0      | 27,0                   | 17,3       | 0,08 | 1,32                     | 0,48   |
| 1995 | 2,55       | 48,42                   | 16,24     | 3,0   | 4,7             | 3,5   | 12,0      | 44,0                   | 23,3       | 0,16 | 1,29                     | 0,67   |
| 1994 | 1,41       | 29,66                   | 11,06     | 2,5   | 4,5             | 3,3   | CODMn 5,7 | COD Mn 9,0             | COD Mn 7,1 | 0,02 | 1,51                     | 0,26   |
|      |            |                         |           |       |                 |       |           |                        |            |      |                          |        |
| year |            | N-NO2 (mg/l)            |           |       | N-NO3 (mg/l)    |       |           | N-org. (mg/l)          |            |      | Total P (mg/l)           |        |
|      | min.       | max.                    | mean      | min.  | max.            | mean  | min.      | max.                   | mean       | min. | max.                     | mean   |
| 1997 | 0,019      | 0,059                   | 0,035     | 2,04  | 4,14            | 2,67  | 2,80      | 10,80                  | 5,34       | 0,14 | 0,67                     | 0,38   |
| 1996 | 0,015      | 0,049                   | 0,032     | 1,90  | 5,20            | 2,91  | 1,50      | 3,50                   | 2,20       | 0,16 | 0,36                     | 0,25   |
| 1995 | 0,018      | 0,073                   | 0,035     | 1,40  | 3,20            | 2,43  | 1,20      | 3,00                   | 2,09       | 0,10 | 0,35                     | 0,23   |
| 1994 | TOT, N 5,6 | TOT, N 7,0              | TOT,N 6,1 | 0,28  | 3,20            | 2,07  |           |                        |            | 0,12 | 0,51                     | 0,27   |
|      |            |                         |           |       |                 |       |           |                        |            |      |                          |        |
| year | Chlor      | Chlorophyl (microgram/l | ram/l)    | ЭН    | CB (microgram/l | (I)   | gam       | gama-HCH (microgram/l) | am/l )     | Hep  | Heptachlor (microgram/l) | .am/l) |
|      | min.       | max.                    | mean      | min.  | max.            | mean  | min.      | max.                   | mean       | min. | max.                     | mean   |
| 1997 | 0,100      | 14,800                  | 4,771     | 0,010 | 0,410           | 0,010 | 0,30      | 0,30                   | 0,30       | 0,01 | 0,01                     | 0,01   |
| 1996 | 0,100      | 45,880                  | 11,287    | 0,010 | 0,010           | 0,010 | 0,30      | 0,30                   | 0,30       | 0,01 | 0,01                     | 0,01   |
| 1995 | 1,480      | 27,750                  | 7,717     | 0,010 | 0,010           | 0,010 | 0,03      | 0,03                   | 0,03       | 0,01 | 0,01                     | 0,01   |
| 1994 |            |                         |           |       |                 |       | 0.03      | 0.03                   | 0.03       | 0.01 | 0.01                     | 0.01   |

| year | d-d  | DDT (microgra | m/l) | Meto | xychlor (microgi | am/l) |      | TOC (mg/l) |      |
|------|------|---------------|------|------|------------------|-------|------|------------|------|
|      | min. | max.          | mean | min. | max.             | mean  | min. | max.       | ueau |
| 1997 | 0,10 | 0,10          | 0,10 | 3,00 | 3,00             | 3,00  |      |            |      |
| 1996 | 0,10 | 0,10          | 0,10 | 3,00 | 3,00             | 3,00  |      |            |      |
| 1995 | 0,03 | 0,03          | 0,03 | 0,05 | 0,05             | 0,05  |      |            |      |
| 1994 | 0,03 | 0,03          | 0,03 | 0,05 | 0,05             | 0,05  | 5,9  | 15,9       | 10,1 |

Water quality in the main check point "SLANA-LENARTOVCE", r.km 3,6 **Table 4.18.** 

| year |      | $Q (m^3/s)$ |       |      | BOD-5 (mg/l) |      |            | COD-5 (mg/l) |            |      | TOC (mg/l)   |      |
|------|------|-------------|-------|------|--------------|------|------------|--------------|------------|------|--------------|------|
|      | min. | max.        | mean  | min. | max.         | mean | min.       | max.         | mean       | min. | max.         | mean |
| 1997 |      |             |       | 2,2  | 4,4          | 3,1  | 0,6        | 57,0         | 18,3       |      |              |      |
| 1996 | 3,75 | 26,02       | 11,48 | 2,4  | 16,3         | 4,0  | 10,0       | 54,0         | 19,2       |      |              |      |
| 1995 | 3,72 | 21,65       | 86,6  | 2,1  | 3,9          | 2,8  | 8,0        | 19,0         | 13,8       |      |              |      |
| 1994 | 2,39 | 23,58       | 10,66 | 1,8  | 3,0          | 2,3  | COD Mn 4,0 | COD Mn 5,6   | COD Mn 4,8 | 4,4  | 16,7         | 6,7  |
|      |      |             |       |      |              |      |            |              |            |      |              |      |
| year |      | NES (mg/l)  |       |      | N-NH4 (mg/l) |      |            | N-NO2 (mg/l) |            |      | N-NO3 (mg/l) |      |
|      | min. | max.        | mean  | min. | max.         | ueau | min.       | max.         | mean       | min. | max          | mean |
| 1001 | 0.01 | T C         | 0.11  | 100  | 0 10         | 710  | 0100       | 0,00         | 0000       |      | 67.6         | 100  |

| year |      | NES (mg/l)    |      |      | N-NH4 (mg/l)   |      |       | N-NO2 (mg/l)         |        |      | N-NO3 (mg/l)    |      |
|------|------|---------------|------|------|----------------|------|-------|----------------------|--------|------|-----------------|------|
|      | min. | max.          | mean | min. | max.           | mean | min.  | max.                 | ueau   | min. | max             | mean |
| 1997 | 0,01 | 0,57          | 0,14 | 0,05 | 0,40           | 0,16 | 0,012 | 0,042                | 0,020  | 1,35 | 2,53            | 1,93 |
| 1996 | 0,01 | 0,26          | 0,12 | 0,04 | 1,37           | 0,22 | 0,012 | 0,046                | 0,023  | 0,80 | 2,71            | 1,79 |
| 1995 | 90,0 | 0,19          | 0,10 | 0,05 | 1,35           | 0,28 | 0,020 | 0,059                | 0,021  | 1,50 | 3,00            | 2,02 |
| 1994 | 0,05 | 0,32          | 0,12 | 0,02 | 0,19           | 0,06 |       |                      |        | 1,50 | 3,10            | 2,13 |
|      |      |               |      |      |                |      |       |                      |        |      |                 | •    |
| year |      | N-org. (mg/l) |      |      | Total P (mg/l) |      | Chlor | Chlorophyl (microgra | am/l ) | )    | Cd (microgram/l | ()   |
|      | min. | max.          | mean | min. | max.           | mean | min.  | max.                 | ueau   | min. | max.            | mean |
| 1997 | 0,70 | 4,20          | 3,20 | 80,0 | 0,82           | 0,18 | 0,100 | 5,920                | 1,643  | 0,20 | 0,20            | 0,20 |
| 1996 | 0,70 | 2,45          | 1,85 | 0,07 | 0,26           | 0,13 | 0,100 | 2,960                | 1,100  | 0,20 | 0,20            | 0,20 |
| 1995 | 1,00 | 2,10          | 1,37 | 0,07 | 0,41           | 0,14 | 0,370 | 0,740                | 0,529  | 0,10 | 0,10            | 0,10 |
| 1994 |      |               |      | 0,07 | 0,27           | 0,12 |       |                      |        | 0,05 | 0,16            | 60,0 |
|      |      |               |      |      |                |      |       |                      |        |      |                 |      |

| year | I    | Pb ( microgram/l | )    | C    | 'u (microgram/ | 1)   | Z     | n (microgram/l | ()    |
|------|------|------------------|------|------|----------------|------|-------|----------------|-------|
|      | min. | max.             | mean | min. | max.           | mean | min.  | max.           | mean  |
| 166  | 1,00 | 1,40             | 1,08 | 1,90 | 7,30           | 4,02 | 5,00  | 8,00           | 5,80  |
| 966  | 1,00 | 1,00             | 3,00 | 3,00 | 12,00          | 6,17 | 1,00  | 33,00          | 8,67  |
| 1995 | 0,50 | 1,00             | 2,00 | 2,00 | 11,00          | 5,00 | 7,00  | 24,00          | 12,17 |
| 1994 | 0,50 | 2,00             | 1,00 | 1,00 | 5,00           | 2,33 | 10,00 | 27,00          | 17,50 |

Water quality in the main check point "BODVA - HOSTOVCE", r.km 0,00 **Table 4.19.** 

| vear         |        | O (m <sup>3</sup> /s)  |         |            | BOD-5 (mg/l)        |           |       | COD-5 ( mg/l)           |          |       | NES (mg/l)           |       |
|--------------|--------|------------------------|---------|------------|---------------------|-----------|-------|-------------------------|----------|-------|----------------------|-------|
|              |        | (a)                    |         |            | ( A )               |           |       |                         |          |       | (1,0                 |       |
|              | mın.   | max.                   | mean    | mın.       | max.                | mean      | mın.  | max.                    | mean     | mın.  | max.                 | mean  |
| 1997         | 1.32   | 4.73                   | 2.5     | 2.7        | 9.6                 | 5.3       | 8.0   | 87.0                    | 23.8     | 0.007 | 0.065                | 0.029 |
| 1996         | 0.80   | 12.08                  | 3,35    | 2.4        | 8.6                 | 4.9       | 8.0   | 38.0                    | 17.2     | 0.001 | 0,076                | 0,029 |
| 1995         | 0.53   | 19,66                  | 4 44    | 2,6        | 0,6                 | , κ<br>α  | 7.0   | 89.0                    | 25.1     | 0.01  | 0.08                 | 0.030 |
| 1994         | 0.22   | 6.64                   | 1.86    | 2,5<br>0,5 | 9.6                 | 5, 4<br>C | 9,3   | 54.0                    | 24.8     | 0.01  | 0.15                 | 050;0 |
|              | 1160   |                        | 006     | ì          | 26                  | ļ,        | 2     | 26.5                    | ) (.<br> |       | 2 (6)                | 6     |
| year         |        | N-NH4 (mg/l)           |         |            | N-NO2 (mg/l)        |           |       | N-NO3 (mg/l)            |          |       | N-org. (mg/l)        |       |
|              | min.   | max.                   | mean    | min.       | max.                | mean      | min.  | max.                    | mean     | min.  | max.                 | mean  |
| 1997         | 0.030  | 0.46                   | 0.16    | 0.018      | 0.117               | 0.046     | 276   | 5.78                    | 3 79     | 0.15  | 1 64                 | 0.64  |
| 1996         | 0.000  | 1.25                   | 0.27    | 0.00       | 0.074               | 0,041     | 181   | 717                     | 4.19     | 0,40  | 20,5                 | 0.72  |
| 1995         | 0.060  | 0.46                   | 0.20    | 0,022      | 0,074               | 0,040     | 2.80  | 5.60                    | 4.00     | 0,10  | , -<br>2, -          | 0.65  |
| 1997         | 0600   | 0,10                   | 0.20    | 0.076      | 0.064               | 0,040     | 2,30  | 0,00                    | , 6<br>% | 0,03  | 2,35                 | 1 12  |
| 1224         | 0,000  | 0,41                   | 0,50    | 0,020      | 0,000               | 0,040     | 2,30  | ٠,<br>۲                 | 06,6     | 0,22  | 4,33                 | 71,1  |
| year         |        | Total N (mg/l)         |         |            | Total P (mg/l)      |           | Chlor | Chlorophyl (microgram/l | .am/l)   | F     | Hg ( microgram/l     |       |
| ,            | mim    | Aom                    | noom    | mim        | Aom                 | moom      | mim   | aom ,                   | noom     |       | aom.                 |       |
|              |        | max.                   | IIICAII |            | max.                | mean      |       | max.                    | IIIEAIII |       | max.                 | mean  |
| 199/         | 3,27   | 5,45                   | 4,48    | 50,0       | 0,17                | 0,11      | 2,400 | 27,3000                 | 12,568   | 0,05  | 0,55                 | 0,20  |
| 1996         | 4,01   | 7,80                   | 5,83    | 90,0       | 0,22                | 0,14      | 2,000 | 26,2000                 | 9,743    | 0,05  | 0,40                 | 0,12  |
| 1995         | 2,93   | 5,14                   | 4,54    | 0,08       | 0,26                | 0,15      | 3,000 | 67,5000                 | 19,333   | 0,05  | 0,40                 | 0,11  |
| 1994         | 3,03   | 6,00                   | 4,23    | 0,12       | 0,39                | 0,18      | 3,200 | 81,4000                 | 17,700   | 0,05  | 0,05                 | 0,05  |
|              |        |                        |         |            |                     |           |       |                         |          |       |                      |       |
| year         |        | Cd (microgram/l)       | (I)     | 1          | Pb (microgram/l     | (1        | )     | Cu (microgram/l         | 1)       | J     | Cr (microgram/l)     | ()    |
|              | min.   | max.                   | mean    | min.       | max.                | mean      | min.  | max.                    | mean     | min.  | max.                 | mean  |
| 1997         | 0,05   | 0,70                   | 0,46    | 1,10       | 11,30               | 6,90      | 2,00  | 24,40                   | 9,93     | 0,10  | 2,80                 | 1,42  |
| 1996         | 0,05   | 1,00                   | 0,37    | 2,90       | 13,40               | 6,95      | 3,10  | 55,30                   | 21,27    | 0,05  | 2,90                 | 1,51  |
| 1995         | 0,05   | 5,60                   | 1,18    | 0,60       | 10,00               | 3,12      | 0,20  | 15,00                   | 7,08     | 0,10  | 7,80                 | 3,12  |
| 1994         | 0,05   | 0,80                   | 0,28    | 0,00       | 19,00               | 6,18      | 0,05  | 32,00                   | 10,34    | 0,60  | 21,70                | 6,82  |
| ;            |        | `                      | í       |            |                     | í         | \$    |                         | í        |       |                      | í     |
| Year         | *      | Zn ( microgram/l)      | (1)     | Atr        | razin ( microgram/l | m/I )     | Pro   | Prometrin (microgram/l) | am/I)    | Ame   | Ametryn (microgram/l | m/l ) |
|              | min.   | max.                   | mean    | min.       | max.                | mean      | min.  | max.                    | mean     | min.  | max.                 | mean  |
| 1997         | 119,10 | 326,40                 | 193,18  | 0,01       | 5,40                | 2,23      | 1,47  | 2,03                    | 1,77     | 2,50  | 4,90                 | 3,77  |
| 1996         | 111,00 | 278,10                 | 169,95  | 0,67       | 6,24                | 2,96      | 60,0  | 6,30                    | 2,53     | 0,56  | 4,91                 | 3,41  |
| 1995         | 14,60  | 173,20                 | 72,90   |            |                     |           |       |                         |          |       |                      |       |
| 1994         | 75,40  | 138,60                 | 97,28   |            |                     |           |       |                         |          |       |                      |       |
|              |        |                        |         |            |                     |           |       |                         |          |       |                      |       |
| Year         | Pro    | Prometon (microgram/l) | am/l)   |            | Simazin (mg/l)      |           | Cert  | Cerbatrin (microgram/l  | am/l )   | P     | PCB (microgram/l     | Л)    |
|              | min.   | max.                   | mean    | min.       | max.                | mean      | min.  | max.                    | mean     | min.  | max.                 | mean  |
| <i>L</i> 661 | 2,60   | 2,70                   | 2,68    | 0,30       | 2,90                | 1,90      | 0,01  | 4,08                    | 2,73     | 0,005 | 0,008                | 900'0 |
| 1996         | 0,00   | 2,60                   | 86'0    | 80,0       | 3,77                | 1,85      | 0,83  | 4,19                    | 2,13     | 0,002 | 0,054                | 0,020 |
| 1995         |        |                        |         |            |                     |           |       |                         |          | 0.010 | 0100                 | 0.010 |
| 1777         |        |                        |         |            |                     |           |       |                         |          | 0,010 | 0,010                | 0,010 |

Water quality in the main check point "BODROG -STREDA N.BODROGOM", r.km 6,00 **Table 4.20.** 

| year                 |       | $Q (m^3/s)$          |              |       | BOD-5 (mg/l)        |          |       | COD-Cr (mg/l            | )      |       | NES (mg/l)                            |        |
|----------------------|-------|----------------------|--------------|-------|---------------------|----------|-------|-------------------------|--------|-------|---------------------------------------|--------|
|                      | min.  | max.                 | mean         | min.  | max.                | mean     | min.  | max.                    | mean   | min.  | max.                                  | ueau   |
| 1997                 | 41.1  | 183.0                | 85,1         | 2.2   | 6.1                 | 3.8      | 9.0   | 22.0                    | 13.8   | 0,01  | 0.07                                  | 0,03   |
| 1996                 | 41,0  | 150,3                | 73,5         | 1,8   | 7,9                 | 4,0      | 0,6   | 17,0                    | 13,1   | 0,01  | 90,0                                  | 0,03   |
| 1995                 | 39,0  | 310,5                | 100,4        | 2,1   | 5,8                 | 3,7      | 0,6   | 29,0                    | 15,1   | 0,00  | 0,07                                  | 0,02   |
| 1994                 | 31,6  | 338,8                | 112,0        | 1,7   | 5,8                 | 4,2      | 8,0   | 41,0                    | 19,2   | 0,01  | 0,50                                  | 0,07   |
| vear                 |       | N-NH4 (mo/l)         |              |       | N-NO2 (mo/l)        |          |       | N-NO3 (mg/l)            |        |       | N-oro (mo/l)                          |        |
|                      | mim   | Aem A                | mean         | nim   | vem vem             | mean     | mim   | max                     | mean   | nim   | aem l                                 | usom   |
| 1000                 |       | man.                 | Incan        |       | may.                | mean     |       | IIIan                   | Incan  |       | man.                                  | ıncanı |
| 1997                 | 0,04  | 0,40                 | 0,13<br>0,25 | 0,009 | 0,072               | 0,029    | 0,51  | 1,84                    | 1,11   | 0,16  | 0,3/                                  | 0,26   |
| 1990                 | 0,0   | 0,47                 | 0,23         | 0,017 | 0,033               | 0,034    | 0,99  | 2,71                    | 1,38   | 0,10  | 0,72                                  | 0,42   |
| 1994                 | 0,12  | 0,43                 | 0,23         | 0,020 | 0,090               | 0,041    | 0,87  | 3.30                    | 1,74   | 0,03  | 0,10                                  | 1.00   |
|                      | ***60 | 1.6                  |              | 2006  | 0.006               | 2, 2,6   |       | 20,62                   |        | 2,6   | 2062                                  |        |
| year                 |       | Total N (mg/l)       |              |       | Total P (mg/l)      |          | Chlor | Chlorophyl (microgram/l | ram/l) |       | Hg (mg/l)                             |        |
|                      | min.  | max.                 | mean         | min.  | max.                | mean     | min.  | max.                    | mean   | min.  | max.                                  | mean   |
| 1997                 | 1.09  | 1.94                 | 1,43         | 0.05  | 0.14                | 0.08     | 2,400 | 15,100                  | 5,490  | 0.05  | 0,20                                  | 0.08   |
| 1996                 | 1,18  | 2,90                 | 2,12         | 90,0  | 0,22                | 0,12     | 2,100 | 17,000                  | 6,369  | 0,05  | 0,50                                  | 0,17   |
| 1995                 | 1,89  | 3,04                 | 2,27         | 0,07  | 0,21                | 0,13     | 1,000 | 23,100                  | 5,967  | 0,05  | 0,60                                  | 0,12   |
| 1994                 | 2,42  | 4,34                 | 3,16         | 0,06  | 0,34                | 0,13     | 1,800 | 9,500                   | 5,790  | 0,05  | 0,05                                  | 0,05   |
|                      |       | , FE                 | /            | f     |                     | <i>^</i> |       | y                       |        | 9     | , , , , , , , , , , , , , , , , , , , |        |
| year                 |       | Cd (microgram/I      |              |       | Pb (microgram/I     |          |       | Cu (microgram/i         | _      |       | Cr (mcrogram/I                        |        |
|                      | mın.  | max.                 | mean         | mın.  | max.                | mean     | mın.  | max.                    | mean   | min.  | max.                                  | mean   |
| 1997                 | 0,05  | 1,15                 | 0,35         | 0,60  | 33,20               | 8,65     | 06,0  | 5,50                    | 3,27   | 0,05  | 6,50                                  | 1,71   |
| 1996                 | 0,00  | 0,50                 | 0,24         | 2,60  | 10,50               | 5,05     | 1,00  | 19,0                    | 8,55   | 0,05  | 1,90                                  | 1,03   |
| 1995                 | 0,05  | 4,00                 | 0,65         | 0,10  | 19,20               | 5,37     | 0,10  | 20,2                    | 8,23   | 0,05  | 3,70                                  | 1,32   |
| 1994                 | 0,00  | 4,30                 | 0,70         | 60,0  | 37,00               | 1,90     | 1,30  | 05,50                   | 19,97  | 1,20  | 11,00                                 | 4,40   |
| year                 | 7     | Zn (microgram/l      | 1)           | Atra  | trazin (microgram/l | m/l)     | Pron  | Prometrin (microgram/l  | am/l ) | Ame   | Ametryn (microgram/l                  | m/l )  |
|                      | min.  | max.                 | mean         | min.  | max.                | mean     | min.  | max.                    | mean   | min.  | max.                                  | mean   |
| 1997                 | 9,68  | 313,3                | 195,3        | 1,40  | 8,70                | 3,44     | 1,35  | 2,04                    | 1,81   | 1,03  | 4,90                                  | 3,31   |
| 1996                 | 107,7 | 270,9                | 156,8        | 0,81  | 1,91                | 1,36     | 1,69  | 3,46                    | 2,25   | 0,07  | 8,05                                  | 3,90   |
| 1995                 | 23,3  | 210,5                | 92,3         |       |                     |          |       |                         |        |       |                                       |        |
| 1994                 | 39,9  | 249,6                | 126,7        |       |                     |          |       |                         |        |       | _                                     |        |
|                      | ŧ     | • ` ` '              | Œ.           |       |                     | \.       | E     | . , . ,                 |        | À     |                                       |        |
| year                 | -1    | rometon (microgram/) | am/1)        | 2     | mazin (microgram)i  | m/1 )    | Ier   | rerbutrin (microgram)   | am/1 ) | 4     | rcb (merogram/i                       | 1)     |
|                      | min.  | max.                 | mean         | min.  | max.                | mean     | min.  | max.                    | mean   | min.  | max.                                  | mean   |
| 1997                 | 1,50  | 2,70                 | 2,15         | 2,70  | 3,01                | 2,83     | 1,10  | 4,20                    | 3,30   | 0,006 | 0,130                                 | 0,043  |
| 1996<br>1995<br>1994 | 75,0  | 6/,7                 | 1,90         | 06,0  | 7,71                | 2,07     | 0,20  | 7,12                    | 7,90   | c00,0 | 0,023                                 | 0,012  |
| 1777                 |       |                      |              |       |                     |          |       |                         |        |       |                                       |        |

## **Annexes**

- 2-1 Criteria for Order of Urgency of WWTP Construction
- 4-1 Index of water Quality Discharge and Records
- 4-2 List of the Sampling Sites of Surface Water Quality Monitoring Programme in the Slovak Republic, year 1997
- 4-3 Classification of Surface Water Quality, STN 75 7221
- 4-4 Total Volumes of Dredged Material from Danube River in the Period 1962-94
- **4-5** Gauging Stations in Danube River Basin
- 4-6 Discharges of the Danube and its Tributaries
- 4-7 Maximal Mean Daily Discharges in Month
- 4-8 Minimal Mean Daily Discharges in Month
- 4-9 Data to Flow Duration Curves
- **4-10 Sediment Discharges**

# Annex 2-1

# **Criteria for Order of Urgency of WWTP Construction**

Annex 2.1. Criteria for Order of Urgency of WWTP Construction

|                  | Weight<br>of<br>criteria    |                                        | 11                                                              |                   |                                                              | 10                                    |                                                     | 6                           |                                         |                                   | 8                                  |                                                    | 7                                                                              |                                                                        |                                                       |                                           |                                          |                                           | 9                                                         |                                      |                      |
|------------------|-----------------------------|----------------------------------------|-----------------------------------------------------------------|-------------------|--------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------|
|                  | 1                           | <15 - >15                              | <5 - 5<br><10 - 10                                              | 15 ->15           | takes                                                        | < 50 km                               | proper WWTP with                                    | insufficient sewerage       | system                                  |                                   | < 0,2                              |                                                    | > 5                                                                            |                                                                        | other                                                 | intakes (no for drinking<br>water supply) |                                          | flow through urban area                   | non trout ground                                          |                                      |                      |
|                  | 2                           | <5 - <10                               |                                                                 |                   | others intakes                                               | < 20 km                               | insufficient WWTP capacity,                         | deficiency in operation and | (Solomoo)                               | construction of removal of N andP | > 0,2                              |                                                    | > 5                                                                            | uo                                                                     | for industry with lower demand for water              | quality                                   | tion                                     | flow through spa resp.<br>recreation area |                                                           |                                      |                      |
| Point Evaluation | 3                           | <10 - <15                              | >15 - >50                                                       |                   |                                                              | < 100 km                              |                                                     | without WWTP                |                                         |                                   | > 1                                |                                                    | > 10                                                                           | a /water intakes - present situation                                   | for irrigation                                        |                                           | b/ others activities - present situation | rowing<br>transboundary river             |                                                           |                                      | c/ future water uses |
|                  | 4                           | <5 - >10                               | <10 ->15                                                        |                   | intake > 1 mil.m3/y                                          | < 50 km                               |                                                     | construction or             | WWTP                                    |                                   | > 3                                |                                                    | > 15                                                                           | a/w                                                                    |                                                       | for ponds systems                         | b/ otl                                   | trout ground influence of reservoirs      |                                                           |                                      |                      |
|                  | 3                           | <5 - >15                               | mg/1BOD-5                                                       |                   |                                                              | < 20 km                               |                                                     | crash state of              | WWTP                                    |                                   | Q355 > 5 m3/s                      |                                                    | > 20 km                                                                        |                                                                        | for industry with higher<br>demands for water quality | •                                         |                                          | bathing area of hygien.protection of      | water sources, protected areas, protected areas of health | water<br>endangering of water source |                      |
|                  | Basis Documents             | Surface water quality monitoring in    | Slovak rivers SWMB-data about produced and discharged pollution | macma god Ponduon | SWMB SR (State Water Management Balance)                     | Quantitative water management balance | Water management permit for waste water discharge   |                             | Consultation with River Basin Authority |                                   | Data of Slovak Hydromet. Institute | Studies about water quaity                         | Hydroecological Plans<br>Annual reports (water quality)<br>Expert's estimation | Quantitative Water Management Balance                                  |                                                       | Water management maps of                  | ČSFR 1:50 000                            |                                           |                                                           |                                      |                      |
|                  | Characteristics of criteria | Water quality deterioration downstream | (BOD 5)                                                         |                   | Water intakes for drinking water supply (volume and distance | of pollution source)                  | State of sewerage and treatment of pollution source |                             |                                         |                                   | Importance of recipient            | Length of recipient influenced by pollution source |                                                                                | Other water uses in stretch of recipent influenced by pollution source | :                                                     |                                           |                                          |                                           |                                                           |                                      |                      |
|                  | Order of<br>criteria        |                                        | 1                                                               |                   |                                                              | 2                                     |                                                     | ъ                           |                                         |                                   | 4                                  |                                                    | v                                                                              |                                                                        |                                                       |                                           |                                          |                                           | 9                                                         |                                      |                      |

|                  | Weight<br>of<br>criteria    |                                          | ĸ                                                          | 5                                 | 4                                                                      | 3                                                                                | 2                                                                        | 1                                                                                                                         |
|------------------|-----------------------------|------------------------------------------|------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                  | 1                           | intakes for industry with lower demands  | < 100                                                      |                                   | condition similar to<br>natural<br>state                               | > 3 %0                                                                           | landscape nearly to<br>natural<br>vegetation                             | 2002                                                                                                                      |
|                  | 2                           | intakes for irrigation,<br>pond systems  | > 100                                                      |                                   | minimal river channel<br>modification                                  | < 3 %0<br>non equable declivity,<br>meanders,<br>tributaries                     | low intensive agricultural<br>use of landscape<br>(HRP < 3000 Kčs/ha/y)  | 2001                                                                                                                      |
| Point Evaluation | 3                           | recreation area                          | > 200                                                      | yes                               | partial river channel<br>modification                                  | < 3 %<br>equable declivity,<br>direct flow,<br>without tributaries               | mid intensive agricultural<br>use of landscape<br>(HRP > 3000 Kčs/ha/y)  | 2000                                                                                                                      |
|                  | 4                           | intakes for industry with higher demands | > 500                                                      |                                   | bottom and banks<br>fortification                                      | <1 \%0<br>non equable declivity,<br>meanders,<br>tributaries                     | high intensive agricultural<br>use of landscape<br>(HRP > 6000 Kčs/ha/y) | 1999                                                                                                                      |
|                  | 5                           | extraction for drinking water supply     | > 1000                                                     |                                   | covered<br>flow                                                        | average slope < 1 %<br>equable declivity,<br>direct flow,<br>without tributaries | mainly industrial landscape                                              | 1998                                                                                                                      |
|                  | Basis Documents             |                                          | Amount of discharged pollution in tons of BOD-5/y solution | Others                            | Water management maps of<br>ČSFR 1:50 000<br>Recognization of locality | Water management maps of<br>ČSFR 1:50 000                                        | Atlas of SSR                                                             | Water management permit                                                                                                   |
|                  | Characteristics of criteria |                                          | Amount of discharged pollution in tons of BOD-5/y          | Specific pollution in waste water | Stability of biocenose                                                 | Selfpurification of recipient                                                    | Influence of areal pollution  NOTE : HRP - Gross plant production        | Term (year) for harmonization of<br>discharged waste water with law in<br>compliance with water management<br>permit (VH) |
|                  | Order of<br>criteria        |                                          | 7                                                          | 7                                 | 8                                                                      | 6                                                                                | 10                                                                       | 11                                                                                                                        |

# **Annex 4-1 Index of Water Quality Discharge and Records**

Annex 4.1. Index of Water Quality and Discharge Records

|                      |             |        | water    | River | River        |
|----------------------|-------------|--------|----------|-------|--------------|
| Heavy Phenols Metals | P BOD       | Z      | Discharg | Disc  | Mile Disc    |
| 96/5 3/96            | 2/96 32/96  |        | 9.       | 32/96 | 1877,3 32/9  |
| 2/98                 | 2/98 2/98   |        |          | 2/98  | 1873,0 2/98  |
| 4/95 2/95            | 1/95 29/95  |        |          | 29/96 | 1869,0 29/96 |
| 4/98 4/98            | 4/98        | 7 86/4 |          | 4/98  | 1869,0 4/98  |
| 4/98 4/98            | 4/98 4/98   | 4/98   |          |       | 1848,0       |
| 4/98 4/98            | 4/98 4/98   | 7 86/4 |          |       | 1842,0       |
| 86/01 86/8           | 4/98 10/98  | 7      |          | 1/91  | 16/1 9,6181  |
| 4/98 4/98            | 4/98 4/98   | 7      |          | 2/98  | 1806,0 2/98  |
| 4/98 4/98            | 4/98        | 7      |          | 2/98  | 1768,0 2/98  |
| 4/95 1/95            | 2/96 12/96  |        |          | 12/96 | 1748,0 12/96 |
| 96/9                 | 4/98 32/98  | 7      |          | 32/98 | 1718,8 32/98 |
| 8/98 28/98           | 4/98 32/98  | 7      |          | 32/98 | 1,5 32/98    |
| 4/95 6/95            | 1/95 28/95  |        |          |       | 3,0          |
| 4/98 4/98            | 4/98 4/98   | 7      |          |       | 2,5          |
|                      | 35/98       | 13/98  |          | 35/98 | 10,9 35/98   |
|                      | 10/96 32/96 | 7/94   | -        | 32/96 | 35,2 32,96   |
|                      | 2/98 2/98   |        |          | 2/98  | 38,3 2/98    |
| 86/8                 | 86/38       | 4/94   |          | 35/98 | 3,6 35/98    |
| 7/98 22/98           | 8/98 32/98  | 86/8   |          | 32/98 | 0,0 32/98    |
| 4/98 30/98           | 4/98 32/98  | 7      |          | 32/98 | 17,2 32,98   |
| 86/22 86/2           | 80/52 80/8  | 80/8   | _        | 33/08 | 86/88 0.9    |

Note: ENP - extractable non-polar substances

### Annex 4-2

List of the Sampling Sites of Surface Water Quality Monitoring Programme in the Slovak Republic, year 1997

## LIST OF THE SAMPLING SITES OF SURFACE WATER QUALITY MONITORING PROGRAMME IN SLOVAK REPUBLIC - year 1997

| Map's  | NEC         | Rive: - Sampling site                  | River's   | Discharge                               |
|--------|-------------|----------------------------------------|-----------|-----------------------------------------|
| number |             | -                                      | km        | ·                                       |
|        | DUNAJ RIVER | BASIN                                  |           |                                         |
|        | DUNAJ       |                                        |           |                                         |
| D60    | D002011R    | DUNAJ - WOLFSTHAL                      | 1873,50   |                                         |
| D61    | D002012R    | DUNAJ - KARLOVA VES                    | 1873,00   | Qprden, Qok                             |
| D16    | D002010D    | DUNAJ - NAD BRATISLAVOU                | 1877,30   | Qprden, Qok                             |
| D63    | D002051D    | DUNAJ - BRATISLAVA                     | 1869,00 V | 'S Qprden, Qok                          |
| D65    | D011000D    | DUNAJ - RAJKA                          | 1848,00   |                                         |
| D66    | D007010D    | DUNAJ - HRUŠOV                         | 1842,00   |                                         |
| D21    | D013000D    | DUNAJ - GABČÍKOVO                      | 1819,60   |                                         |
| D67    | D017000D    | DUNAJ - MEDVEĎOV                       | 1806,00   | Qprden, Qok                             |
| D23    | D022210D    | K. VEĽKÝ MEDER-HOLIARE - POD V.MEDEROM | 2,00      | •••••                                   |
| D69    | D034051D    | DUNAJ - KOMÁRNO (stred)                | 1768,00 \ | /S Qprden, Qok                          |
| D27    | D059000D    | DUNAJ - RADVAŇ                         | 1748,00 \ | /S                                      |
| D28    | D084000D    | DUNAJ - ŠTÚROVO                        | 1718,80   | <b>7</b> 5                              |
|        | MORAVA      |                                        |           |                                         |
| DI     | M083000D    | MORAVA - BRODSKÉ                       | 79,00     | Qprden, Qok                             |
| D2     | M032020D    | MYJAVA - NAD MYJAVOU                   | 67,80     | Qprden, Qok                             |
| D3     | M032010D    | MYJAVA - POD MYJAVOU                   | 60,40     | Qprden                                  |
| D4     | M046020D    | BREZOVSKÝ POTOK - OSUSKÉ               | 1,70      | ••••••                                  |
| D5     | M046010D    | MYJAVA - JABLONICA                     | 38,50 V   | S - Qprden, Qok                         |
| D6     | M065000D    | TEPLICA - NAD SENICOU                  | 7,50      |                                         |
| D7     | M065010D    | TEPLICA - POD SENICOU                  | 0,80      | Qprden, Qok                             |
| D8     | M072010D    | MYJAVA - DOJČ                          | 23,90     | Qprden                                  |
| D9     | M082000D    | MYJAVA - KÚTY                          | 3,00      | Qprden                                  |
| D10    | M103000D    | MORAVA - MORAVSKÝ JÁN                  | 67,10     | Qprden, Qok                             |
| D11    | M095000D    | RUDAVA - MALĖ LEVARE                   | 4,10      | Qprden                                  |
| D12    | M118020D    | MORAVA - GAJARY                        | 44,50     | Qprden                                  |
| D44    | M111000D    | MALINA - JAKUBOV                       | 19,60     | Qprden                                  |
| D13    | M117010D    | MALINA - ZOHOR                         | 4,20      | Qprden                                  |
| D45    | M118030D    | ZOHORSKÝ KANÁL - GAJARY                | 23,90     |                                         |
| D14    | M128040D    | MLÁKA - POD DEVÍNSKOU NOVOU VSOU       | 0,50      |                                         |
| D15    | M128020D    | MORAVA - DEVÍNSKA NOVÁ VES             | 1,50      | Qprden                                  |
|        | MALÝ DUNA   | J                                      |           |                                         |
| D29    | W604010D    | MALÝ DUNAJ - BRATISLAVA                | 126,00    | Qprden, Qok                             |
| D30    | W604000D    | MALÝ DUNAJ - PODUNAJSKÉ BISKUPICE      | 123,40    | Qprden                                  |
| D31    | W610500D    | MALÝ DUNAJ - MALINOVO                  | 114,70    | VS                                      |
| D32    | W625500D    | MALÝ DUNAJ - NOVÁ DEDINKA              | 107,60    | VS Qprden, Qok                          |
| D33    | W613500D    | MALÝ DUNAJ - JELKA                     | 81,50     | VS                                      |
| 1)34   | W627510D    | ČIERNA VODA - SENEC                    | 31,90     | Qprden                                  |
| 1)50   | W671500D    | STOLIČNÝ POTOK - SLÁDKOVIČOVO          | 2,20      |                                         |
|        |             |                                        |           | ••••••••••••••••••••••••••••••••••••••• |

| Map's      | NEC                  | River - Sampling site                                     | River's | Discharge      |
|------------|----------------------|-----------------------------------------------------------|---------|----------------|
| number     |                      |                                                           | km      |                |
| D36        | W673000D             | ČIERNA VODA - ČIERNA VODA                                 | 4,80    |                |
| D37        | W679500D             | MALÝ DUNAJ - TRSTICE                                      | 22,80   | Qprden, Qok    |
| D38        | W680500D             | STARÝ KLATOVSKÝ KANÁL - HORNÁ POTÔŇ                       | 15,50   | Qprden         |
| D39        | W719020D             | KLÁTOVSKÉ RAMENO - TRHOVÁ HRADSKÁ                         | 6,50 V  | S Qprden, Qok  |
| D46        | W713000D             | K.GABČÍKOVO-TOPOĽNÍKY - KÚTNIKY                           | 10,40   |                |
| D47        | W723000D             | CHOTÁRNY KANÁL - JÁNOŠÍKOVO NA OSTROVE                    | 11,00   | Qprden         |
| D42        | W744510D             | MALÝ DUNAJ - KOLÁROVO                                     | 2,50    | Qprden         |
|            | VÁH RIVER B          | ASIN                                                      |         |                |
|            | VÁH                  |                                                           |         |                |
| 1/2        | V002510D             | ČIERNY VÁH - NAD VN ČIERNY VÁH                            | 11,40   | Qprden, Qok    |
| V4         | V001510D             | BŒLY VÁH - VAŽEC                                          | 15,00   |                |
| V5         | V002540D             | VÁH - NAD LIPTOVSKÝM HRÁDKOM                              | 364,60  | Oprden, Ook    |
| V6         | V007020D             | BELÁ - LIPTOVSKÝ HRÁDOK                                   | 0,40    | Qprden, Qok    |
| V8         | V045000D             | VÁH - LISKOVÁ                                             | 324,90  | Qprden, Qok BP |
| V10        | V052530D             | REVÚCA - RUŽOMBEROK                                       | 0,00    | Qprden, Qok BP |
| V11        | V055010D             | VÁH - HUBOVÁ                                              | 308,80  | Qprden, Qok BP |
| V16        | V071510D             | ORAVA - POD VN TVRDOŠÍN                                   | 57,50   | Qprden, Qok BP |
| V18        | V071520D             | ORAVICA - ÚSTIE (TVRDOŠÍN)                                | 0,30    | Qprden, Qok    |
| V21        | V095510D             | ORAVA - KRAĽOVANY                                         | 0,30    | Qprden, Qok    |
| 1/22       | V097000D             | VÁH - POD KRPEĽANMI                                       | 294,20  | ••••••••••     |
| V130       | V101500D             | TURIEC - DOLNÝ TURČEK                                     | 67,40   | Qprden, Qok BP |
| V26        | V140520D             | TURIEC - VRÚTKY                                           | 3,50    | Onedun Out     |
| 1/27       | V146500D             | VÁH - DUBNÁ SKALA                                         |         | Qprden, Qok    |
| 1.58       | V146520D             | VARÍNKA - VARÍN                                           | 270,30  | Qprden, Qok    |
| V29        | V150000D             | VÁH - NAD ŽILINOU                                         | 0,50    | Qprden, Qok    |
| V134       | V179510D             | VÁH - BUDATÍN                                             | 260,70  | Qprden, Qok    |
| V30        | V173310D<br>V153010D |                                                           | 252,70  |                |
| V32        | V155010D<br>V165530D | KYSUCA - MAKOV                                            | 58,50   | Qprden, Qok    |
| 1/34       | ••••••               | BYSTRICA - POD VN NOVÁ BYSTRICA  KYSUCA - POVAŽSKÝ CHLMEC | 19,70   |                |
| V35        | V180010D             |                                                           | 0,60    | Qprden, Qok    |
|            | V183010D             | RAJČANKA - NAD RAJCOM<br>RAJČANKA - ŽILINA                | 25,00   | VS Qprden, Qok |
| 1/37       | V196000D             | VÁH - VN HORNÝ HRIČOV -stred VN                           | 1,50    | VS Qprden, Qok |
| V135       | V202011D             |                                                           | 248,50  |                |
| V38<br>V39 | V201010D             | VÁH - POD VN HRIČOV                                       | 246,00  | Qprden, Qok    |
|            | V208000D             | VÁH - BYTČA                                               | 236,70  |                |
| V111       | V208010D             | HRIČOVSKÝ KANÁL - BYTČA                                   | 17,40   |                |
| V42        | V238010D             | VÁH - PÚCHOV                                              | 204,30  | Qprden, Qok BF |
| V43        | V267010D             | VÁH - POD DUBNICOU                                        | 177,80  |                |
| 145        | V277000D             | NOSICKÝ KANÁL - POD DUBNICOU                              | 10,90   |                |
| V46        | V290500D             | VAH - TRENČÍN                                             | 165,10  |                |
| V47        | V275000D             | VÁH - OPATOVCE                                            | 157,20  |                |
| V52        | V321000D             | VÁH - NOVÉ MESTO NAD VÁHOM                                | 142,50  |                |
| 1715       | V339010D             | VÁH - HLOHOVEC                                            | 100,70  | Qprden, Qok    |
| 1/62       | V355000Z             | HORNÝ DUDVÁH - VEĽKÉ KOSTOĽANY                            | 18,80   |                |
| 1.99       | V356500Z             | HORNÝ DUDVÁH - ŽLKOVCE                                    | 13,00   |                |

| Map's  | NEC        | River - Sampling site       | River's   | Discharge                        |
|--------|------------|-----------------------------|-----------|----------------------------------|
| number |            |                             | km        |                                  |
| 1.98   | V356510Z   | MANIVIER - ŽLKOVCE (EBO)    | 0,50      |                                  |
| 1.69   | V357000Z   | HORNÝ DUDVÁH - TRAKOVICE    | 11,00     |                                  |
| 1/7]   | V364000D   | HORNÝ DUDVÁH - SILADICE     | 1,70      |                                  |
| V57    | V367000D   | VÁH - NAD SEREĎOU           | 81,00     | Qprden, Qok                      |
| V60    | V380000D   | VÁH - SELICE                | 47,70     | Qprden, Qok                      |
| V79    | V656000D   | TRNÁVKA - MODRANKA          | 8,10      |                                  |
| 1/30   | V671510D   | DOLNÝ DUDVÁH - SLÁDKOVIČOVO | 11,30     |                                  |
| 161    | V744500Z   | VÁH - KOLÁROVO              | 24,40 VS  | •                                |
| 1736   | V787501D   | VÁH - KOMÁRNO               | 2,50      |                                  |
|        | NITRA      |                             |           |                                  |
| V82    | N388000D   | NITRA - NAD KĽAČNOM         | 165,00    | Qprden, Qok                      |
| V133   | N399500D   | NITRA - OPATOVCE NAD NITROU | 138,70    | Qprden                           |
| V85    | N400510D   | HANDLOVKA - POD HANDLOVOU   | 23,00     | Qprden                           |
| V86    | N410510D   | HANDLOVKA - KOŠ             | 1,20      | Qprden                           |
| V88    | N416000D   | NITRA - CHALMOVÁ            | 123,80    | Qprden, Qok Bl                   |
| 1/90   | N439010D   | NITRICA - PARTIZÁNSKE       | 0,20      | Qprden                           |
| 1/94   | N487500D   | BEBRAVA - KRUŠOVCE          | 3,40      | Qprden                           |
| 1/95   | N495020D   | NITRA - PRÁZNOVCE           | 98,00     | Qprden                           |
| 1/96   | N497000D   | NITRA - NITRIANSKA STREDA   | 91,10 VS  | Qprden, Qok                      |
| 197    | N538000D   | NITRA - LUŽIANKY            | 65,10     | Qprden                           |
| V98    | N544500D   | NITRA - ČECHYNCE            | 47,80     |                                  |
| V100   | N559000D   | ŽITAVA - TESÁRSKE MLYŇANY   | 39,30     | Qprden                           |
| V102   | N580000D   | ŽITAVA - LÚČNICA            | 18,40     | Qprden                           |
| V103   | N590000D   | ŽITAVA - DOLNÝ OHÁJ         | 2,10      | Qprden                           |
| V104   | N598520D   | MALÁ NITRA - POD ŠURANMI    | 0,80      |                                  |
| V106   | N599500D   | NITRA - NOVÉ ZÁMKY          | 14,50     | Qprden                           |
| V107   | N775500D   | NITRA - KOMOČA              | 6,50      | •••••••••••••••••••••••••••••••• |
|        | HRON RIVER | BASIN                       |           |                                  |
|        | HRON       |                             |           |                                  |
| H1     | R008000D   | HRON - VALKOVŇA             | 261,30    | Qprden                           |
| H2     | R014000D   | HRON - POLOMKA              | 243,40 VS | Qprden, Qok                      |
| Н3     | R025010D   | HRON - NAD BREZNOM          | 224,80    | Qprden                           |
| H4     | R028000D   | HRON - VALASKÁ              | 217,00    | Qprden                           |
| H5     | R036500D   | ČIERNY HRON - ÚSTIE         | 0,05      | Qprden                           |
| Н6     | R048000D   | HRON - NEMECKÁ              | 200,80    | Qprden                           |
| H7     | R064000D   | HRON - ŠALKOVÁ              | 181,40    | Qprden                           |
| Н8     | R095010D   | HRON - BANSKÁ BYSTRICA      | 175,80 VS | G Qprden                         |
| H9     | R095020D   | BYSTRICA - BANSKÁ BYSTRICA  | 2,10      | Qprden, Qok                      |
| H11    | R112000D   | HRON - SLIAČ                | 161,10    | Qprden                           |
| H12    | R113000D   | HRON - ZVOLEN MB ČOV        | 153,60    | Qprden                           |
| H15    | R143000D   | HUČAVA - HROCHOŤ            | 13,80 VS  | 6 Qprden, Qok                    |
| 1116   | R146010D   | ZOLNÁ - ÚSTIE               | 0,50 VS   | Qprden, Qok                      |
| 1160   | R113010D   | NERESNICA - ÚSTIE           | 0,05      | Qprden, Qok                      |
| H17    | R153500D   | SLATINA - ÚSTIE             | 0,30      | Qprden                           |
|        |            |                             |           |                                  |

| Map's  | NEC      | River - Sampling site                  | River's                                 | Discharge     |
|--------|----------|----------------------------------------|-----------------------------------------|---------------|
| number |          |                                        | km                                      |               |
| H18    | R156000D | HRON - BUDČA                           | 148,20                                  | Qprden BP     |
| H21    | R185000D | HRON - ŽIAR NAD HRONOM                 | 131,50 VS                               | Qprden, Qok   |
| H22    | R223010D | HRON - ŽARNOVICA                       | 112,00                                  | Qprden        |
| H23    | R234000D | HRON - TEKOVSKÁ BREZNICA               | 88,90                                   | Qprden BP     |
| H25    | R247000D | HRON - KALNÁ NAD HRONOM                | 63,70                                   | Qprden        |
| H26    | R296510D | SIKENICA - ÚSTIE                       | 2,70                                    |               |
| H27    | R340000D | HRON - KAMENÍN                         | 10,90 VS                                | Qprden, Qok   |
|        | IPEL     |                                        | ••••••••••••••••••••••••                |               |
| H69    | I004020D | IPEĽ - POD VN MÁLINEC                  | 179,50 VS                               | Qprden, Qok   |
| H29    | I021020D | IPEĽ - BREZNIČKA                       | 163,00 VS                               | Qprden        |
| H30    | I043000D | SUCHÁ - PRŠA                           | 3,10 VS                                 | Qprden, Qok   |
| H31    | I028000D | IPEĽ - HOLIŠA                          | 143,20                                  | Qprden, QokBf |
| H32    | I066010D | KRIVÁNSKY POTOK - NAD LUČENCOM         | 5,40 VS                                 | Qprden, Qok   |
| H33    | I066020D | KRIVÁNSKY POTOK - POD LUČENCOM         | 4,20                                    | Qprden        |
| H34    | I087000D | IPEĽ - RAPOVCE                         | 137,90                                  | Qprden BP     |
| H35    | I126000D | IPEĽ - MUĽA                            | 120,70                                  | Qprden BP     |
| H36    | I150000D | KRTÍŠ - NOVÁ VES                       | 11,60                                   |               |
| H37    | I161010D | IPEĽ - SLOVENSKÉ ĎARMOTY               | 89,50 VS                                | Qprden, Qok   |
| H39    | I228510D | KRUPINICA - NAD ŠAHAMI                 | 1,10                                    | Qprden        |
| H67    | I268000D | ŠTIAVNICA - ÚSTIE                      | 1,10 VS                                 | Qprden        |
| H74    | I279001D | PEĽ - KUBÁŇOVO                         | 38,3                                    | Qprden        |
|        | SLANÁ    |                                        | ••••••••••••••••••••••••••••••••••••••• | ••••••••••••  |
| H42    | S003000D | DOBŠINSKÝ POTOK - PRÍTOK DO VN DOBŠINÁ | 2,00                                    |               |
| H43    | S011000D | SLANÁ - NAD ROŽŇAVOU                   | 55,30                                   | Qprden        |
| H44    | S017010D | SLANÁ - POD ROŽŇAVOU                   | 49,20                                   | Qprden        |
| H45    | S048020D | ŠTÍTNIK - ÚSTIE                        | 1,30 VS                                 | Qprden, Qok   |
| H46    | S053000D | SLANÁ - ČOLTOVO                        | 28,30                                   | Qprden        |
| H47    | S070010D | MURÁŇ - POD JELŠAVOU                   | 21,30                                   | Qprden        |
| H48    | S055000D | MURÁŇ - BRETKA                         | 0,60 VS                                 | Qprden, Qok   |
| H49    | S131000D | SLANÁ - LENÁRTOVCE                     | <sub>3,60</sub> VS                      | Qprden, Qok   |
| H50    | S145000D | RIMAVA - POD HAČAVOU                   | 63,20                                   | Qprden        |
| H51    | S145010D | RIMAVA - HNÚŠŤA                        | 58,00 VS                                | Qprden, Qok   |
| H52    | S168010D | RIMAVA - ČERENČANY                     | 37,20                                   | Qprden        |
| H53    | S187000D | RIMAVA - RIMAVSKÉ JANOVCE              | 26,50                                   | Qprden        |
| H55    | S273000D | RIMAVA - VLKYŇA                        | 1,60 VS                                 | Qprden, Qok   |

| Map's       | NEC        | River - Sampling site                                  | River's                                | Discharge                  |
|-------------|------------|--------------------------------------------------------|----------------------------------------|----------------------------|
| number      |            |                                                        | km                                     |                            |
|             | BODROGU AN | D HORNÁD RIVER BASIN                                   |                                        |                            |
|             | BODROG     |                                                        |                                        |                            |
| B10         | B607000D   | LATORICA - LELES                                       | 21,30 VS                               | Qprden, Qok                |
| B11         | B027000D   | LABOREC - KRÁSNY BROD                                  | 108,30                                 | Qprden, Qok                |
| B12         | B068000D   | LABOREC - NAD CIROCHOU                                 | 69,90                                  | Qprden, Qok                |
| B13         | B074000D   | CIROCHA - PRÍTOK DO VN STARINA                         | 43,80                                  | Qprden, Qok                |
| B14         | B074010D   | STRUŽNICA - PRÍTOK DO VN STARINA                       | 0,50                                   | Qprden, Qok                |
| B15         | B074020D   | VN STARINA - PRIEHRADNÝ MÚR                            | 37,40                                  |                            |
| B16         | B074030D   | VN STARINA - ODTOK Z NÁDRŽE                            | 37,00                                  | Qprden, Qok                |
| B17         | B086000D   | CIROCHA - POD SNINOU                                   | 19,60                                  | Qprden, Qok                |
| B18         | B067000D   | CIROCHA - ÚSTIE                                        | 2,10                                   | Qprden, Qok                |
| B19         | B099000D   | LABOREC - BREKOV                                       | 59,90                                  | Qprden, Qok                |
| B20         | B107000D   | LABOREC - PETROVCE                                     | 45,10                                  | Qprden, Qok                |
| B26         | B117000D   | ŠÍRAVSKÝ KANÁL - ÚSTIE                                 | 4,50                                   | Qprden, Qok                |
| B27         | B117010D   | ŠÍRAVA - MEDVEDIA HORA                                 | ······································ |                            |
| B28         | B183000D   | ŠÍRAVA - LÚČKY                                         | ••••••                                 |                            |
| B21         | B208000D   | ZÁLUŽICKÝ KANÁL - POD ŠÍRAVOU                          | 2,50                                   | Qprden, Qok                |
| B22         | B127000D   | LABOREC - LASTOMÍR                                     | 31,00                                  | Qprden, Qok                |
| B23         | B215000D   | LABOREC - STRETÁVKA                                    | 19,00                                  | Qprden, Qok                |
| B24         | B154000D   | UH - PINKOVCE                                          | 18,50                                  | Qprden, Qok                |
| B25         | B203000D   | K.REVIŠTIA- BEŽOVCE - KRISTY                           | 11,20 VS                               | Qprden, Qok                |
| B29         | B213000D   | ČERNA VODA 4 - STRETAVA                                | 5,30                                   | Qprucii, Qok               |
| B30         | B215020D   | LABOREC - IŽKOVCE                                      | 10,30 VS                               | Qprden, Qok                |
| B102        | B257500D   | ONDAVA - NAD SVIDNÍKOM                                 | 121,50                                 | Qiruen, Qok                |
| B31         | B287010D   | LADOMÍRKA - NAD SVIDNÍKOM                              | 2,20                                   | Qprden, Qok                |
| B32         | B287030D   | ONDAVA - POD SVIDNÍKOM                                 | 113,90                                 | Qprden, Qok                |
| B33         | B330000D   | ONDAVA - PRÍTOK DO VN DOMAŠA                           | 91.40                                  |                            |
| B34         | B343000D   | VN DOMAŠA - PRIEHRADNÝ MÚR                             | 72,30                                  | Qprden, Qok                |
| B35         | B344010D   | ONDAVA - MALA DOMAŠA                                   | 67,30                                  | ••••••                     |
| B36         | B342000D   | OĽKA - ÚSTIE                                           | 1,20                                   | Oprden, Ook                |
| B38         | B394000D   | ONDAVA - KUČÍN                                         | 53,90 VS                               | Qprden, Qok                |
| B37         | B397000D   | ONDAVA - POŠA                                          | 45,40                                  | Qprden, Qok                |
| B39         | B400010D   | ONDAVA - NIŽNÝ HRUŠOV                                  | 42,00                                  | Qprden, Qok<br>Qprden, Qok |
| B40         | B410000D   | TOPĽA - GERLACHOV                                      | 118,60 ys                              | Qprden, Qok                |
| B41         | B443000D   | TOPĽA - KOMÁROV                                        | 95,20                                  | Qprden, Qok<br>Qprden, Qok |
| B103        | B467000D   | TOPĽA - MARHAŇ                                         | 71,70                                  |                            |
| B43         | B502000D   | TOPĽA - HANUŠOVCE                                      |                                        | Qprden, Qok                |
| B44         | B534000D   | TOPĽA - POD VRANOVOM                                   | 47,70                                  | Qprden, Qok Ba             |
| B104        |            | TOPĽA - BOŽČICE                                        | 15,30                                  | Qprden, Qok                |
| B104<br>B45 | B549000D   |                                                        | 3,20                                   | Qprden, Qok                |
| B98         | B569000D   | ONDAVA - HOROVCE                                       | 29,10                                  | Qprden, Qok 3º             |
| B47         | B575000D   | TRNAVKA I - VOJČICE<br>TRNAVKA I - ZEMPLÍNSKE HRADIŠTE | 18,00                                  |                            |
| B48         |            |                                                        | 7,50                                   | Qprden, Qok                |
| B49         | B595000D   | ONDAVA - BREHOV                                        | 4,20                                   | Qprden, Qok                |
| 1343        | B624000D   | SOMOTORSKÝ KANÁL - MALÝ HOREŠ                          | 14,00                                  |                            |

| Map's  | NEC          | River - Sampling site               | River's                                 | Discharge                  |
|--------|--------------|-------------------------------------|-----------------------------------------|----------------------------|
| number |              |                                     | km                                      |                            |
| B50    | B634000D     | SOMOTORSKÝ KANÁL - SOMOTOR          | 3,60                                    |                            |
| B51    | B615000D     | BODROG - STREDA NAD BODROGOM        | 6,00                                    | Qprden, Qok                |
| B52    | B663000D     | ROŇAVA - SLOVENSKÉ NOVÉ MESTO       | 2,20                                    |                            |
|        | BODVA        |                                     |                                         |                            |
| B88    | A001000D     | BODVA - NAD ODBER. OBJEK. VVaK      | 41,80                                   | Qprden, Qok                |
| B89    | A002000D     | BODVA - NAD MEDZEVOM                | 36,40                                   | Qprden, Qok                |
| B90    | A006000D     | BODVA - NAD MOLDAVOU N/BODVOU       | 19,20                                   | Qprden, Qok                |
| B91    | A011000D     | IDA - PRÍTOK DO VN BUKOVEC          | 41,30                                   | Qprden, Qok                |
| B92    | A012010D     | VN BUKOVEC - PRIEHRADNÝ MÚR         | 37,90                                   |                            |
| B93    | A012000D     | VN BUKOVEC - ODTOK Z NÁDRŽE         | 37,40                                   | Qprden, Qok                |
| B113   | A022000D     | IDA - BUZICA                        | 8,00                                    | Qprden, Qok                |
| B95    | A034000D     | IDA - ÚSTIE                         | 1,80 VS                                 | Qprden, Qok                |
| B96    | A053000D     | TURŇA - ÚSTIE                       | 2,20                                    | Qprden, Qok                |
| B97    | A053010D     | BODVA - HOSŤOVCE                    | 0,00                                    | Qprden, Qok B              |
|        | HORNÁD       |                                     |                                         |                            |
| B105   | H005000D     | HORNÁD - HRANOVNICA                 | 159,40 VS                               |                            |
| B54    | H006000D     | GÁNOVSKÝ POTOK - ÚSTIE              | 0,70 VS                                 | Qprden, Qok                |
| B56    | H025000D     | HORNÁD - SMIŽANY                    | 136,40                                  | Qprden, Qok                |
| B59    | H038000D     | HORNÁD - POD SPIŠ. NOVOU VSOU       | 124,60                                  | Qprden, Qok                |
| B60    | H038010D     | LEVOČSKÝ POTOK - ÚSTIE              | 0,10 VS                                 |                            |
| B61    | H038030D     | RUDNIANSKY POTOK 2 - ÚSTIE          | 0,40                                    |                            |
| B62    | H082000D     | HORNÁD - KOLINOVCE                  | 100,70                                  | Qprden, Qok                |
| B63    | H085000D     | SLOVINSKÝ POTOK - ÚSTIE             | 0,10                                    | Qprden, Qok                |
| B106   | H091000D     | HORNÁD - POD KLUKNAVOU              | 92,10                                   | Qprden, Qok                |
| B65    | H094000D     | HNILEC - PRÍTOK DO VN PALCM, MAŠA   | 75,40                                   | Qprden, Qok                |
| B66    | H096000D     | VN PALCMANSKÁ MAŠA - PRIEHRADNÝ MÚR | 71,35                                   | QPTGGII, QOK               |
| B67    | H096010Z     | VN PALCMANSKÁ MAŠA - ODTOK Z NÁDRŽE | ••••••••••••••                          | •••••                      |
| B107   | H102000D     | HNILEC - POD NÁLEPKOVOM             | 42,50                                   | Qprden, Qok                |
| B68    | H109000D     | SMOLNÍK 1 - ÚSTIE                   | 0,40                                    | Qprden, Qok<br>Qprden, Qok |
| B69    | H110000D     | HNILEC - POD MNÍŠKOM                | 22,20                                   | Qprden, Qok                |
| B70    | H112010D     | HNILEC - PRÍTOK DO VN RUŽÍN         | 4,10                                    | Qprden, Qok                |
| B71    | H120000D     | HORNÁD - MALÁ LODINA                | 64,80                                   | Qprden, Qok                |
| B108   | H156000D     | SVINKA - ROKYCANY                   | 17,20                                   | Qprden, Qok                |
| B72    | H163000D     | SVINKA - OBIŠOVCE                   | 2,00                                    | Qprden, Qok                |
| B73    | H165000D     | HORNÁD - TREBEJOV                   | 48,20                                   |                            |
| B74    | H171000D     | HORNÁD - ŤAHANOVCE                  | *************************************** | Qprden, Qok                |
| B75    | H178000D     | MYSLAVSKÝ POTOK - VTOK DO ŠTÔLNE    | 38,80                                   | Qprden, Qok                |
|        | •••••••••••• |                                     | 15,60                                   |                            |
| B76    | H372000D     | HORNÁD - KRÁSNA NAD HORNÁDOM        | 27,00                                   | Qprden, Qok                |
| B77    | H188020D     | TORYSA - POD NIŹNÝMI REPÁŠAMI       | 119,90                                  | Qprden, Qok                |
| B78    | H188030D     | OLŠAVICA - ÚSTIE                    | 0,02                                    | Qprden, Qok                |
| B79    | H189500D     | TORYSA - NAD ODBER, OBJEK, TICHÝ P. | 113,70                                  | Qprden, Qok                |
| B109   | H209000D     | TORYSA - POD LIPANMI                | 89,80                                   | Qprden, Qok                |
| B81    | H227000D     | TORYSA - ŠARIŠSKÉ MICHAĽANY         | 73,30                                   | Qprden, Qok                |
| B82    | H247000D     | SEKČOV - POD RASLAVICAMI            | 29,50                                   | Qprden, Qok                |

| Map's  | NEC River - Sampling site |                         | River's  | Discharge      |
|--------|---------------------------|-------------------------|----------|----------------|
| number |                           |                         | km       |                |
| B83    | H292010D                  | SEKČOV - ÚSTTE          | 0,20     | Qprden, Qok    |
| B114   | H298010D                  | TORYSA - KENDICE        | 49,90    | Qprden, Qok    |
| B85    | H328000D                  | TORYSA - KOŠICKÉ OLŠANY | 13,00    | Qprden, Qok BP |
| B110   | H361000D                  | OLŠAVA 2 - OLŠOVANY     | 18,00    | Qprden, Qok    |
| B86    | H370000D                  | OLŠAVA 2 - ÚSTIE        | 0,60     | Qprden, Qok    |
| B87    | H371000D                  | HORNÁD - ŽDAŇA          | 17,20 VS | Qprden, Qok    |

NOTE

Q prden mean daily discharge [m3.s-1]

Q ok instantaneous discharge [m<sup>3</sup>.s<sup>-1</sup>]

MO sampling site ٧S

gauging station balance calculation point BP

### Annex 4-3 Classification of Surface Water Quality, STN 75 7221

#### Water quality

#### CLASSIFICATION OF SURFACE WATER QUALITY STN 75 7221

#### Effective since July 1, 1990

This standard is a replacement for ČSN 83 0602 of June 23, 1965

This standard is valid for determination of the category of surface water quality - for classification, which serves to comparison of its quality on different places and in different time.

This standard does not apply to assessment and classification of transboundary water quality.

For surface water quality control the STN 75 7220 standard is valid.

#### **TERMINOLOGY**

- 1. Terminology used in this standards corresponds to STN 73 6510 and STN 74 0170 standards, and for these purposes is supplemented as follows:
- 2. **Water quality assessment** procedure at assessment of the results of water quality control transferring obtained data on water quality into certain numerical characteristic values and then these values into verbal expression of the state of water quality.
- 3. Water quality classification arrangement of water according to their quality into categories using system of limit values of water quality categories. It is a basic method of water quality control results assessment. The classification results represent a part of water quality evaluation from the environmental standpoint, and they can serve to route-identification determination of possibilities of water uses for various purposes. For water quality assessment from the standpoint of the possibilities of water use for certain purposes corresponding regulations or recommendations are valid,
- 4. *Characteristic value* the value of water quality indice, which characterizes and replaces at water quality assessment the whole set of measured values of water quality index.
- 5. Set of values all values of water quality indice obtained by control.
- 6. *Range of the set of value* number of elements (values of water quality index) in the set of the values.
- 7. *Control frequency* number of findings carried out, e.g. number of water samples taken within a certain period, in a year, as a rule.
- 8. **Representative set of values** set of values obtained by investigation (selective set), which describes best the basic set (set of all possible values in control profile). Basic set is infinitively large, and therefore it cannot be measured entirely.
- 9. *Random selection of values* selection of "n" elements from the basic set in the way, so that all possible combinations of "n" elements have the same probability to be selected.
- 10. *Limit values of water quality categories* the lowest and the highest value of water quality index in given category of water quality.
- 11. *Group of water quality indices* water quality indices with a certain common property (e.g. radioactivity indices).

#### **GENERAL**

12. Classification of water quality proceeds from the assessment of selected water quality indices, which are divided into 6 groups for the purpose of this standard, according to Table 1.

#### Table 1

| Group of indices                   | Group indication |
|------------------------------------|------------------|
| oxygen regime                      | A                |
| basic chemical and physical        | В                |
| complementary chemical             | С                |
| heavy metals                       | D                |
| biological and and microbiological | Е                |
| radioactivity                      | F                |

- 13. Water quality is classified separately for each individual indice of corresponding group of indices. Inside of each group resulting category of water quality will be determined according to the most unfavorable water quality index in the group.
- 14. Total classification of water quality must be based at least upon the classification of values of water quality indices in individual groups in accordance with Table 2 and upon the classification in groups A, B, and E (please, see point 12).

#### Table 2

| Group | Indices                                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| A     | dissolved oxygen, BOD <sub>5</sub> , COD <sub>Mn</sub> or COD <sub>Cr</sub>                                           |
| В     | pH, water temperature, dissolved solids or conductivity, suspended solids, ammonium N, nitrate N, total P             |
| С     | calcium, magnesium, chlorides, sulphates, anion active detergents, non-polar extractable substances, organic bound Cl |
| D     | mercury, cadmium, arsenic, lead                                                                                       |
| Е     | saprobic index, coliform bacteria or fecal coloform bacteria                                                          |
| F     | total volume alpha activity, total volume beta activity                                                               |

- 15. Water quality is classified on the basis of control results from a longer entire period. The shortest evaluated period is one year, the longest one is determined by changes in water management in the basin of check profile; as a rule a period not longer than 5 years is chosen
- 16. Surface water is classified into 5 categories according to water quality:

I category - very clean water

II category - clean water

III category - polluted water

IV category - heavily polluted water

V category - very heavily polluted water

- 17. Assessment of water quality and classification of water quality must be based on the representative set of values of water quality indices. Representativeness of the sets of water quality indice values is to be ensured best by random sampling (randomly chosen day of the year and randomly chosen hour of the day). Owing to stochastic character of water quality in the flow, randomness of selection (and hence also its representativeness) from the viewpoint of the day in the year can be appropriately ensured also by control with relatively constant interval (e.g. by water sampling schedule prepared in advance). In near check profiles downstream of large pollution sources, however, it is impossible to ensure randomness (and hence also representativeness) of the sampling in relatively constant daily hour from the viewpoint of the hour in the course of the day.
- 18. Examples of utilization of water in individual categories are given in Annex 2.

#### **CLASSIFICATION**

- 19. Inclusion of water quality according to each individual indice into the category of water quality is performed by comparison of calculated characteristic value of this index with its corresponding set of limit values. Limit values of water quality indices for individual categories of water quality are given in Table 3.
- 20. Characteristic value of water quality index will be calculated from all obtained control results. Values of water quality index are not to be recalculated to any reference rate of flow.
  - No value is excluded. As far as the value of water quality index was affected by an accident, and hence additional quality determination is to be performed out of the original control programme, the results of this additional determination are not included into the calculation of characteristic value od water quality index.
- 21. Characteristic value of water quality index is the value with probability of not exceeding 90 %. In case of dissolved oxygen it is value with probability exceeding 90 %.
- 22. Characteristic value is calculated from the set of at least 24 values.
- 23. If the usual check frequency is 12 samplings per year, for characteristic value calculation it is necessary to combine observations from 2 years together. Then the classification is related to this two-year period. At evaluation of water quality development either two-year periods or sliding two-year periods are then used; the way of calculation has always to be indicated.
- 24. Characteristic value with the probability of not exceeding (of exceeding) chosen in advance is calculated according to Annex 3.
- 25. If it is necessary to classify water quality for 1 year period at checking frequency of 12 samplings per year (exceptionally 11 samplings per year), characteristic value will be calculated as an average of 3 most unfavorable values od water quality index. The probability of non-exceeding of this value is usually between 85 % to 90 %, depending on the shape of values distribution.

#### **EXPRESSION OF RESULTS**

- 26. As a rule the results of classification are expressed in form of tables always containing (in addition to identification data, see point 27):
  - a. arithmetic mean of the rate of flow to the date of water sampling,
  - b. for each water quality index
    - arithmetic mean of values
    - characteristic value
    - category of water quality
  - c. resulting category for group of indices and the number of critical water quality index, which determines the resulting category of the group e.g. III,  $B_{10}$ .
- 27. The place of water quality determination must be defined exactly by its name, river km and hydrological order. At the same time it is recommended, in order to exclude mistakes at interpretation of the check results, to indicate also in the name of the check profile, if it is situated over or under the locality, by which it is named. At the same time the investigation point of water quality must be indicated, i.e. the exact place in the transverse profile (sampling from the left bank, right bank, from the middle of the flow etc.).
- 28. The results of the classification can be expressed also by the form of a map of water quality. At its construction, however, it is necessary to have more detailed information about the changes of values of water quality index in longitudinal direction (especially

on substances that are subjected to natural process in the flow) and about sudden changes of values of water quality index (places of waste water discharges, river tributaries etc.). As a rule the resulting classification in the group of oxygen regime indices is put on the maps. Usually following colors are chosen:

I category light blue
II category dark blue
III category green
IV category yellow
V category red

#### Table 4 Water quality categories and their limit values

#### A. Oxygen regime indices

|   | Parameter                | Crombal          | Unit | Category      |     |     |       |       |
|---|--------------------------|------------------|------|---------------|-----|-----|-------|-------|
|   | rarameter                | Symbol Unit      |      | I             | II  | III | IV    | V     |
| 1 | Dissolved oxygen         | $O_2$            | mg/l | >7            | >6  | >5  | >3    | <3    |
| 2 | Biochem. oxygen demand   | BOD <sub>5</sub> | mg/l | ⟨2            | √5  | <10 | <15   | >15   |
| 3 | Chem. oxygen demand(Mn)  | $COD_{Mn}$       | mg/l | <5            | <10 | <15 | <25   | >25   |
| 4 | Chem. oxygen demand (Cr) | $COD_{Cr}$       | mg/l | <15           | <25 | ₹35 | <55   | >55   |
| 5 | Organic carbon           | TOC              | mg/l | <b>&lt;</b> 5 | ∢8  | <11 | <17   | >17   |
| 6 | Sulfate and sulfides     | S <sup>2-</sup>  | mg/l | uld           | uld | uld | <0.02 | >0.02 |

uld - under the limit of determination

#### B. Chemical parameters - basic

|    | Parameter            | Cb1                            | Unit     | Category |        |       |       |        |
|----|----------------------|--------------------------------|----------|----------|--------|-------|-------|--------|
|    | Parameter            | Symbol                         | Unit     | I        | II     | III   | IV    | V      |
| 1  | Water reaction       | pН                             |          | 6-8,5    | 6-8,5  | 6-8,5 | 5,5-9 | <5,5-9 |
| 2  | Water temperature    | t                              | $^{0}$ C | <22      | <23    | <24   | <26   | >26    |
| 3  | Dissolved substances | DS                             | mg/l     | <300     | <500   | <800  | <1200 | >1200  |
| 4  | Conductivity         | ×                              | mS/m     | <40      | ₹70    | <110  | <160  | >160   |
| 5  | Suspended solids     | SS                             | mg/l     | <20      | ⟨40    | <60   | <100  | >100   |
| 6  | Total iron           | Fe                             | mg/l     | <0,05    | <1,0   | <2,0  | <3,0  | >3,0   |
| 7  | Total manganese      | Mn                             | mg/l     | <0,05    | <0,1   | <0,3  | <0,8  | >0,8   |
| 8  | Ammonium nitrogen    | N-NH <sub>4</sub> <sup>+</sup> | mg/l     | <0,3     | <0,5   | <1,5  | <5,0  | >5,0   |
| 9  | Nitrite nitrogen     | N-NO <sub>2</sub>              | mg/l     | <0,002   | <0,005 | <0,02 | <0,05 | >0,05  |
| 10 | Nitrate nitrogen     | N-NO <sub>3</sub>              | mg/l     | <1,0     | <3,4   | ⟨7,0  | <11,0 | >11    |
| 11 | Organic nitrogen     | N-org.                         | Mg/l     | <0,5     | <1,0   | <2,5  | <3,5  | >3,5   |
| 12 | Total phosphorus     | P                              | mg/l     | ;0,03    | <0,15  | <0,4  | <1,0  | >1,0   |

#### C. Chemical parameters - supplementary

|    | D                            | G                                | TT .*4 | Category      |       |       |       |       |
|----|------------------------------|----------------------------------|--------|---------------|-------|-------|-------|-------|
|    | Parameter                    | Symbol                           | Unit   | I             | II    | III   | IV    | V     |
| 1  | Chlorides                    | Cl <sup>-</sup>                  | mg/l   | <50           | <200  | <300  | <400  | >400  |
| 2  | Sulphates                    | SO <sub>4</sub> <sup>2-</sup>    | mg/l   | ⟨80           | <150  | <250  | <300  | >300  |
| 3  | Calcium                      | Ca                               | mg/l   | ₹75           | <150  | <200  | <300  | >300  |
| 4  | Magnesium                    | Mg                               | mg/l   | <25           | <50   | <100  | <200  | >200  |
| 5  | Absorbency (254 nm, 1cm)     | a <sub>1</sub> cm <sup>254</sup> |        | <0,15         | <0,25 | <0,35 | <0,55 | >0,55 |
| 6  | Fluorides                    | F                                | mg/l   | <0,2          | <0,5  | <1,0  | <1,5  | >1,5  |
| 7  | Volatile phenols             | Ph1                              | mg/l   | <0,002        | <0,01 | <0,02 | <0,5  | >0,5  |
| 8  | Anion active detergents      | PAL-A                            | mg/l   | uld           | <0,5  | <1,0  | ⟨2,0  | >2,0  |
| 9  | Non-polar extractable subs   | NES                              | mg/l   | uld           | <0,05 | <0,1  | <0,3  | >0,3  |
| 10 | Total cyanides               | CN <sup>-</sup>                  | mg/l   | uld           | uld   | <0,2  | <0,5  | >0,5  |
| 11 | Active chlorine              | Cl <sub>2</sub>                  | mg/l   | uld           | uld   | uld   | <0,05 | >0,05 |
| 12 | Extractable organic chlorine | EOC1                             | μg/l   | <b>&lt;</b> 5 | <10   | <20   | <30   | >30   |

#### D. Heavy metals

|    | D              | Cb-al            | Unit | Category |            |      |      |      |
|----|----------------|------------------|------|----------|------------|------|------|------|
|    | Parameter      | Symbol           | Unit | I        | II         | III  | IV   | V    |
| 1  | Mercury        | Hg               | μg/l | <0,1     | <0,2       | <0,5 | <1,0 | >1,0 |
| 2  | Cadmium        | Cd               | μg/l | <i>3</i> | < <b>5</b> | <10  | <20  | >20  |
| 3  | Lead           | Pb               | μg/l | <10      | <20        | <50  | <100 | >100 |
| 4  | Arsenic        | As               | μg/l | <10      | <20        | <50  | <100 | >100 |
| 5  | Copper         | Cu               | μg/l | ⟨20      | <50        | <100 | <200 | >200 |
| 6  | Total chromium | Cr               | μg/l | <20      | <100       | <200 | <500 | >500 |
| 7  | Chromium (VI)  | Cr <sup>VI</sup> | μg/l | udl      | <10        | <20  | <50  | >50  |
| 8  | Cobalt         | Co               | μg/l | <10      | <20        | <50  | <100 | >100 |
| 9  | Nickel         | Ni               | μg/l | <20      | <50        | <100 | <200 | >200 |
| 10 | Zinc           | Zn               | μg/l | <20      | <50        | <100 | <500 | >500 |
| 11 | Vanadium       | V                | μg/l | <10      | <20        | <50  | <100 | >100 |
| 12 | Silver         | Ag               | μg/l | udl      | 10         | 20   | 50   | 50   |

#### E. Biological and microbiological parameters

|   | Parameter                   | Timit # | Unit # Category |       |       |        |        |
|---|-----------------------------|---------|-----------------|-------|-------|--------|--------|
|   | rarameter                   | UIII #  | I               | II    | III   | IV     | V      |
| 1 | Saprobic index of bioseston |         | <1,2            | <2,2  | <3,2  | <3,7   | >3,7   |
|   | (acc. to Pantle and Buck)   |         |                 |       |       |        |        |
| 2 | Psychrofile bacteria        | CFU/1ml | <500            | <1000 | <5000 | <10000 | >10000 |
| 3 | Coliform bacteria           | CFU/1ml | <1              | <10   | <100  | <1000  | >1000  |
| 4 | Fecal coliform bacteria     | CFU/1ml | <0,2            | <2    | <20   | <200   | >200   |
| 5 | Enterococcuses              | CFU/1ml | <0,1            | ∢1    | <10   | <100   | >100   |

<sup>#</sup>Bacteria number determination is performed by cultivation on solid soils, the number of grown colonies is evaluated. Colony can arise from one independent cell of from clusters (microcolonies) and therefore results are given as the numbers of colony forming units (number of colonies) in 1 ml of sample. CFU is the colony-forming unit.

#### F. Radioactivity parameters

|   | Parameter                   | Symbol Unit |       | Category   |      |       |       |       |
|---|-----------------------------|-------------|-------|------------|------|-------|-------|-------|
|   | rarameter                   | Symbol      | Omt   | I          | II   | Ш     | IV    | V     |
| 1 | Total volume activity alpha | $a_{v,c}$   | mBq/l | <50        | <100 | <500  | <2500 | >2500 |
| 2 | Total volume activity beta  | $a_{v,c}$   | mBq/l | <200       | <500 | <1000 | <2500 | >2500 |
| 3 | Radium 226                  | Ra 226      | mBq/l | <20        | <50  | <120  | <500  | >500  |
| 4 | Uranium                     | U           | μg/l  | <b>4</b> 5 | <20  | <50   | <100  | >100  |
| 5 | Tritium                     | H3 (T)      | Bq/l  | <10        | <100 | <1000 | <5000 | >5000 |

#### **APPENDIX 2**

#### EXAMPLES OF UTILIZATION OF INDIVIDUAL WATER CATEGORIES

I category water can be used for the all purposes, especially for drinking

water supply, food industry, bathing, salmon fish farming

water has a great landscape forming value

II category water is usually suitable for most types of utilization, mainly for:

drinking water supply, water sports, fisheries, industry water supply

water has landscape forming value

III category water is usually suitable only for industry, for drinking water

supply only with the use of extensive treatment technologies (only in the case, that it is not available source of better quality)

water has small landscape forming value

IV category the usage of water is limits

V category water is usually unsuitable for any

#### CHARACTERISTIC VALUE CALCULATION

Characteristic value of selective set is the value of water quality index with pre-chosen probability of not-exceeding (probability of exceeding in case of dissolved oxygen) found from selective distribution line.

#### Principle of calculation

The value with pre-chosen probability of not-exceeding (probability of exceeding in case of dissolved oxygen) will be found from selective distribution line represented by broken line connecting empirical probabilities of individual values of selective set. The principle of such way of distribution line estimate is based on arrangement of measured values into ascending series (descending series in case of dissolved oxygen) and assesment of empirical probabilities of not-exceeding (probabilities of exceeding in case of dissolved oxygen) to individual values of series. Empirical probability of not-exceeding (probability of exceeding in case of dissolved oxygen) will be calculated from formula (1)

$$\bar{F}_{\text{m}} = (m - O, 3)/(n + O, 4)$$
 (1)

where  $f_{\mathsf{m}}$  is empirical probability of  $\mathsf{m}$  value in series;

- m is serial number in ascending series (descending series in case of dissolved oxygen)
- n is number of elements in the series.

Fairs of values and of probabilities can be plotted into the distribution diagram and its individual points can be connected by nonlinear line.

In case of very extensive sets (several hundreds of values) an alternative procedure can be applied based on the calculation of cumulative relative frequency.

#### Calculation of value with pre-chosen probability

With respect to the frequency (n) and choise of characteristic probability the values with prechosen probability  $P\ \%\ (c_P)$  will be calculated by following simple procedure:

#### 1) Value k will be calculated

$$k = \langle \frac{100 - P}{100}, (n \neq 0, 4) \neq 0, 3 \rangle$$
 (2)

where () means the value rounded-off to a higher integer.

Example: If P=90% is chosen, then equation (2) will be transferred to equation (3)

if n = 24, then k is calculated from the equation (3)

- 2) From the set the k highest values (k lowest values in case of dissolved oxygen) will be chosen and these k values will be arranged into descending series (ascending series in case of dissolved oxygen).
- 3) The value with prechosen probablity of non-exceeding (probability of exceeding in case of dissolved oxygen) P % (Cp) will be calculated from equations (4) and (5)

$$Cp = (dp _{i} C_{K-1}) + (i - dp) \cdot C_{K}$$
 (4)

$$d_{P} = k - \frac{100 - F}{100} \cdot (n + 0, 4) + 0, 3 \tag{5}$$

where cp is the value with pre-chosen probability;

 $c_{K}$  is the k value in ascending series of k values (descending series in case of dissolved oxygen)

 $c_{k-1}$  is the (k-1)-th value in ascending series of k values (descending series in case of dissolved oxygen)

do is auxilliary variable

E  $\times$  a m p l e : If P = 90% is chosen, then equation (5) will be transferred to equation

$$d_{90} = k - 0, 1 \cdot n - 0, 34 \tag{6}$$

if n = 1, then  $d_{90}$  will be calculated from equation (6)

$$d_{90} = 3 - 2,74 = 0,26$$

Examples:

1

1) From 24 values of BODs the  $c_{90}$  value has to be calculated. First k=3 is calculated, 3 highest values will be determined and arranged into descending series:  $c_1=16$ ,  $c_2=14$ ,  $c_3=13$ . By substitution into equations (4) and (6) resulting equation (7) for the  $c_{90}$  value calculation will be determined

$$C_{90} = (0, 26 \cdot C_2) + (0, 74 \cdot C_3)$$
 (7)

and after substitution

$$c_{90} = (0, 26.14) + (0, 74.13) = 3,64 + 9,62 = 13,26$$

2) From 24 values of dissolved oxygen the  $c_{90}$  value has to be calculated. First k=3 is calculated, then 3 lowest values will be determined and arranged into ascending series:  $c_1=2$ ,  $c_2=4$ ,  $c_3=5$ . By substitution into equation (7) we obtain

$$c_{90} = (0,26.4) + (0,74.5) = 1,04 + 3,70 = 4,74$$

#### Annex 4-4

## Total Volumes of Dredged Material from Danube River in the Period 1962-94

Annex 4-4 Total Volumes of Dredged Material from Danube River in the Period of 1962-1994 Industrial and Channel Ford Dredging

| rkm  | V [1000. m3] |
|------|--------------|
| 1880 | 0            |
| 1879 | 0            |
| 1878 | 0            |
| 1877 | 76           |
| 1876 | 0            |
| 1875 | 0            |
|      | 0            |
| 1874 |              |
| 1873 | 0            |
| 1872 | 0            |
| 1871 | 264          |
| 1870 | 191          |
| 1869 | 251          |
| 1868 | 155          |
| 1867 | 831          |
| 1866 | 12           |
| 1865 | 73           |
| 1864 | 1010         |
| 1863 | 2251         |
| 1862 | 2540         |
| 1861 | 1004         |
| 1860 | 478          |
| 1859 | 501          |
| 1858 | 20           |
| 1857 |              |
|      | 0            |
| 1856 | 0            |
| 1855 | 0            |
| 1854 | 412          |
| 1853 | 203          |
| 1852 | 53           |
| 1851 | 109          |
| 1850 | 167          |
| 1849 | 90           |
| 1848 | 126          |
| 1847 | 0            |
| 1846 | 0            |
| 1845 | 12           |
| 1844 | 81           |
| 1843 | 70           |
| 1842 | 866          |
| 1841 | 0            |
| 1840 | 222          |
| 1839 | 75           |
| 1838 | 7.5          |
| 1837 | 265          |
|      |              |
| 1836 | 94           |
| 1835 | 7            |
| 1834 | 0            |
| 1833 | 0            |

| rkm  | V [1000. m3] |
|------|--------------|
| 1832 | 65           |
| 1831 | 0            |
| 1830 | 0            |
| 1829 | 419          |
| 1828 | 0            |
| 1827 | 311          |
| 1826 | 374          |
| 1825 | 56           |
| 1824 | 547          |
| 1823 | 507          |
| 1822 | 61           |
| 1821 | 566          |
| 1820 | 54           |
| 1819 | 0            |
| 1818 | 415          |
| 1817 | 0            |
| 1816 | 0            |
| 1815 | 140          |
| 1814 | 256          |
| 1813 | 167          |
| 1812 | 19           |
| 1811 | 85           |
| 1810 | 412          |
| 1809 | 1037         |
| 1808 | 154          |
| 1807 | 697          |
| 1806 | 517          |
| 1805 | 1214         |
| 1804 | 341          |
| 1803 | 935          |
| 1802 | 37           |
| 1801 | 479          |
| 1800 | 370          |
| 1799 | 376          |
| 1798 | 375          |
| 1797 | 1002         |
| 1796 | 776          |
| 1795 | 1144         |
| 1794 | 280          |
| 1793 | 317          |
| 1792 | 761          |
| 1791 | 686          |
| 1790 | 1359         |
| 1789 | 1019         |
| 1788 | 711          |
| 1787 | 488          |
| 1786 | 1630         |
| 1785 | 1866         |

|      | \            |
|------|--------------|
| rkm  | V [1000. m3] |
| 1784 | 536          |
| 1783 | 1043         |
| 1782 | 998          |
| 1781 | 952          |
| 1780 | 888          |
| 1779 | 681          |
| 1778 | 1452         |
| 1777 | 1234         |
| 1776 | 1040         |
| 1775 | 772          |
| 1774 | 824          |
| 1773 | 549          |
| 1772 | 594          |
| 1771 | 790          |
| 1770 | 363          |
| 1769 | 255          |
| 1768 | 62           |
| 1767 | 251          |
| 1766 | 322          |
| 1765 | 471          |
| 1764 | 519          |
| 1763 | 312          |
| 1762 | 255          |
| 1761 | 772          |
| 1760 | 671          |
| 1759 | 129          |
| 1758 | 360          |
| 1757 | 1387         |
| 1756 | 1240         |
| 1755 | 104          |
| 1754 | 887          |
| 1753 | 518          |
| 1752 | 561          |
| 1751 | 677          |
| 1750 | 774          |
| 1749 | 902          |
| 1748 | 266          |
| 1747 | 80           |
| 1746 | 676          |
| 1745 | 931          |
| 1744 | 1406         |
| 1743 | 295          |
| 1743 | 435          |
| 1741 | 1085         |
| 1740 | 337          |
| 1739 | 252          |
| 1738 | 174          |
| 1738 | 260          |
| 1131 | ∠00          |

| rkm  | V [1000. m3] |
|------|--------------|
| 1736 | 120          |
| 1735 | 0            |
| 1734 | 67           |
| 1733 | 387          |
| 1732 | 410          |
| 1731 | 206          |
| 1730 | 139          |
| 1729 | 0            |
| 1728 | 311          |
| 1727 | 451          |
| 1726 | 869          |
| 1725 | 790          |
| 1724 | 1492         |
| 1723 | 524          |
| 1722 | 612          |
| 1721 | 1115         |
| 1720 | 228          |
| 1719 | 386          |
| 1718 | 178          |
| 1717 | 734          |
| 1716 | 666          |
| 1715 | 378          |
| 1714 | 781          |
| 1713 | 1545         |
| 1712 | 1964         |
| 1711 | 2159         |
| 1710 | 275          |
| 1709 | 176          |
| 1708 | 1348         |
|      |              |

# **Annex 4-5 Gauging Stations in Danube River Basin**

Annex 4-5 GAUGIN STATIONS - Danube River Basin ZOZNAM VODOMERNÝCH STANIC - POVODIE DUNAJA

| POR. | ZOZNAM VODOMERNYCH STANI |                     |                  | HYDROLOGICKE     |                       | NADM.V.          |                     |                |            |               |              |
|------|--------------------------|---------------------|------------------|------------------|-----------------------|------------------|---------------------|----------------|------------|---------------|--------------|
| Ċis. | Ċis.                     | STANICA<br>station  | TOK<br>river     | CISLO            | RIECNY<br>KM<br>r. km | POVODIA<br>[km2] | "0" VDC<br>[m n.m.] | H<br>wat.stage | Q<br>disch | T<br>wat.tem. | P<br>sed.dis |
| 1.   | 5127                     | BRATISLAVA, DEVÍN   | DUNAJ            | 1-4-20-01-001-01 | 1879,78               | 131244,00        | 132,87              | 1926           | 1990       | 1993          |              |
| 2.   | 5130                     | SPARISKÁ            | VYDRICA          | 1-4-20-01-004-01 | 11,50                 | 7,25             | 321,06              | 1926*          | 1931*      |               | İ            |
| 3.   | 5135                     | ČERVENÝ MOST        | VYDRICA          | 1-4-20-01-005-01 | 3,30                  | 22,60            | 173,17              | 1928*          | 1965       |               |              |
| 4.   | 5140                     | BRATISLAVA          | DUNAJ            | 1-4-20-01-006-01 | 1868,75               | 131329,10        | 128,43              | 1876           | 1901       | 1925          | 1992         |
| 5.   | 5141                     | RUSOVCE             | DUNAJ            | 1-4-20-01-008-01 | 1855,90               | 131354,75        | 123,90              | 1948*          |            | 1974*         |              |
| 6.   | 5144                     | PALKOVIČOVO         | DUNAJ            | 1-4-20-01-011-01 | 1810,00               | 132152,00        | 109,10              | 1882           |            |               |              |
| 7.   | 5145                     | MEDVEĎOV, MOST      | DUNAJ            | 1-4-20-01-011-01 | 1806,30               | 132168,00        | 108,42              | 1925*          | 1979       | 1971          | 1992         |
| 8.   | 5150                     | MALÉ PÁLENISKO      | MALÝ DUNAJ       | 1-4-21-15-001-01 | 125,80                | 0,10             | 126,72              | 1965           | 1968       |               |              |
| 9.   | 5155                     | VLČIE HRDLO         | MALÝ DUNAJ       | 1-4-21-15-001-02 | 125,00                | 0,10             | 126,10              | 1974           |            | 1974          |              |
| 10.  | 5160                     | PEZINOK             | BLATINA          | 1-4-21-15-002-01 | 11,30                 | 19,09            | 238,56              | 1954           | 1961       |               |              |
| 11.  | 5170                     | SVÄTÝ JUR           | ŠURSKÝ KANÁL     | 1-4-21-15-009-01 | 10,90                 | 106,10           | 131,01              | 1947           | 1968       | 1971          |              |
| 12.  | 5180                     | VAJNORY             | RAČIANSKY P.     | 1-4-21-15-010-01 | 1,60                  | 19,54            | 130,70              | 1960           | 1968       |               |              |
| 13.  | 5190                     | NOVÁ DEDINKA        | MALÝ DUNAJ       | 1-4-21-15-012-03 | 107,50                | 51,67            | 122,64              | 1974           | 1974       | 1974          |              |
| 14.  | 5195                     | JAHODNÁ             | MALÝ DUNAJ       | 1-4-21-17-001-02 | 42,30                 | 0,10             | 110,92              | 1975           |            |               |              |
| 15.  | 5200                     | BERNOLÁKOVO         | ČIERNA VODA      | 1-4-21-15-013-01 | 43,30                 | 72,18            | 125,27              | 1949           | 1961       |               |              |
| 16.  | 5210                     | MODRA               | STOLIČNÝ P.      | 1-4-21-15-016-01 | 34,90                 | 9,88             | 0,00                | 1956           | 1963       |               |              |
| 17.  | 5215                     | JELKA               | MALÝ DUNAJ       | 1-4-21-15-012-01 | 81,40                 | 251,82           | 117,71              | 1963           |            |               |              |
| 18.  | 5220                     | BUKOVÁ              | TRNÁVKA          | 1-4-21-16-013-01 | 34,20                 | 21,88            | -                   | 1956           | 1969       |               |              |
| 19.  | 5230                     | BOHDANOVCE n/TRNÁV. | TRNÁVKA          | 1-4-21-16-021-01 | 20,30                 | 115,02           | 158,19              | 1949           | 1961       |               |              |
| 20.  | 5250                     | HORNÉ OREŠANY       | PARNÁ            | 1-4-21-16-026-01 | 26,80                 | 37,86            | 234,72              | 1957           | 1961       |               |              |
| 21.  | 5260                     | PÍLA                | GIDRA            | 1-4-21-16-038-01 | 33,30                 | 32,95            | 270,10              | 1956           | 1961       | 1971          |              |
| 22.  | 5270                     | ČIERNY BROD         | DUDVÁH           | 1-4-21-16-044-01 | 2,70                  | 750,49           | 115,05              | 1950           | 1968       |               |              |
| 23.  | 5280                     | TRSTICE             | MALÝ DUNAJ       | 1-4-21-17-001-01 | 22,60                 | 1596,81          | 107,88              | 1963           | 1970       | 1979          |              |
| 24.  | 6810                     | KLIŽSKÁ NEMÁ        | DUNAJ            | 1-4-20-01-014-01 | 1792,40               | 150260,00        | 104,65              | 1930           |            |               |              |
| 25.  | 6849                     | KOMÁRNO-MOST        | DUNAJ            | 1-4-20-01-016-03 | 1767,80               | 151961,60        | 103,40              | 1917           | 1931       | 1946          | 1992         |
| 26.  | 6860                     | IŽA                 | DUNAJ            | 1-4-20-02-001-01 | 1763,96               | 171624,60        | 103,58              | 1930           | 1985       | 1987          |              |
| 27.  | 6870                     | RADVAŇ n/ DUNAJOM   | DUNAJ            | 1-4-20-02-006-01 | 1748,25               | 172435,10        | 102,92              | 1948           |            |               |              |
| 28.  | 6880                     | ŠTÚROVO             | DUNAJ            | 1-4-20-02-016-01 | 1718,60               | 172435,10        | 100,96              | 1933           |            | 1974          |              |
| 29.  | 9912                     | BAKA                | KANÁL CVII       | 1-4-21-17-005-01 | 1,60                  | 10,00            | 112,18              | 1975           | 1975       | 1975          |              |
| 30.  | 9914                     | GABČÍKOVO           | KANÁL SVII       | 1-4-21-17-005-02 | 25,70                 | 15,00            | 111,98              | 1975           | 1975       | 1975          |              |
| 31.  | 9916                     | JUROVÁ              | KANÁL BVII       | 1-4-21-17-005-03 | 3,80                  | 10,00            | 113,10              | 1975           | 1975       | 1975          |              |
| 32.  | 9921                     | VRAKÚŇ              | KANÁL AVII       | 1-4-21-17-005-07 | 1,35                  | 10,00            | 111,64              | 1975           | 1975       | 1975          |              |
| 33.  | 9924                     | TOPOĽNÍKY           | KANÁL S VII      | 1-4-21-17-005-09 | 0,50                  | 20,00            | 108,81              | 1975           | 1975       | 1975          |              |
| 34.  | 9926                     | BLÁHOVÁ             | SEV. ŠARRÉT      | 1-4-21-17-003-01 | 14,40                 | 5,00             | 115,02              | 1975           | 1975       | 1975          |              |
| 35.  | 9928                     | MALÉ DVORNÍKY       | SEV. ŠARRÉT      | 1-4-21-17-003-02 | 3,20                  | 5,00             | 110,83              | 1975           | 1975       | 1975          |              |
| 36.  | 9930                     | BENKOVA POTOŇ       | JUŽ. ŠARRÉT      | 1-4-21-17-003-03 | 15,60                 | 5,00             | 115,12              | 1975           | 1975       | 1975          |              |
| 37.  | 9932                     | MALÉ DVORNÍKY       | JUŽ. ŠARRÉT      | 1-4-21-17-003-04 | 2,80                  | 5,00             | 110,84              | 1975           | 1975       | 1975          |              |
| 38.  | 9934                     | TRHOVÉ MÝTO         | KLAT.RAM.M.DUN.  | 1-4-21-17-004-01 | 6,50                  | 25,00            | 109,64              | 1976           | 1976       | 1976          |              |
| 39.  | 9938                     | GABČÍKOVO           | KANÁL L          | 1-4-21-12-085-02 | 8,00                  | 10,00            | 111,13              | 1975           | 1975       | 1975          |              |
| 40.  | 9944                     | JÁNOŠÍKOVO          | KANÁL SVI        | 1-4-21-17-010-05 | 10,00                 | 12,00            | 107,80              |                | 1975       | 1975          | ĺ            |
| 41.  |                          | NOVÁ DEDINKA        | SP.K.ČIERNA VODA | 1-4-21-17-014-01 | 0,05                  | 5,00             | 124,59              |                | 1976       | 1976          |              |

\* - obdobie pozorovania prerušené - observation interrupted

NOTE: H Waterstage

Q Discharge

T Water Temperature
P Sediment Discharge

Annex 4-5 GAUGIN STATIONS - Morava River Basin
ZOZNAM VODOMERNÝCH STANÍC - POVODIE MORAVY

| POR. | DB   | STANICA            | TOK             | HYDROLOGICKE     | RIECNY | PLOCHA   | NADM.V.  |           |        |         |         |
|------|------|--------------------|-----------------|------------------|--------|----------|----------|-----------|--------|---------|---------|
| Ċis. | Ċis. |                    |                 | ĊİSLO            | KM     | POVODIA  | "0" VDČ  | н         | Q      | Т       | Р       |
|      |      | station            | river           |                  | r. km  | [km²]    | [m n.m.] | wat.stage | disch. | wat.tem | sed.dis |
| 1.   | 5010 | LOPAŠOV            | CHVOJNICA       | 1-4-13-02-079-01 | 20,90  | 31,13    | 272,70   | 1969      | 1969   |         |         |
| 2.   | 5011 | MORAVA             | KOPČANY         | 1-4-13-02-092-01 | 96,80  | 9629,32  | -        | 1996      | 1996   |         |         |
| 3.   | 5020 | MYJAVA             | MYJAVA          | 1-4-13-03-003-01 | 67,40  | 32,02    | 324,34   | 1973      | 1974   |         |         |
| 4.   | 5021 | BREZOVÁ p/BRADLOM  | BREZOVSKÝ P.    | 1-4-13-03-018-01 | 11,50  | 35,86    | 259,37   | 1988      | 1988   | 1988    |         |
| 5.   | 5022 | JABLONICA          | MYJAVA          | 1-4-13-03-025-01 | 38,40  | 238,45   | 203,57   | 1980      | 1980   | 1980    |         |
| 6.   | 5025 | SOBOTIŠTE          | TEPLICA         | 1-4-13-03-039-01 | 12,00  | 85,58    | 236,29   | 1973      | 1974   |         |         |
| 7.   | 5027 | KUNOV              | TEPLICA         | 1-4-13-03-040-01 | 8,50   | 94,53    | 215,37   | 1992      | 1992   | 1992    |         |
| 8.   | 5028 | SENICA             | TEPLICA         | 1-4-13-03-046-01 | 1,00   | 152,01   | 188,50   | 1992      | 1992   | 1992    |         |
| 9.   | 5030 | ŠAŠTÍN - STRÁŽE    | MYJAVA          | 1-4-13-03-073-01 | 15,18  | 644,89   | 164,25   | 1968      | 1969   | 1969    |         |
| 10.  | 5040 | MORAVSKÝ JÁN       | MORAVA          | 1-4-17-02-001-01 | 67,15  | 24129,30 | 146,24   | 1889      | 1922   | 1962    |         |
| 11.  | 5055 | PLAVECKÉ PODHRADIE | KRÁĽOV P.       | 1-4-17-02-017-01 | 2,80   | 6,20     | 211,80   | 1971      | 1971   |         |         |
| 12.  | 5060 | SOLOŠNICA          | SOLOŠNICKÝ P.   | 1-4-17-02-027-01 | 5,82   | 10,38    | 245,35   | 1971      | 1971   | 1990    |         |
| 13.  | 5065 | ROHOŽNÍK           | RUDAVKA         | 1-4-17-02-022-01 | 6,80   | 27,36    | 192,53   | 1971      | 1971   | 1990    |         |
| 14.  | 5070 | STUDIENKA          | RUDAVA          | 1-4-17-02-033-01 | 17,00  | 280,32   | 170,78   | 1971      | 1971   | 1990    |         |
| 15.  | 5072 | VEĽKÉ LEVÁRE       | RUDAVA          | 1-4-17-02-033-02 | 7,20   | 300,30   | 152,36   | 1943      | 1962   | 1990    |         |
| 16.  | 5074 | VEĽKÉ LEVÁRE       | RUDAVA, NÁHON   | 1-4-17-02-033-03 | 2,30   | 0,10     | 155,55   | 1943      | 1962   |         |         |
| 17.  | 5085 | ZÁHORSKÁ VES       | MORAVA          | 1-4-17-02-044-01 | 32,52  | 25521,30 | 139,89   | 1889      | 1977   | 1948*   | 1992    |
| 18.  | 5087 | VYSOKÁ PRIMORAVE   | MORAVA          | 1-4-17-02-055-01 | 20,75  | 25569,10 | 138,71   | 1942      |        |         |         |
| 19.  | 5090 | KUCHYŇA            | MALINA          | 1-4-17-02-070-01 | 42,05  | 7,94     | 288,74   | 1973      | 1974   | 1990    |         |
| 20.  | 5095 | JAKUBOV            | MALINA          | 1-4-17-02-083-01 | 21,95  | 171,46   | 144,71   | 1942      | 1964   | 1990    |         |
| 21.  | 5100 | LÁB                | MOČIARKA        | 1-4-17-02-086-01 | 1,35   | 47,10    | 144,33   | 1943      | 1961   | 1990    |         |
| 22.  | 5105 | LÁB                | OLIVA           | 1-4-17-02-087-01 | 1,88   | 19,50    | 144,02   | 1943      | 1963   | 1990    |         |
| 23.  | 5110 | ZOHOR              | ONDRIAŠOVSKÝ P. | 1-4-17-02-090-01 | 0,80   | 40,16    | 145,03   | 1943      | 1964   | 1990    |         |
| 24.  | 5120 | BORINKA            | STUPAVKA        | 1-4-17-02-097-01 | 9,70   | 35,50    | 216,71   | 1974      | 1974   | 1974    |         |
| 25.  | 5125 | DEVÍNSKA NOVÁ VES  | MORAVA          | 1-4-17-02-101-01 | 8,28   | 26339,30 | 134,65   | 1895      |        |         |         |

25. | 5125 | DEVINSKA NOVA VES | MORAVA
\* - obdoble pozorovania prerušenė - observation interrupted
NOTE: H Water stage
Q Discharge
T Water Temperature
P Sediment Discharge

Annex 4-5 GAUGIN STATIONS - Vah River Basin ZOZNAM VODOMERNÝCH STANÍC - POVODIE VÁHU

|              |            | ZOZNAM VODOME        |               |                       |                       | 51.00111                   |                                |                |             |              |                                                  |
|--------------|------------|----------------------|---------------|-----------------------|-----------------------|----------------------------|--------------------------------|----------------|-------------|--------------|--------------------------------------------------|
| POR.<br>Ĉis. | DB<br>CIS. | STANICA<br>station   | TOK<br>river  | HYDROLOGICKE<br>ČÍSLO | RIECNY<br>KM<br>r. km | PLOCHA<br>POVODIA<br>[km²] | NADM.V.<br>"0" VDC<br>[m n.m.] | H<br>wat.stage | Q<br>disch. | T<br>wat.tem | P<br>sed.dis                                     |
| 1.           | 5300       | LIPTOVSKÁ TEPLIČKA   | ČIERNY VÁH    | 1-4-21-01-005-01      | 25,90                 | 61,84                      | 866,81                         | 1967           | 1967        | 1967         |                                                  |
| 2.           | 5310       | ČIERNY VÁH           | IPOLTICA      | 1-4-21-01-019-01      | 0,28                  | 87,06                      | 737,65                         | 1947           | 1961        |              |                                                  |
| 3.           | 5311       | ČIERNY VÁH           | ČIERNY VÁH    | 1-4-21-01-020-01      | 11,50                 | 243,06                     | 733,31                         | 1917           | 1921        | 1984         |                                                  |
| 4.           | 5314       | SVARÍN               | SVARÍNKA      | 1-4-21-01-026-01      | 0,20                  | 24,46                      | ı,                             | 1979           | 1980*       |              |                                                  |
| 5.           | 5316       | SVARÍN               | ČIERNY VÁH    | 1-4-21-01-027-01      | 4,00                  | 302,15                     | 687,75                         | 1982           | 1982        |              |                                                  |
| 6.           | 5330       | VÝCHODNÁ             | BIELY VÁH     | 1-4-21-01-034-01      | 10,10                 | 105,64                     | 731,64                         | 1922           | 1923        |              |                                                  |
| 7.           | 5336       | MALUŽINÁ             | воса          | 1-4-21-01-049-01      | 7,10                  | 82.75                      | 732,15                         | 1970           | 1970        |              |                                                  |
| 8.           | 5340       | KRÁĽOVA LEHOTA       | ВОСА          | 1-4-21-01-053-01      | 0,20                  | 116,60                     | 655,08                         | 1922           | 1931        |              |                                                  |
| 9.           | 5350       | KRÁĽOVA LEHOTA       | HYBICA        | 1-4-21-01-058-01      | 0,30                  | 45.03                      | 654,45                         | 1964           | 1965        | 1965         |                                                  |
| 10.          | 5370       | LIPTOVSKÝ HRÁDOK     | VÁH           | 1-4-21-01-059-01      | 359,30                | 638,68                     | 630,05                         | 1951           | 1951        | 1962         |                                                  |
| 11.          | 5380       | TICHÁ DOLINA         | TICHÝ P.      | 1-4-21-01-067-01      | 23,70                 | 57,45                      | 978,82                         | 1939           | 1973        | 1973         |                                                  |
| 12.          | 5390       | KÔPROVÁ DOLINA       | KÔPROVÝ P     | 1-4-21-01-070-01      | 0,20                  | 31,20                      | 989,67                         | 1939           | 1971        | 1971         |                                                  |
| 13.          | 5400       | PODBANSKÉ            | BELÁ          | 1-4-21-01-071-01      | 21,35                 | 93,49                      | 922,72                         | 1924           | 1928        | 1955         |                                                  |
| 14.          | 5460       | RAČKOVÁ DOLINA       | RAČKOVÁ       | 1-4-21-01-080-01      | 4,10                  | 35,49                      | 894,41                         | 1939*          | 1963        | 1973         |                                                  |
|              |            |                      | DOVALOVSKÝ P. |                       |                       |                            |                                |                |             | 1973         |                                                  |
| 15.          | 5465       | DOVALOVO             |               | 1-4-21-01-085-01      | 1,10                  | 21,75                      | 626,61                         | 1979           | 1980        | 4004         | <b>—</b>                                         |
| 16.          | 5480       | LIPTOVSKÝ HRÁDOK     | BELÁ          | 1-4-21-01-092-01      | 0,70                  | 243,94                     | 633,94                         | 1950           | 1965        | 1961         | -                                                |
| 17.          | 5520       | LIPTOVSKÝ JÁN        | ŠTIAVNICA     | 1-4-21-02-009-01      | 2,00                  | 61,79                      | 633,51                         | 1922*          | 1963*       | 1989         | -                                                |
| 18.          | 5530       | ŽIARSKA DOLINA       | SMREČIANKA    | 1-4-21-02-021-01      | 10,75                 | 17,99                      | 872,11                         | 1938           | 1963        |              |                                                  |
| 19.          | 5540       | IĽANOVO              | IĽANOVIANKA   | 1-4-21-02-024-01      | 1,70                  | 14,73                      | 624,28                         | 1969           | 1969        |              | -                                                |
| 20.          | 5550       | LIPTOVSKÝ MIKULÁŠ    | VÁH           | 1-4-21-02-027-01      | 346,60                | 1107,21                    | 567,68                         | 1921           | 1921        | 1958         |                                                  |
| 21.          | 5558       | DEMÄNOVSKÁ DOLINA    | RADOVÝ P.     | 1-4-21-02-029-01      | 0,10                  | 1,28                       | -                              | 1991           | 1991        |              |                                                  |
| 22.          | 5577       | KOŽIARKA             | ZADNÁ VODA    | 1-4-21-02-029-03      | 1,20                  | 15,80                      | -                              | 1971           | 1971*       |              |                                                  |
| 23.          | 5590       | DEMÄNOVÁ             | DEMÄNOVKA     | 1-4-21-02-030-03      | 7,10                  | 47,38                      | 692,54                         | 1969           | 1969        | 1971         |                                                  |
| 24.          | 5600       | LIPTOVSKÁ ONDRÁŠOVÁ  | JALOVČIANKA   | 1-4-21-02-036-02      | 0,20                  | 45,00                      | 566,59                         | 1972           | 1972        | 1972         |                                                  |
| 25.          | 5610       | HUTY                 | KVAČIANKA     | 1-4-21-02-042-01      | 9,10                  | 18,78                      | -                              | 1970*          | 1970*       |              |                                                  |
| 26.          | 5632       | KVAČANY              | KVAČIANKA     | 1-4-21-02-044-01      | 5,75                  | 32,21                      | 645,92                         | 1978           | 1979        |              |                                                  |
| 27.          | 5642       | LIPTOVSKÉ MATIAŠOVCE | SUCHÝ P.      | 1-4-21-02-045-04      | 4,70                  | 18,85                      | 690,35                         | 1979           | 1979        |              |                                                  |
| 28.          | 5644       | LIPTOVSKÁ SIELNICA   | KVAČIANKA     | 1-4-21-02-046-01      | 1,50                  | 73,86                      | 577,76                         | 1977           | 1977        |              |                                                  |
| 29.          | 5650       | PROSIEK              | PROSIEČANKA   | 1-4-21-02-047-04      | 2,70                  | 13,40                      | 597,41                         | 1969           | 1969        | 1969         |                                                  |
| 30.          | 5660       | HORÁREŇ HLUCHÉ       | KRIŽIANKA     | 1-4-21-02-050-01      | 10,20                 | 20,98                      | 825,86                         | 1970           | 1970        |              |                                                  |
| 31.          | 5680       | LIPTOVSKÝ SV. KRÍŽ   | KRIŽIANKA     | 1-4-21-02-053-01      | 5,20                  | 39,90                      | 647,25                         | 1969           | 1969        |              |                                                  |
| 32.          | 5714       | DÚBRAVA              | DÚBRAVKA      | 1-4-21-02-054-01      | 8,50                  | 0,70                       | _                              | 1985           | 1985        |              |                                                  |
| 33.          | 5720       | LIPTOVSKÉ VLACHY     | KĽAČIANKA     | 1-4-21-02-061-01      | 0,40                  | 27,17                      | 522,09                         | 1923           | 1962        |              |                                                  |
| 34.          | 5730       | PARTIZÁNSKA ĽUPČA    | ĽUPČIANKA     | 1-4-21-02-069-02      | 5,50                  | 70,43                      | 585,68                         | 1925           | 1961        | 1971         |                                                  |
| 35.          | 5734       | BEŠEŇOVÁ             | VÁH           | 1-4-21-02-071-01      | 332,90                | 1612,43                    | 507,29                         | 1978           | 1978        | 1071         |                                                  |
| 36.          | 5740       | PODSUCHÁ             | REVÚCA        | 1-4-21-02-105-01      | 11,20                 | 217,95                     | 558,21                         | 1927           | 1928        | 1985         |                                                  |
| 37           | 5780       | HUBOVÁ               | VÁH           |                       |                       |                            |                                |                |             |              | 1000                                             |
|              |            |                      |               | 1-4-21-02-119-01      | 308,60                | 2133,20                    | 444,70                         | 1921           | 1921        | 1963         | 1992                                             |
| 38.          | 5790       | ĽUBOCHŇA             | ĽUBOCHNIANKA  | 1-4-21-02-131-01      | 0,15                  | 118,48                     | 442,00                         | 1921           | 1931        |              |                                                  |
| 39.          | 5795       | ZAKAMENNÉ            | BIELA ORAVA   | 1-4-21-03-009-01      | 17,00                 | 82,70                      |                                | 1943*          | 1979*       |              | <b>—</b>                                         |
| 40.          | 5799       | LOKCA                | HRUŠTÍNKA     | 1-4-21-03-040-01      | 0,30                  | 76,44                      | 627,89                         | 1978           | 1979        | 4000         |                                                  |
| 41.          | 5800       | LOKCA ,              | BIELA ORAVA   | 1-4-21-03-041-01      | 5,80                  | 359,96                     | 626,47                         |                | 1951        | 1962         |                                                  |
| 42.          | 5810       | ORAVSKÁ JASENICA     | VESELIANKA    | 1-4-21-03-051-02      | 1,00                  | 90,10                      | 618,09                         | 1942           | 1951        | 1962         | -                                                |
| 43.          | 5816       | ORAVSKÁ POLHORA      | POLHORANKA    | 1-4-21-03-062-01      | 14,80                 | 58,15                      | 700,62                         | 1986           | 1986        |              | <del>                                     </del> |
| 44.          | 5820       | ZUBROHLAVA           | POLHORANKA    | 1-4-21-03-072-01      | 1,60                  | 158,67                     | 605,69                         | 1943           | 1951        | 1962         | <del>                                     </del> |
| 45.          | 5830       | TVRDOŠÍN<br>,        | ORAVA         | 1-4-21-04-002-01      | 57,70                 | 1199,50                    | 564,04                         | 1911           | 1921        | 1962         | <del>                                     </del> |
| 46.          | 5833       | VITANOVÁ             | ORAVICA       | 1-4-21-04-007-01      | 17,40                 | 64,15                      | 689,52                         | 1944*          | 1979        |              | <del>                                     </del> |
| 47.          | 5840       | TRSTENÁ              | ORAVICA       | 1-4-21-04-014-01      | 3,80                  | 129,95                     | 585,49                         | 1924           | 1961        |              | <b>!</b>                                         |
| 48.          | 5842       | BRESTOVÁ             | STUDENÝ P.    | 1-4-21-04-024-01      | 16,30                 | 36,60                      | -                              | 1987           | 1987        |              | <b></b>                                          |
| 49.          | 5845       | ORAVSKÝ BIELY POTOK  | STUDENÝ P.    | 1-4-21-04-028-02      | 5,50                  | 118,09                     | 632,54                         | 1920           | 1979*       |              | <b></b>                                          |
| 50.          | 5847       | CHLEBNICE            | CHLEBNICKÝ P. | 1-4-21-04-039-01      | 3,20                  | 25,50                      | -                              | 1988           | 1988        |              | L                                                |
| 51.          | 5848       | ORAVSKÝ PODZÁMOK     | ORAVA         | 1-4-21-04-044-01      | 30,05                 | 1662,44                    | -                              | 1955*          | 1985*       | 1962*        | L                                                |
| 52.          | 5870       | PÁRNICA              | ZÁZRIVKA      | 1-4-21-04-077-01      | 0,50                  | 96,36                      |                                | 1920           | 1963        | 1964         | <u> </u>                                         |
| 53.          | 5880       | DIEROVÁ              | ORAVA         | 1-4-21-04-079-01      | 6,00                  | 1966,75                    | 439,05                         | 1927           | 1931        | 1962         | 1992                                             |
| 54.          | 5890       | TURANY               | ČIERNIK       | 1-4-21-05-008-01      | 0,50                  | 2,86                       | 410,61                         | 1969           | 1969        |              |                                                  |
| 55.          | 5930       | TURČEK               | TURIEC        | 1-4-21-05-024-01      | 68,80                 | 44,70                      | 687,80                         | 1929           | 1967        |              |                                                  |
| 56.          | 5940       | ČREMOŠNÉ             | ŽARNOVICA     | 1-4-21-05-047-01      | 22,30                 | 12,91                      | 677,99                         | 1969           | 1969        |              |                                                  |
| 57.          | 5970       | TURČIANSKE TEPLICE   | ŽARNOVICA     | 1-4-21-05-051-01      | 10,00                 | 62,04                      | 498,76                         | 1922           | 1963        |              |                                                  |
| 58.          | 5980       | HÁJ                  | SOMOLAN       | 1-4-21-05-060-02      | 2,00                  | 8,54                       | 500,90                         | 1969           | 1969        | İ            |                                                  |
| 59.          | 5990       | MOŠOVCE              | ČIERNA VODA   | 1-4-21-05-062-02      | 3,85                  | 12,66                      | 464,10                         | 1969           | 1969        |              |                                                  |
| 60.          | 5995       | KLÁŠTOR p/ZNIEVOM    | VRÍCA 1       | 1-4-21-05-069-01      | 8,40                  | 44,95                      | 510,30                         | 1984           | 1984        |              |                                                  |
| 61.          | 6018       | VALČA                | VALČIANSKY P. | 1-4-21-05-071-01      | 7,50                  | 10,70                      | 510,30                         | 1968*          | 1969*       | 1            |                                                  |
| 62.          | 6020       | VALČA                | HNILICKÝ P.   | 1-4-21-05-071-01      | 0,10                  | 3,63                       | 504.00                         |                | 1968        | 1            |                                                  |
|              |            |                      |               |                       |                       |                            | 534,33                         | 1968           |             | 1            | <b>—</b>                                         |
| 63.          | 6030       | BRČNA                | SLOVIANSKY P. | 1-4-21-05-071-01      | 3,00                  | 11,90                      | 514,67                         | 1969           | 1969        |              | <u> </u>                                         |

| POR. | DB   | STANICA               | ток           | HYDROLOGICKE     | RIECNY      | PLOCHA           | NADM.V.             |                |             |              |              |
|------|------|-----------------------|---------------|------------------|-------------|------------------|---------------------|----------------|-------------|--------------|--------------|
| ČÍS. | ČÍS. | station               | river         | ČÍSLO            | KM<br>r. km | POVODIA<br>[km²] | "0" VDČ<br>[m n.m.] | H<br>wat.stage | Q<br>disch. | T<br>wat.tem | P<br>sed.dis |
| 64   | 6040 | BLATNICA I            | BLATNICKÝ P.  | 1-4-21-05-075-01 | 10.00       | 15.68            | 503.14              | 1969           | 1969        | wattem       | Seu.uis      |
| 65.  | 6060 | DEDOŠOVA DOLINA       | GADERSKÝ P.   | 1-4-21-05-076-02 | 14,20       | 9.53             | 875,25              | 1970           | 1970        |              |              |
| 66.  | 6070 | BLATNICA              | GADERSKÝ P.   | 1-4-21-05-078-01 | 0.80        | 9,55<br>55,00    | 501.79              | 1969           | 1969        |              |              |
| 67.  |      | BLATNICA II           | BLATNICKÝ P.  | 1-4-21-05-079-02 | 8,20        | 72,17            | 301,79              | 1988           | 1988        |              |              |
| 68   | 6110 | NECPALY               | NECPALSKY P.  | 1-4-21-05-092-01 | 5.90        | 29,57            | 523,24              | 1922           | 1963*       | 1971         |              |
| 69.  | 6130 | MARTIN                | TURIEC        | 1-4-21-05-097-01 | 6.90        | 827.00           | 389,90              | 1931           | 1931        | 1961         |              |
| 70.  | 6140 | MARTIN                | PIVOVARSKÝ P. | 1-4-21-05-099-01 | 1,90        | 9,05             | 430,86              | 1969           | 1969        | 1301         |              |
| 71.  | 6150 | STRÁŽA                | VARÍNKA       | 1-4-21-05-124-01 | 5,10        | 139,70           | 398,76              | 1925           | 1941        | 1984         |              |
| 72.  |      | KLOKOČOV              | PREDMIERANKA  | 1-4-21-06-029-01 | 5,10        | 34,78            | 513,84              | 1986           | 1986        | 1986         |              |
| 73.  |      | TURZOVKA              | KYSUCA        | 1-4-21-06-034-01 | 43,90       | 194,40           | 463,59              | 1964           | 1965        | 1300         |              |
| 74.  | 6179 | ČADCA                 | ČIERŇANKA     | 1-4-21-06-059-01 | 0.80        | 157,00           | 412,86              | 1978           | 1978        |              |              |
| 75.  | 6180 | ČADCA                 | KYSUCA        | 1-4-21-06-062-01 | 29.20       | 492.54           | 408.36              |                | 1931        | 1961         |              |
| 76.  | 6190 | ZBOROV n/ BYSTRICOU   | BYSTRICA      | 1-4-21-06-091-01 | 6,60        | 218,07           | 427,08              | 1932           | 1932        | 1969         |              |
| 77.  | 6200 | KYSUCKÉ NOVÉ MESTO    | KYSUCA        | 1-4-21-06-105-01 | 8.00        | 955.09           | 346.09              | 1925           | 1931        | 1967         | 1992         |
| 78.  | 6230 | RAJECKÁ LESNÁ         | LESŇANKA      | 1-4-21-06-124-01 | 1,70        | 23,34            | 540,03              | 1968           | 1968        | 1969         | 1332         |
| 79.  | 6240 | ŠUJA                  | RAJČIANKA     | 1-4-21-06-125-02 | 25,00       | 108,59           | 464.15              |                | 1968        | 1968         |              |
| 80.  | 6260 | RAJEC                 | ČIERŇANKA     | 1-4-21-06-130-01 | 2,50        | 19,72            | 448,21              | 1968           | 1968        | 1968         |              |
| 81.  | 6270 | RAJECKÉ TEPLICE       | PORUBSKÝ P.   | 1-4-21-06-136-01 | 0,30        | 31,25            | 413,76              | 1968           | 1968        | 1968         |              |
| 82   | 6280 | KUNERÁD               | KUNERÁDSKY P  | 1-4-21-06-136-01 | 8,30        | 11,44            | 623.29              | 1968           | 1968        | 1968         |              |
| 83.  |      | RAJECKÉ TEPLICE       | KUNERÁDSKY P. | 1-4-21-06-139-01 | 0.30        | 26,37            | 413,30              |                | 1969        | 1970         |              |
| 84.  | 6300 | POLUVSIE              | RAJČIANKA     | 1-4-21-06-142-01 | 13,30       | 243,60           | 393.06              | 1921           | 1931        | 1993         |              |
| 85.  | 6310 | POLUVSIE              | MEDZIHOR, P.  | 1-4-21-06-142-03 | 0,03        | 9,04             | 391,10              |                | 1969        | 1970         |              |
| 86.  | 6330 | LIETAVA, MAJER        | LIETAVKA      | 1-4-21-06-147-02 | 2.90        | 13,56            | 397.35              |                | 1969        | 1969         |              |
| 87.  | 6338 | BÁNOVÁ                | BITAROVSKÝ P  | 1-4-21-06-149-01 | 1,03        | 18.68            |                     | 1991           | 1991        |              |              |
| 88   | 6340 | ZÁVODIE               | RAJČIANKA     | 1-4-21-06-150-01 | 1,55        | 355,20           | 328,33              | 1967           | 1967        | 1967         |              |
| 89.  | 6350 | HLBOKÉ n/VÁHOM        | HLBOCKÝ P.    | 1-4-21-07-006-01 | 1.80        | 4.64             | 339,36              | 1969           | 1969        | 1970         |              |
| 90.  | 6360 | BYTČA                 | PETROVIČKA    | 1-4-21-07-011-01 | 2,70        | 65,10            | 314,20              |                | 1961        |              |              |
| 91.  | 6362 | JASENICA              | PAPRADNIANKA  | 1-4-21-07-062-01 | 2.40        | 76,75            | 308,89              | 1961           | 1980        |              |              |
| 92.  | 6370 | PREČÍN                | DOMANIŽANKA   | 1-4-21-07-029-01 | 6,10        | 74,05            | 322,08              | 1969           | 1969        | 1969         |              |
| 93.  | 6380 | POVAŽSKÁ BYSTRICA     | DOMANIŽANKA   | 1-4-21-07-031-01 | 0,90        | 100,66           | 291,66              | 1951           | 1961        | 1972         |              |
| 94.  | 6382 | POV.BYSTRICA, FAPŠOVÁ | MOŠTENÍK      | 1-4-21-07-033-01 | 1,30        | 17,20            | =                   | 1985           | 1985        | 1985         |              |
| 95.  | 6390 | VYDRNÁ                | PETRINOVEC    | 1-4-21-07-087-01 | 2,20        | 8,40             | 380,83              | 1951           | 1961        |              |              |
| 96.  | 6400 | DOHŇANY               | BIELA VODA    | 1-4-21-07-093-01 | 4,00        | 163,17           | 284,09              | 1938           | 1961        |              |              |
| 97.  | 6410 | TRSTIE                | PRUŽINKA      | 1-4-21-08-010-01 | 11,50       | 70,25            | 322,79              | 1969           | 1969        | 1969         |              |
| 98.  | 6420 | VISOLAJE              | PRUŽINKA      | 1-4-21-08-012-01 | 4,40        | 110,92           | 268,22              | 1951           | 1961        | 1971         |              |
| 99.  | 6425 | TUCHYŇA               | TOVÁRSKY P.   | 1-4-21-08-026-01 | 2,50        | 48,64            | 261,52              | 1969           | 1969        |              |              |
| 100. | 6450 | HORNÉ SŔNIE           | VLÁRA         | 1-4-21-08-078-01 | 4,60        | 341,79           | 239,24              | 1921           | 1961        | 1971         |              |
| 101. | 6460 | TRENČIANSKE TEPLICE   | TEPLIČKA      | 1-4-21-08-114-01 | 11,50       | 48,83            | 263,48              | 1949           | 1962        | 1971         |              |
| 102. | 6470 | ČACHTICE              | JABLONKA      | 1-4-21-09-069-01 | 9,50        | 163,25           | -                   | 1942           | 1961        | 1971         |              |
| 103. | 6475 | HLOHOVEC              | VÁH           | 1-4-21-10-008-01 | 99,00       | 10441,34         | -                   | 1975           | 1976        | 1975         |              |
| 104. | 6480 | ŠAĽA                  | VÁH           | 1-4-21-10-057-01 | 58,50       | 11217,61         | 109,23              | 1927           | 1963        | 1963         |              |
| 105. | 6775 | KOLÁROVO              | VÁH           | 1-4-21-18-001-01 | 24,50       | 18486,00         | 105,91              | 1901           |             | 1972         |              |
| 106. | 6845 | KOMÁRNO               | VÁH           | 1-4-21-18-020-02 | 0,05        | 19660,98         | 103,69              | 1929           |             |              |              |

<sup>\* -</sup> obdobie poz orovania prerušené - **observation interrupted** 

NOTE:

H Waterstage Q Discharge T Water Temperature P Sediment Discharge

Annex 4-5 GAUGIN STATIONS - Hron River Basin
ZOZNAM VODOMERNÝCH STANÍC - POVODIE DUNAJA

| DOD          | 55           | ZOZNAM VODOMER                |                |                                      |              | DI GOLLA I        | MADMAN           |              |              |         |         |
|--------------|--------------|-------------------------------|----------------|--------------------------------------|--------------|-------------------|------------------|--------------|--------------|---------|---------|
| POR.<br>CIS. | DB<br>CIS.   | STANICA                       | TOK            | HYDROLOGICKE<br>ĈISLO                | RIECNY       | PLOCHA<br>POVODIA | NADM.V.          | Н            | Q            | T       | P       |
| -            | 0014         | Station                       | River          | 4 4 00 04 000 00                     | r.km         | [km²]             | [m n.m.]         | wat.stage    | disch.       | wat.tem | sed.dis |
| 1.<br>2.     | 6914         | TELGÁRT                       | HRON           | 1-4-23-01-003-02                     | 270,10       | 36,61             | 804,95<br>737,65 | 1971         | 1971         |         |         |
| 3.           | 6950<br>6960 | ZLATNO                        | HAVRANÍK       | 1-4-23-01-011-01                     | 263,90       | 79,28             |                  | 1925<br>1949 | 1931         |         |         |
|              | 6995         | ZLATNO                        | HRON           | 1-4-23-01-014-01                     | 0,10         | 16,72             | 732,65           |              | 1967         | 1.001   |         |
| 4.           |              | POLOMKA                       | BACÚŠSKY P.    | 1-4-23-01-043-01                     | 243,40       | 329,54            | 581,33           | 1991<br>1984 | 1991         | 1991    |         |
| 5.<br>6.     |              | BACÚCH p/ KYSLOU<br>MICHALOVÁ | ROHOZNÁ        | 1-4-23-01-046-02<br>1-4-23-01-071-01 | 2,70<br>9.70 | 23,74<br>59,04    | 629,23<br>553,68 | 1974         | 1984<br>1974 |         |         |
| 7.           | 7015         | BREZNO                        | HRON           | 1-4-23-01-076-01                     | 223,30       | 582.08            | 491,30           | 1974         | 1931         | 1961    |         |
| 8.           | 7013         | ČIERNY BALOG                  | ŠALING         | 1-4-23-01-085-01                     | 0,90         | 24,98             | 582,03           | 1923         | 1987         | 1301    |         |
| 9.           | 702.9        | ČIERNY BALOG                  | ČIERNY HRON    | 1-4-23-01-086-01                     | 15,50        | 64,61             | 563,87           | 1969         | 1969         |         |         |
| 10.          | 7033         | ČIERNY BALOG                  | BRÔTOVO        | 1-4-23-01-087-01                     | 3,30         | 9,28              | 625,89           | 1980         | 1980         |         |         |
| 11.          | 7036         | ČIERNY BALOG                  | VYDROVO        | 1-4-23-01-093-01                     | 1,10         | 31,80             | 545,64           | 1981         | 1981         |         |         |
| 12.          | 7040         | HRONČEK                       | KAMENISTÝ P.   | 1-4-23-01-100-01                     | 11,60        | 48,86             | 655,83           | 1928*        | 1970         |         |         |
| 13.          | 7045         | HRONEC                        | ČIERNY HRON    | 1-4-23-01-105-01                     | 2,40         | 239,41            | 480,48           | 1925         | 1931         | 1976    |         |
| 14.          | 7050         | OSRBLIE                       | OSRBLIANKA     | 1-4-23-01-108-01                     | 6.40         | 27,77             | 583,91           | 1925         | 1966         | 1070    |         |
| 15.          |              | BYSTRÁ, TÁLE                  | BYSTRIANKA     | 1-4-23-02-002-01                     | 12,10        | 22,48             | -                | 1985         | 1985         |         |         |
| 16.          |              | BYSTRÁ                        | BYSTRIANKA     | 1-4-23-02-004-01                     | 7,00         | 36,01             | 573,73           | 1924*        | 1931         | 1967    |         |
| 17.          |              | MÝTO p/ĎUMBIEROM              | ŠTIAVNIČKA     | 1-4-23-02-009-01                     | 2,90         | 47,10             | 616,75           | 1922         | 1931         | 1007    |         |
| 18.          |              | DOLNÁ LEHOTA                  | VAJSKOVSKÝ P.  | 1-4-23-02-024-01                     | 2,70         | 53,02             | 495,28           | 1924         | 1931         |         |         |
| 19.          | 7079         | JASENIE                       | JASENIANSKY P  | 1-4-23-02-036-01                     | 4.20         | 87,71             | 487,95           | 1988         | 1988         |         |         |
| 20           | 7081         | DUBOVÁ                        | HRON           | 1-4-23-02-038-01                     | 203,10       | 1244,12           | 420,64           | 1987         | 1987         |         |         |
| 21.          |              | BRUSNO                        | SOPOTNICA      | 1-4-23-02-044-01                     | 7,60         | 11,31             | - 120,01         | 1984         | 1984         |         |         |
| 22.          | 7090         | ĽUBIETOVÁ                     | HUTNÁ          | 1-4-23-02-060-01                     | 3,70         | 38.99             | 453,49           | 1976         | 1976         |         |         |
| 23.          | 7100         | SLOVENSKÁ ĽUPČA               | ĽUPČICA        | 1-4-23-02-069-01                     | 1,30         | 39,30             | 376,71           | 1954         | 1956         |         |         |
| 24.          |              | DOLNÝ HARMANEC                | HARMANEC       | 1-4-23-02-093-01                     | 0,30         | 23,01             | 507,87           | 1970         | 1970         |         |         |
| 25.          | 7125         | HARMANEC, PAPIEREŇ            | BYSTRICA       | 1-4-23-02-098-01                     | 8,50         | 59,60             | 409,35           | 1954         | 1956         |         |         |
| 26.          | 7140         | STARÉ HORY                    | RAMŽINÁ        | 1-4-23-02-108-01                     | 0,10         | 12,29             | 478,48           | 1925         | 1966         |         |         |
| 27.          | 7145         | STARÉ HORY                    | STAROHORSKÝ P. | 1-4-23-02-109-01                     | 6,10         | 62,61             | 465,95           | 1920         | 1931         |         |         |
| 28.          | 7147         | UĽANKA                        | STAROHORSKÝ P. | 1-4-23-02-110-01                     | 0.40         | 78,75             | _                | 1990         | 1990         |         |         |
| 29.          |              | BANSKÁ BYSTRICA               | BYSTRICA       | 1-4-23-02-113-01                     | 2,10         | 160,37            | 352,94           | 1979         | 1979         | 1979    |         |
| 30.          | 7160         | BANSKÁ BYSTRICA               | HRON           | 1-4-23-02-117-01                     | 175,20       | 1766,48           | 334,29           | 1917         | 1931         | 1925    | 1993    |
| 31.          | 7170         | BANSKÁ BYSTRICA               | TAJOVSKÝ P.    | 1-4-23-02-122-01                     | 0,20         | 44,09             | 336,50           | 1965         | 1966         |         |         |
| 32.          | 7173         | BANSKÁ BYSTRICA               | MALACHOVSKÝ P. | 1-4-23-02-124-02                     | 0,60         | 16,00             | -                | 1990         | 1990         |         |         |
| 33.          | 7180         | HRIŇOVÁ, n/VN                 | SLATINA        | 1-4-23-03-007-01                     | 50,80        | 51,99             | 572,65           | 1971         | 1971         |         |         |
| 34.          | 7183         | HRIŇOVÁ                       | HUKAVA         | 1-4-23-03-008-01                     | 0,30         | 9,96              | 568,83           | 1973         | 1973         |         |         |
| 35.          | 7185         | HRIŇOVÁ, p/VN                 | SLATINA        | 1-4-23-03-009-01                     | 48,00        | 70,82             | 520,67           | 1922         | 1931         |         |         |
| 36.          | 7190         | STOŽOK                        | SLATINA        | 1-4-23-03-026-01                     | 25,30        | 219,90            | 355,19           | 1973         | 1974*        |         |         |
| 37.          | 7191         | PSTRUŠA                       | KOCANSKÝ P.    | 1-4-23-03-028-01                     | 0,60         | 35,45             | 355,23           | 1987         | 1987         |         |         |
| 38.          | 7193         | VÍGĽAŠ                        | DÚBRAVSKÝ P.   | 1-4-23-03-036-01                     | 1,10         | 69,23             |                  | 1983         | 1983         |         |         |
| 39.          | 7205         | MÔŤOVÁ                        | SLATINA        | 1-4-23-03-046-01                     | 8,10         | 411,02            | 303,12           | 1960         | 1961         |         |         |
| 40.          | 7206         | MÔŤOVÁ                        | SEKIERSKY P.   | 1-4-23-03-049-01                     | 2,90         | 20,65             | 366,37           | 1986         | 1986         |         |         |
| 41.          | 7210         | ZOLNÁ                         | ZOLNÁ          | 1-4-23-03-067-02                     | 7,90         | 97,76             | 325,72           | 1983         | 1983         |         |         |
| 42.          | 7215         | HROCHOŤ                       | HUČAVA         | 1-4-23-03-070-01                     | 13,80        | 41,45             | 522,54           | 1974         | 1974         |         |         |
| 43.          | 7220         | ZVOLEN                        | ZOLNÁ          | 1-4-23-03-074-01                     | 0,50         | 200,74            | 288,22           | 1967         | 1967         |         |         |
| 44.          | 7228         | ZVOLEN                        | NERESNICA      | 1-4-23-03-089-01                     | 0,50         | 139,33            | 286,59           | 1950         | 1963         |         |         |
| 45.          | 7230         | ZVOLEN                        | SLATINA        | 1-4-23-03-091-01                     | 2,10         | 790,16            | 280,78           | 1920         | 1967         | 1973    |         |
| 46.          | 7240         | HRONSKÁ BREZNICA              | HRON           | 1-4-23-04-013-01                     | 146,10       | 286 5, 56         | 265,15           | 1992         | 1992         |         |         |
| 47.          | 7241         | HRONSKÁ BREZNICA              | JASENICA       | 1-4-23-04-024-01                     | 0,10         | 82,97             | 267,34           | 1992         | 1992         |         |         |
| 48.          | 7245         | KREMNICKÉ BANE                | PREVOD Z TURCA | 1-4-23-04-037-01                     | 0,00         | 0,10              | -                | 1993         | 1993         |         |         |
| 49.          | 7251         | IHRÁČ, PÍLA                   | VÁPENNÝ P.     | 1-4-23-04-034-01                     | 0,70         | 24,27             | -                | 1987         | 1987         |         |         |
| 50.          | 7252         | TRNAVÁ HORA                   | IHRÁČSKY P.    | 1-4-23-04-035-01                     | 0,20         | 60,64             | 261,29           | 1987         | 1987         |         |         |
| 51.          | 7253         | STARÁ KREMNIČKA               | KREMNICKÝ P.   | 1-4-23-04-042-01                     | 1,80         | 80,87             | 273,27           | 1987         | 1987         |         |         |
| 52.          | 7254         | ŽIAR n/HRONOM                 | KREM.DED. ŠT.  | 1-4-23-04-045-02                     | 0,10         | 0,10              | -                | 1987         | 1987         |         |         |
| 53.          | 7256         | JANOVA LEHOTA                 | LUTILSKÝ P.    | 1-4-23-04-051-01                     | 12,40        | 39,51             | 391,05           | 1984         | 1984         |         |         |
| 54.          | 7260         | ŽIAR n/HRONOM                 | HRON           | 1-4-23-04-061-01                     | 131,50       | 331 0,62          | 242,62           | 1978         | 1978         | 1978    |         |
| 55.          | 7270         | HORNÁ ŽDAŇA                   | PROCHOTSKÝ P.  | 1-4-23-04-079-01                     | 4,50         | 24,11             | 325,44           | 1984         |              |         |         |
| 56.          | 7272         | BANSKÁ ŠTIAVNICA              | VYHNIANSKY P.  | 1-4-23-04-081-01                     | 13,40        | 0,91              | -                | 1994         | 1994         |         |         |
| 57.          | 7278         | HRABIČOV                      | KĽAK           | 1-4-23-04-089-01                     | 11,30        | 46,12             | 378,83           | 1984         | 1984         |         |         |
| 58.          | 7280         | ŽARNOVICA                     | KĽAK           | 1-4-23-04-095-01                     | 1,10         | 131,95            | 222,51           | 1921*        | 1962         |         |         |
| 59.          | 7290         | BREHY                         | HRON           | 1-4-23-04-110-01                     | 93,90        | 3821,38           | 194,63           | 1924         | 1931         | 1961    | 1993    |
| 60.          | 7296         | PSIARE                        | HRON           | 1-4-23-04-125-01                     | 80,90        | 3965,56           | ÷                | 1992         | 1992         |         |         |
| 61.          | 7305         | HRONSKÉ KĽAČANY               | PODLUŽIANKA    | 1-4-23-05-011-01                     | 9,60         | 91,09             | =                | 1992         | 1992         |         |         |
| 62.          | 7308         | PEČENICE                      | JABLOŇOVKA     | 1-4-23-05-022-01                     | 2,60         | 51,36             | ÷                | 1986         | 1986         |         |         |
| 63.          | 7316         | TEKOVSKÉ LUŽANY               | LUŽIANKA       | 1-4-23-05-038-01                     | 19,00        | 25,03             | -                | 1991         | 1991         |         |         |

| POR.     | DB   | STANICA                                                                                                           | TOK        | HYDROLOGICKE     | RIECNY | PLOCHA  | NADM.V.  |           |        |         |         |
|----------|------|-------------------------------------------------------------------------------------------------------------------|------------|------------------|--------|---------|----------|-----------|--------|---------|---------|
| ČÍS.     | ČÍS. |                                                                                                                   |            | ČÍSLO            | KM     | POVODIA | "0" VDČ  | Н         | Q      | T       | P       |
|          |      | Station                                                                                                           | River      |                  | r.km   | [km²]   | [m n.m.] | wat.stage | disch. | wat.tem | sed.dis |
| 64.      | 7318 | HRONOVCE                                                                                                          | LUŽIANKA   | 1-4-23-05-040-01 | 2,40   | 98,42   | -        | 1982      | 1982   |         |         |
| 65.      | 7327 | STARÝ TEKOV                                                                                                       | PEREC      | 1-4-23-05-051-01 | 50,20  | 0,10    | =        | 1987      | 1987   |         |         |
| 66.      | 7330 | ZALABA                                                                                                            | PEREC      | 1-4-23-05-057-01 | 10,80  | 72,65   | -        | 1923      | 1969   |         |         |
| 67.      | 7335 | KAMENÍN                                                                                                           | HRON       | 1-4-23-05-060-01 | 10,90  | 5149,80 | 108,30   | 1992      | 1992   | 1 992   | 1993    |
| 68.      | 7345 | RÚBAŇ                                                                                                             | PARÍŽ      | 1-4-23-05-066-01 | 25,30  | 81,90   | 127,16   | 1967*     | 1968*  |         |         |
| * - obde |      | rovania prerušené - observation ir<br>H Water stage<br>Q Discharge<br>T Water Temperature<br>P Sediment Discharge | nterrupted |                  |        |         |          |           |        |         |         |

Annex 4-5 GAUGIN STATIONS - Ipel River Basin
ZOZNAM VODOMERNÝCH STANÍC - POVODIE DUNAJA

| POR. | DB    | STANICA           | TOK           | HYDROLOGICKE     | RIECNY | PLOCHA  | NADM.V.  |           |        |         |         |
|------|-------|-------------------|---------------|------------------|--------|---------|----------|-----------|--------|---------|---------|
| ČÍS. | ČÍS.  |                   |               | ČÍSLO            | KM     | POVODIA | "0" VDČ  | Н         | Q      | Т       | Р       |
|      |       | Station           | river         |                  | r. km  | [km²]   | [m n.m.] | wat.stage | disch. | wat.tem | sed.dis |
| 1.   | 7398  | MÁLINEC, n/VN     | IPEĽ          | 1-4-24-01-004-01 | 183,50 | 54,24   | -        | 1995      | 1995   |         |         |
| 2.   | 7399  | MÁLINEC           | SMOLNÁ II.    | 1-4-24-01-005-02 | 0,40   | 13,28   | -        | 1995      | 1995   |         |         |
| 3.   | 74 00 | MÁLINEC           | SMOLNÁ I.     | 1-4-24-01-005-01 | 0,40   | 0, 10   | -        | 1995      | 1995   |         |         |
| 4.   | 74 02 | MÁLINEC, p∕VN     | IPEĽ          | 1-4-24-01-007-02 | 179,50 | 85, 21  | -        | 1995      | 1995   |         |         |
| 5.   | 7410  | ZLATNO            | POLOVNO       | 1-4-24-01-019-01 | 2,80   | 11,27   | 368,45   | 1957*     | 1967*  |         |         |
| 6.   | 7420  | KALINOVO          | IPEĽ          | 1-4-24-01-026-02 | 157,60 | 287,60  | 200,28   | 1969      | 1971   | 1969    |         |
| 7.   | 7435  | FIĽAKOVO          | BELINA        | 1-4-24-01-052-01 | 4, 10  | 70,20   | -        | 1989      | 1989   |         |         |
| 8.   | 7438  | FIĽAKOVO          | ČAMOVSKÝ P.   | 1-4-24-01-055-01 | 2,00   | 40, 88  | -        | 1989      | 1989   |         |         |
| 9.   | 7439  | PRŠA              | SUCHÁ         | 1-4-24-01-057-01 | 3, 10  | 325,43  | 178,09   | 1987      | 1987   |         |         |
| 10.  | 7440  | HOLIŠA            | IPEĽ          | 1-4-24-01-058-01 | 143,20 | 685,67  | 171,23   | 1928      | 1931   | 1963    |         |
| 11.  | 7450  | LUČENEC           | TUHÁRSKY P.   | 1-4-24-01-082-01 | 1,60   | 59,00   | 181,12   | 1936*     | 1941*  |         |         |
| 12.  | 7464  | PÍLA              | PIĽANSKÝ P.   | 1-4-24-01-065-03 | 0,40   | 4,30    | 298,51   | 1988      | 1988   |         |         |
| 13.  | 7466  | MÝTNA, n/VN       | KRIVÁNSKY P.  | 1-4-24-01-065-04 | 27,70  | 53,68   | -        | 1994      | 1994   |         |         |
| 14.  | 7468  | MÝTNA, p/VN       | KRIVÁNSKY P.  | 1-4-24-01-065-05 | 27,00  | 57,27   | -        | 1994      | 1994   |         |         |
| 15.  | 7470  | DIVÍN             | BUDINSKÝ P.   | 1-4-24-01-071-03 | 4,00   | 19,04   | -        | 1968      | 1969   | 1972    |         |
| 16.  | 7471  | DIVÍN             | PREV.VN MÝTNA | 1-4-24-01-071-04 | 0,00   | 0, 10   | -        | 1995      | 1995   |         |         |
| 17.  | 7472  | RUŽINÁ, p/VN      | BUDINSKÝ P.   | 1-4-24-01-071-02 | 1,70   | 31,28   | -        | 1988      | 1988   |         |         |
| 18.  | 7480  | LUČENEC           | KRIVÁNSKY P.  | 1-4-24-01-078-01 | 5,40   | 204,20  | 177,50   | 1922      | 1931   | 1971    |         |
| 19.  | 7490  | HORNÝ TISOVNÍK    | TISOVNÍK      | 1-4-24-02-027-01 | 33,30  | 34,64   | 408,54   | 1957      | 1967   |         |         |
| 20.  | 7500  | DOLNÁ STREHOVÁ    | TISOVNÍK      | 1-4-24-02-045-01 | 4,50   | 275, 59 | 166,72   | 1951      | 1962   | 1971    |         |
| 21.  | 7520  | DOLNÉ STRHÁRE     | KOPROVNICA    | 1-4-24-02-052-01 | 0,10   | 43,66   | 231,59   | 1950      | 1970   |         |         |
| 22.  | 7525  | POTOR             | STARÁ RIEKA   | 1-4-24-02-055-01 | 12, 10 | 114,80  | 204,30   | 1978      | 1979   |         |         |
| 23.  | 7539  | ŽELOVCE           | KRTÍŠ         | 1-4-24-02-091-01 | 6, 70  | 205,17  | 147,74   | 1992      | 1992   |         |         |
| 24.  | 7540  | SLOVENSKÉ ĎARMOTY | IPEĽ          | 1-4-24-03-001-01 | 89,50  | 2768,00 | 136,11   | 1978      | 1978   | 1978    | 1993    |
| 25.  | 7570  | KRUPINA           | KRUPINICA     | 1-4-24-03-052-01 | 38,40  | 194,06  | -        | 1993      | 1993   |         |         |
| 26.  | 7580  | PLÁŠŤOVCE         | KRUPINICA     | 1-4-24-03-058-01 | 11,80  | 302,79  | 140,61   | 1928      | 1931   |         |         |
| 27.  | 76 00 | PLÁŠŤOVCE         | LITAVA        | 1-4-24-03-071-01 | 0,90   | 214,27  | 142,64   | 1928      | 1931   |         |         |
| 28.  | 7612  | DUDINCE           | ŠTIAVNICA     | 1-4-24-03-096-01 | 9, 90  | 291,53  | 129,15   | 1988      | 1988   | 1988    |         |
| 29.  | 7620  | VYŠKOVCE n/IPĽOM  | IPEĽ          | 1-4-24-03-109-02 | 46,00  | 4687,24 | 117,72   | 1969*     | 1972*  | 1983    | 1993    |
| 30.  | 7630  | SAZDICE           | BÚR           | 1-4-24-03-117-01 | 3, 80  | 88,30   | 120,90   | 1974      | 1978   |         |         |

<sup>\* -</sup> ob dobie pozorovania prerušené - observation interrupted

NOTE:

- H Water stage Q Discharge T Water Temperature P Sediment Discharge

Annex 4-5 GAUGIN STATIONS - Slana River Basin
ZOZNAM VODOMERNÝCH STANIC - POVODIE DUNAJA

| POR. | DB   | STANICA              | TOK            | HYDROLOGICKE     | RIECNY      | PLOCHA           | NADM.V.             |                |             |              |              |
|------|------|----------------------|----------------|------------------|-------------|------------------|---------------------|----------------|-------------|--------------|--------------|
| Ċis. | ČIS. | station              | river          | ČÍSLO            | KM<br>r. km | POVODIA<br>[km²] | "0" VDČ<br>[m n.m.] | H<br>wat.stage | Q<br>disch. | T<br>wat.tem | P<br>sed.dis |
| 1.   | 7658 | VYŠNÁ SLANÁ          | SLANÁ          | 1-4-31-01-007-01 | 77,70       | 60.28            | 440,94              | 1983           | 1983        | wattem       | 50 u.u.5     |
| 2    | 7660 | DOBŠINÁ              | DOBŠINSKÝ P.   | 1-4-31-01-011-01 | 3.40        | 31.97            | 453,46              | 1923           | 1931        |              |              |
| 3.   | 7662 | DOBŠINÁ, HC          | ODPADOVÝ KAN   | 1-4-31-01-012-03 | 0.20        | 0,10             | -                   | 1969           | 1969        |              |              |
| 4.   | 7670 | VLACHOVO             | SLANÁ          | 1-4-31-01-016-01 | 75.00       | 123,16           | 411,97              | 1921           | 1931        |              |              |
| 5.   | 7679 | GEMERSKÁ POLOMA      | SLANÁ          | 1-4-31-01-022-01 | 60,70       | 201,60           | _                   | 1993           | 1993        |              |              |
| 6.   | 7680 | GEMERSKÁ POLOMA      | SÚĽOVSKÝ P.    | 1-4-31-01-027-01 | 0,30        | 57,38            | 324,04              | 1923           | 1964        |              |              |
| 7.   | 7690 | ROŽŇAVA              | SLANÁ          | 1-4-31-01-031-01 | 51,90       | 301,53           | 276,56              | 1921*          | 1968*       | 1974         |              |
| 8.   | 7693 | ROŽŇAVA              | ROŽŇAVSKÝ P.   | 1-4-31-01-036-01 | 1.00        | 41.80            | 297,48              | 1968           | 1968        |              |              |
| 9.   | 7705 | DRNAVA               | ČREMOŠNÁ       | 1-4-31-01-048-01 | 14,50       | 53,89            | 372,26              | 1968           | 1968        |              |              |
| 10.  | 7730 | ŠTÍTNIK              | ŠTÍTNIK        | 1-4-31-01-071-01 | 13,80       | 129,63           | 284,95              | 1924           | 1931        | 1974         |              |
| 11.  | 7740 | PLEŠIVEC             | ŠTÍTNIK        | 1-4-31-01-078-03 | 1,30        | 224,17           | 214,15              | 1968           | 1968        |              |              |
| 12.  | 7752 | BRETKA               | SLANÁ          | 1-4-31-02-006-01 | 26,20       | 889,12           | 188,89              | 1977           | 1977        | 1977         | 1993         |
| 13.  | 7762 | MURÁŇ                | HRDZAVÝ P.     | 1-4-31-02-010-01 | 1,30        | 38,39            | -                   | 1970           | 1970        | 1970         |              |
| 14.  | 7782 | REVÚCA               | ZDYCHAVA       | 1-4-31-02-021-01 | 0,60        | 58,95            | 314,00              | 1974           | 1974        |              |              |
| 15.  | 7785 | LUBENÍK              | MURÁŇ          | 1-4-31-02-024-02 | 28,90       | 204,61           | 276,35              | 1975           | 1975        |              |              |
| 16.  | 7800 | BRETKA               | MURÁŇ          | 1-4-31-02-043-01 | 0,60        | 386,01           | 189,00              | 1978           | 1978        |              |              |
| 17.  | 7805 | GEMERSKÁ VES         | TURIEC         | 1-4-31-02-063-01 | 10,30       | 131,61           | -                   | 1993           | 1993        |              |              |
| 18.  | 7810 | BEHYNCE              | TURIEC         | 1-4-31-02-082-01 | 2,40        | 304,66           | 173,19              | 1969           | 1970        |              |              |
| 19.  | 7820 | LENARTOVCE           | SLANÁ          | 1-4-31-02-098-01 | 3,60        | 1829,65          | 150,41              | 1925           | 1931        | 1958         | 1993         |
| 20.  | 7830 | TISOVEC              | RIMAVA         | 1-4-31-03-007-01 | 73,40       | 73,92            | 413,11              | 1921           | 1964        |              |              |
| 21.  | 7840 | RÁZTOČNÉ             | KLENOV. RIMAVA | 1-4-31-03-024-01 | 11,60       | 67,36            | 392,97              | 1959           | 1962        |              |              |
| 22.  | 7843 | HNÚŠŤA               | KLENOV. RIMAVA | 1-4-31-03-027-01 | 0,60        | 115,10           | 291,73              | 1924*          | 1963        |              |              |
| 23.  | 7845 | HNÚŠŤA, LIKIER       | RIMAVA         | 1-4-31-03-029-01 | 58,00       | 275,64           | 279,58              | 1942*          | 1963*       | 1975         |              |
| 24.  | 7855 | KOKAVA n/RIMAVICOU   | RIMAVICA       | 1-4-31-03-042-01 | 11,70       | 101,44           | 317,43              | 1974           | 1974        |              |              |
| 25.  | 7860 | LEHOTA n/RIMAVICOU   | RIMAVICA       | 1-4-31-03-046-01 | 2,90        | 148,95           | 263,65              | 1925           | 1931        |              |              |
| 26.  | 7864 | RIM. SOBOTA, SOBÔTKA | RIMAVA         | 1-4-31-03-062-01 | 35,20       | 562,03           | 207,50              | 1990           | 1991        | 1992         | 1993         |
| 27.  | 7870 | JESENSKÉ             | GORTVA         | 1-4-31-03-092-01 | 1,70        | 164,39           | 181,76              | 1957*          | 1970*       |              |              |
| 28.  | 7878 | DRIENČANY, n/VN      | BLH            | 1-4-31-03-118-01 | 26,30       | 79,37            | -                   | 1986           | 1986        |              |              |
| 29.  | 7879 | TEPLÝ VRCH, p/VN     | BLH            | 1-4-31-03-120-01 | 24,00       | 105,40           | -                   | 1986           | 1986        |              |              |
| 30.  | 7885 | RIMAVSKÁ SEČ         | BLH            | 1-4-31-03-136-01 | 1,40        | 270,18           | 157,98              | 1925           | 1931        |              |              |
| 31.  | 7900 | VLKYŇA               | RIMAVA         | 1-4-31-03-146-01 | 1,60        | 1377,41          | 150,63              | 1973           | 1973        | 1989         |              |

Annex 4-5 GAUGIN STATIONS - Bodva River Basin ZOZNAM VODOMERNÝCH STANÍC - POVODIE DUNAJA

|              | ZOZIAMI VODOMEKI TOTI OTATIO - I OVODIE DOMADA |                      |              |                       |                       |                            |                                |                |             |              |              |  |
|--------------|------------------------------------------------|----------------------|--------------|-----------------------|-----------------------|----------------------------|--------------------------------|----------------|-------------|--------------|--------------|--|
| POR.<br>CIS. | DB<br>CIS.                                     | STANICA<br>station   | TOK<br>river | HYDROLOGICKE<br>ČÍSLO | RIECNY<br>KM<br>r. km | PLOCHA<br>POVODIA<br>[km²] | NADM.V.<br>"0" VDC<br>[m n.m.] | H<br>wat.stage | Q<br>disch. | T<br>wat.tem | P<br>sed.dis |  |
| 1.           | 8970                                           | MEDZEV, NIŽNÝ MEDZEV | BODVA        | 1-4-33-01-011-01      | 34,80                 | 90,15                      | 310,24                         | 1940           | 1941        |              |              |  |
| 2.           | 8980                                           | MOLDAVA n/BODVOU     | BODVA        | 1-4-33-01-025-01      | 18,00                 | 193,60                     | 203,54                         | 1952*          | 1965        | 1990         |              |  |
| 3.           | 9000                                           | HÝĽOV                | IDA          | 1-4-33-01-030-01      | 41,70                 | 34,50                      |                                | 1968           | 1968        | 1969         |              |  |
| 4.           | 9005                                           | BUKOVEC              | IDA          | 1-4-33-01-031-01      | 35,00                 | 52,10                      |                                | 1990           | 1990        |              |              |  |
| 5.           | 9010                                           | KOŠICE, ŠACA         | IDA          | 1-4-33-01-032-01      | 25,70                 | 70,86                      | 245,78                         | 1952           | 1953        |              |              |  |
| 6.           | 9013                                           | JANÍK                | IDA          | 1-4-33-01-064-01      | 1,70                  | 378,40                     | -                              | 1993           | 1994        |              |              |  |
| 7.           | 9020                                           | TURNIANSKE PODHRADIE | BODVA        | 1-4-33-01-071-01      | 4,70                  | 683,37                     | 171,39                         | 1934*          | 1941*       | 1970         |              |  |
| 8.           | 9050                                           | TURN.PODHRADIE, HÁJ  | BLATNÝ P.    | 1-4-33-01-080-01      | 4,20                  | 18,22                      | 273,31                         | 1968*          | 1968*       |              |              |  |
| 9.           | 9060                                           | NOVÁ BODVA, HOSŤOVCE | TURŇA        | 1-4-33-01-081-01      | 1,70                  | 153,78                     | 175,60                         | 1968           | 1968        |              |              |  |
| 10.          | 9063                                           | HOSŤOVCE             | STARÁ BODVA  | 1-4-33-01-085-01      | 0,20                  | 0,10                       | 167,88                         | 1988           | 1990        |              |              |  |

10. | 9063 | HOSTOVCE | STARA BOI

\* - obdobie poz orovania prerušené - observation interrupted

NOTE: H Water stage
Q Discharge
T Water Temperature
P Sediment Discharge

Annex 4-5 GAUGIN STATIONS - Hornad River Basin
ZOZNAM VODOMERNÝCH STANÍC - POVODIE DUNAJA

| POR. | DB   | STANICA               | TOK            | HYDROLOGICKÉ      | RIECNY  | PLOCHA I | NADM.V.  |           |        |         |         |
|------|------|-----------------------|----------------|-------------------|---------|----------|----------|-----------|--------|---------|---------|
| Cis. | ČÍS. |                       | l l            | ČÍSLO             | KILCINT | POVODIA  | "0" VDC  | Н         | Q      | Т       | Р       |
|      |      | station               | river          |                   | r. km   | [km²]    | [m n.m.] | wat.stage | disch. | wat.tem | sed.dis |
| 1.   | 8370 | HRANOVNICA            | HORNÁD         | 1-4-32-01-010-01  | 159,30  | 113,50   | 593,66   | 1951      | 1965   |         |         |
| 2.   | 8371 | HRANOVNICA            | VERNÁRSKY P.   | 1-4-32-01-013-01  | 6,80    | 25,50    | 705,46   | 1984      | 1984   |         |         |
| 3.   | 8380 | SPISŠKÝ ŠTIAVNIK      | GÁNOVSKY P.    | 1-4-32-01-017-01  | 0,80    | 31,60    | 552,53   | 1951      | 1968   |         |         |
| 4.   | 8390 | HRABUŠICE             | HORNÁD         | 1-4-32-01-023-01  | 149,40  | 219,60   | 534,15   | 1951      | 1967   |         |         |
| 5.   | 8400 | HRABUŠICE, PODLESOK   | V. BIELA VODA  | 1-4-32-01-027-01  | 2,10    | 40,17    | 547,66   | 1949*     | 1972   | 1968    |         |
| 6.   | 8410 | SPIŠSKÁ NOVÁ VES      | HORNÁD         | 1-4-32-01-033-01  | 132,00  | 336,53   | 449,18   | 1931      | 1972   | 1976    |         |
| 7.   | 8414 | SPIŠSKÁ NOVÁ VES      | HOLUBNICA      | 1-4-32-01-038-01  | 2,70    | 30,41    | -        | 1992      | 1993   |         |         |
| 8.   | 8415 | SPIŠSKÁ NOVÁ VES      | BRUSNÍK        | 1-4-32-01-042-01  | 0,90    | 57,30    | -        | 1920      | 1990   | 1960    |         |
| 9.   | 8417 | TEPLIČKA              | TEPL BRUSNÍK   | 1-4-32-01-044-01  | 0,50    | 12,50    | -        | 1994      | 1994   |         |         |
| 10.  | 8424 | MARKUŠOVCE            | LEVOČSKÝ P.    | 1-4-32-01-058-01  | 0,20    | 153,20   | -        | 1990      | 1990   |         |         |
| 11.  | 8430 | SPIŠSKÉ VLACHY        | HORNÁD         | 1-4-32-01-077-01  | 107,20  | 775,02   | 375,01   | 1921      | 1931   | 1960    | 1992    |
| 12.  | 8460 | SPIŠSKÉ VLACHY        | BRANISKO       | 1-4-32-01-090-01  | 1,40    | 110,04   | 382,38   | 1975      | 1975   |         |         |
| 13.  | 8500 | KROMPACHY             | SLOVINSKÝ P.   | 1-4-32-01-106-01  | 0,50    | 78,50    | 367,50   | 1990      | 1991   |         |         |
| 14.  | 8510 | MARGECANY             | HORNÁD         | 1-4-32-01-117-01  | 88,30   | 1132,78  | 329,56   | 1971      | 1972   |         |         |
| 15.  | 8530 | STRATENÁ              | HNILEC         | 1-4-32-02-008-01  | 75,50   | 68,23    | 789,24   | 1953      | 1954   | 1958    |         |
| 16.  | 8540 | ŠVEDLÁR, NA HRABLIACH | HNILEC         | 1-4-32-02-036-01  | 31,00   | 354,25   | 439,99   | 1931      | 1931   | 1982    |         |
| 17.  | 8542 | MNÍŠEK n/HNILCOM      | SMOLNÍK        | 1-4-32-02-051-01  | 0,20    | 99,20    | =        | 1992      | 1993   |         |         |
| 18.  | 8560 | JAKLOVCE              | HNILEC         | 1-4-32-02-064-01  | 3,00    | 606,32   | 327,14   | 1920      | 1931   | 1960    |         |
| 19.  | 8565 | KOŠICKÁ BELÁ          | BELÁ           | 1-4-32-03-005-01  | 5,50    | 23,10    | 359,09   | 1973      | 1974   |         |         |
| 20.  | 8590 | VEĽKÁ LODINA          | SOPOTNICA      | 1-4-32-03-016-01  | 0,30    | 38,40    | 257,15   | 1978      | 1978   |         |         |
| 21.  | 8670 | BZENOV                | SVINKA         | 1-4-32-03-052-01  | 16,00   | 293,50   | 293,81   | 1969      | 1969   | 1992    | 1992    |
| 22.  | 8675 | LIČARTOVCE            | SVINKA         | 1-4-32-03-056-02  | 6,60    | 336,30   | 246,23   | 1978      | 1978   |         |         |
| 23.  | 8690 | KYSAK                 | HORNÁD         | 1-4-32-03-058-01  | 53,00   | 2345,70  | 235,08   | 1927      | 1929   | 1947    |         |
| 24.  | 8710 | NIŽNÉ REPÁŠE          | TORYSA         | 1-4-32-04-003-01  | 123,90  | 21,44    | 760,81   | 1975      | 1975   |         |         |
| 25.  | 8740 | BREZOVICA             | SLAVKOVSKÝ P.  | 1-4-32-04-026-01  | 0,35    | 83,50    | 450,68   | 1943*     | 1973   |         |         |
| 26.  | 8750 | BREZOVICA             | TORYSA         | 1-4-32-04-027-01  | 101,90  | 228,30   | 443,72   | 1943      | 1973   |         |         |
| 27.  | 8768 | ĽUTINA                | ĽUTINKA        | 1-4-32-04-054-01  | 5,10    | 49,20    | -        | 1991      | 1991   |         |         |
| 28.  | 8770 | SABINOV               | TORYSA         | 1-4-32-04-061-01  | 79,60   | 495,73   | 312,96   | 1968      | 1973   | 1987    |         |
| 29.  | 8780 | PREŠOV                | TORYSA         | 1-4-32-04-078-01  | 58,30   | 673,89   | 234,89   | 1969      | 1970   | 1987    |         |
| 30.  | 8830 | DEMJATA               | SEKČOV         | 1-4-32-04-100-01  | 26,00   | 123,17   | 279,94   | 1972      | 1973   |         |         |
| 31.  | 8840 | PREŠOV                | SEKČOV         | 1-4-32-04-123-01  | 0.80    | 352,80   | 232,52   | 1925*     | 1961   |         |         |
| 32.  | 8860 | KOKOŠOVCE             | DELŇA          | 1-4-32-04-127-01  | 11,00   | 28,96    | 413,55   | 1976      | 1976   |         |         |
| 33.  | 8870 | KOŠICKÉ OLŠANY        | TORYSA         | 1-4-32-04-151-01  | 13,00   | 1298,30  | 185,83   | 1920      | 1931   | 1961    |         |
| 34.  | 8910 | SVINICA               | SVINICKÝ P.    | 1-4-32-05-027-01  | 4,25    | 59.81    | 244,27   | 1972      | 1973   |         |         |
| 35.  | 8920 | BOHDANOVCE            | OLŠAVA         | 1-4-32-05-030-01  | 10,30   | 306,20   | 194,26   | 1950      | 1966   |         |         |
| 36.  | 8930 | ŽDAŇA                 | HORNÁD         | 1-4-32-05-033-01  | 17,20   | 4232,20  |          | 1956      | 1958   | 1966    | 1992    |
| 37.  | 8950 | SEŇA                  | SOKOLIANSKY P. | 1-4-32-05-049-01  | 4.05    | 35.63    | 175,25   |           | 1971   | 1000    | 1002    |
| 57.  | 000  | OLIVI                 | OOKOLIANOKI F. | 1 4-02-05-04-5-01 | 7,03    | 33,03    | 173,23   | 1010      | 1011   | 1       |         |

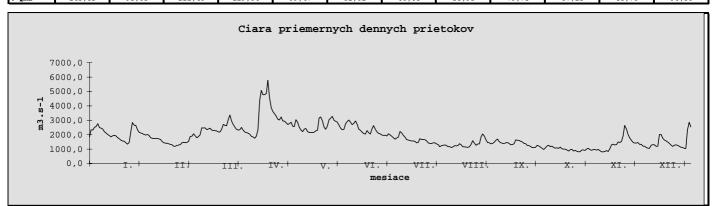
37. 8950 SEÑA SOKOLIANS
\* - obdobie pozorovania prerušené - observation interrupted

NOTE: H Water stage
Q Discharge
T Water Temperature
P Sediment Discharge

# Annex 4-6 Discharges of the Danube and its Tributaries

station Bratislava river : Danube year ROK : 1994 PLOCHA POVODIA : 131329,1 km2

| month   | I.     | II.    | III.   | IV.    | v.     | VI.    | VII.   | VIII.  | IX.    | х.     | XI.    | XII.   |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| day     |        |        |        |        |        |        |        |        |        |        |        |        |
| 1.      | 1861   | 2120   | 1462   | 2326   | 2710   | 2662   | 2063   | 1163   | 1368   | 1141   | 919,2  | 1332   |
| 2.      | 2339   | 2077   | 1539   | 2341   | 2765   | 2460   | 1974   | 1237   | 1386   | 1047   | 964,8  | 1209   |
| 3.      | 2324   | 2021   | 1879   | 2516   | 2863   | 2344   | 1893   | 1267   | 1482   | 976,6  | 962,4  | 1205   |
| 4.      | 2516   | 1978   | 1898   | 2324   | 2592   | 2382   | 1786   | 1294   | 1611   | 1091   | 928,4  | 1126   |
| 5.      | 2569   | 2013   | 2071   | 2191   | 2564   | 2758   | 1690   | 1264   | 1701   | 1217   | 976,2  | 1065   |
| 6.      | 2766   | 1969   | 1927   | 2146   | 3039   | 2910   | 1778   | 1164   | 1519   | 1267   | 893,6  | 1060   |
| 7.      | 2502   | 1794   | 1789   | 2114   | 2854   | 3017   | 1839   | 1183   | 1443   | 1171   | 807,4  | 1269   |
| 8.      | 2452   | 1755   | 1881   | 2029   | 2520   | 2864   | 2226   | 1112   | 1398   | 1216   | 808,5  | 1307   |
| 9.      | 2388   | 1731   | 2001   | 1890   | 2334   | 2705   | 2119   | 1154   | 1401   | 1111   | 831,9  | 1305   |
| 10.     | 2206   | 1743   | 2482   | 1850   | 2210   | 2784   | 1959   | 1243   | 1434   | 1071   | 899    | 1199   |
| 11.     | 2120   | 1741   | 2462   | 1752   | 2390   | 2961   | 1836   | 1220   | 1455   | 1091   | 828,7  | 1200   |
| 12.     | 2023   | 1709   | 2478   | 1905   | 2433   | 2747   | 1651   | 1248   | 1397   | 1058   | 1048   | 2007   |
| 13.     | 1944   | 1666   | 2360   | 2339   | 2209   | 2403   | 1631   | 1373   | 1300   | 1150   | 1300   | 2024   |
| 14.     | 1844   | 1527   | 2403   | 4392   | 2154   | 2304   | 1594   | 1303   | 1324   | 1026   | 1343   | 1761   |
| 15.     | 1922   | 1440   | 2451   | 5082   | 2170   | 2194   | 1567   | 1163   | 1362   | 1003   | 1290   | 1632   |
| 16.     | 1951   | 1410   | 2325   | 4775   | 2150   | 2079   | 1564   | 1155   | 1642   | 997,2  | 1316   | 1583   |
| 17.     | 1917   | 1406   | 2300   | 4782   | 2181   | 2040   | 1541   | 1150   | 1607   | 940,3  | 1499   | 1485   |
| 18.     | 1800   | 1364   | 2275   | 4854   | 2269   | 2284   | 1437   | 1122   | 1606   | 863,8  | 1460   | 1398   |
| 19.     | 1719   | 1331   | 2263   | 5780   | 2323   | 2141   | 1467   | 1167   | 1547   | 954,6  | 1531   | 1287   |
| 20.     | 1619   | 1301   | 2194   | 4595   | 3170   | 2042   | 1726   | 1335   | 1499   | 987    | 1916   | 1189   |
| 21.     | 1568   | 1196   | 2192   | 3883   | 3230   | 2413   | 1672   | 1593   | 1405   | 870,8  | 2648   | 1268   |
| 22.     | 1540   | 1198   | 2382   | 3615   | 2949   | 2634   | 1677   | 1413   | 1373   | 916,6  | 2395   | 1297   |
| 23.     | 1440   | 1251   | 2719   | 3468   | 2525   | 2382   | 1655   | 1270   | 1254   | 852,5  | 2018   | 1271   |
| 24.     | 1350   | 1293   | 2640   | 3284   | 2382   | 2197   | 1585   | 1357   | 1239   | 815,2  | 1794   | 1199   |
| 25.     | 1468   | 1308   | 2625   | 3083   | 2586   | 2096   | 1434   | 1371   | 1189   | 821,2  | 1611   | 1131   |
| 26.     | 2197   | 1439   | 3072   | 3017   | 3043   | 2055   | 1397   | 1842   | 1098   | 938,7  | 1479   | 1122   |
| 27.     | 2844   | 1478   | 3365   | 3235   | 3142   | 1974   | 1392   | 2059   | 1113   | 942,3  | 1426   | 1051   |
| 28.     | 2657   | 1441   | 2958   | 2957   | 3277   | 1952   | 1429   | 1895   | 1123   | 911    | 1418   | 1046   |
| 29.     | 2659   |        | 2721   | 2942   | 2999   | 1970   | 1440   | 1640   | 1264   | 1015   | 1452   | 2338   |
| 30.     | 2372   |        | 2527   | 2837   | 2928   | 1906   | 1369   | 1457   | 1210   | 1055   | 1336   | 2865   |
| 31.     | 2183   |        | 2381   |        | 2879   |        | 1322   | 1439   |        | 954,5  |        | 2547   |
|         |        |        |        |        |        |        |        |        |        |        |        |        |
| SUC.    | 65060  | 44700  | 72022  | 94304  | 81840  | 71660  | 51713  | 41653  | 41750  | 31472  | 40100  | 44778  |
| average | 2099   | 1596   | 2323   | 3143   | 2640   | 2389   | 1668   | 1344   | 1392   | 1015   | 1337   | 1444   |
| s.o.    | 15,98  | 12,16  | 17,69  | 23,94  | 20,10  | 18,19  | 12,70  | 10,23  | 10,60  | 7,73   | 10,18  | 11,00  |
| ODT.    | 5621,2 | 3862,1 | 6222,7 | 8147,9 | 7071,0 | 6191,4 | 4468,0 | 3598,8 | 3607,2 | 2719,2 | 3464,6 | 3868,8 |


year sum 681052,4 year max. 5990,0 DEN/MES/HOD: 19/4/15 ROCNY SP. ODTOK: 14,210 l.s-1.km-2 year mean 1866 year min. 807,4 DEN/MESIAC : 7/11 ROCNY ODTOK : 58840 mil.m3

 DNI
 30
 90
 180
 270
 330
 355
 364

 Qmd
 1994
 2928
 2338
 1726
 1303
 1060
 899,000
 365

 % Qmda
 84,26
 93,37
 91,81
 96,59
 103,72
 107,28
 54,48

|       |        |       |        | Mesacr | ne prietoky |       |       |       |       |       |       |       |
|-------|--------|-------|--------|--------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Qm    | 2099   | 1596  | 2323   | 3143   | 2640        | 2389  | 1668  | 1344  | 1392  | 1015  | 1337  | 1444  |
| % Qma | 143,85 | 93,03 | 112,40 | 129,04 | 99,47       | 82,62 | 60,68 | 58,93 | 79,75 | 67,23 | 88,76 | 96,30 |

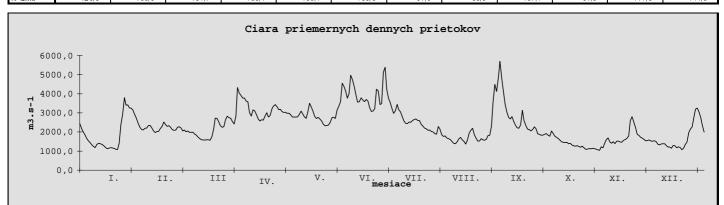


station : Bratislava year ROK : 1995 river : Danube PLOCHA POVODIA : 131329,1 km²

| month   | I.     | II.   | III.  | IV.   | V.    | VI.    | VII.  | VIII. | IX.   | Χ.    | XI.   | XII.   |
|---------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|
| day     |        |       |       |       |       |        |       |       |       |       |       |        |
| 1.      | 2446   | 3139  | 2211  | 2420  | 3035  | 3334   | 3525  | 1767  | 4123  | 1835  | 1220  | 1517   |
| 2.      | 2196   | 2914  | 2049  | 2821  | 2979  | 3570   | 3221  | 1793  | 4836  | 1775  | 1171  | 1 54 1 |
| 3.      | 2010   | 2728  | 2105  | 4323  | 2982  | 4554   | 2979  | 1686  | 5700  | 2049  | 1420  | 1 503  |
| 4.      | 1858   | 2472  | 2015  | 4043  | 2894  | 4384   | 31 12 | 1654  | 4817  | 1929  | 1589  | 1 354  |
| 5.      | 1665   | 2255  | 2049  | 3916  | 2785  | 4150   | 3443  | 1597  | 4100  | 1777  | 1695  | 1323   |
| 6.      | 1535   | 2127  | 1981  | 3767  | 2785  | 3769   | 3167  | 1 507 | 3463  | 1718  | 1480  | 1374   |
| 7.      | 1450   | 2103  | 1985  | 3778  | 2786  | 4020   | 3048  | 1406  | 3043  | 1647  | 14 04 | 1 382  |
| 8.      | 1331   | 2196  | 1984  | 3622  | 2794  | 4968   | 2795  | 1 383 | 2763  | 1570  | 1489  | 1 384  |
| 9.      | 1237   | 2201  | 1882  | 3580  | 2919  | 4733   | 2584  | 1490  | 2678  | 1486  | 1391  | 1281   |
| 10.     | 1180   | 2331  | 1834  | 3016  | 3093  | 4379   | 2457  | 1638  | 2810  | 1454  | 1518  | 1217   |
| 11.     | 1352   | 2345  | 1725  | 2836  | 2942  | 3930   | 2435  | 1715  | 2545  | 1439  | 1522  | 1204   |
| 12.     | 1407   | 2212  | 1647  | 3159  | 2793  | 3558   | 2521  | 1 582 | 2352  | 1454  | 1475  | 1152   |
| 13.     | 1386   | 2057  | 1591  | 3100  | 2712  | 3586   | 2502  | 1512  | 2222  | 1 380 | 1468  | 1 301  |
| 14.     | 1347   | 1969  | 1582  | 2918  | 3085  | 3787   | 2598  | 1362  | 2198  | 1403  | 1570  | 1274   |
| 15.     | 1284   | 2022  | 1578  | 2693  | 3501  | 3680   | 26 58 | 1 580 | 2375  | 1317  | 1598  | 1173   |
| 16.     | 1191   | 2036  | 1589  | 2573  | 3301  | 3590   | 26 84 | 1 944 | 3132  | 1270  | 1668  | 1221   |
| 17.     | 1121   | 2176  | 1590  | 2639  | 3078  | 3700   | 26 04 | 2084  | 2610  | 1256  | 1797  | 1192   |
| 18.     | 1148   | 2291  | 1563  | 2623  | 2815  | 3612   | 2600  | 2196  | 2357  | 1283  | 2599  | 1072   |
| 19.     | 1185   | 2521  | 1751  | 2833  | 2710  | 3277   | 24 04 | 1857  | 2151  | 1241  | 2802  | 1137   |
| 20.     | 1165   | 2381  | 2145  | 3012  | 2768  | 3073   | 2316  | 1688  | 2126  | 1200  | 2514  | 1341   |
| 21.     | 1141   | 2293  | 2725  | 2781  | 2669  | 3100   | 2203  | 1524  | 2051  | 1255  | 2219  | 1479   |
| 22.     | 1100   | 2331  | 2719  | 2864  | 2581  | 3214   | 2167  | 1 524 | 2131  | 1177  | 1887  | 1 966  |
| 23.     | 1080   | 2236  | 2533  | 3210  | 2408  | 4241   | 2085  | 1652  | 2269  | 1 089 | 1817  | 2145   |
| 24      | 1400   | 2122  | 2331  | 3363  | 2321  | 4147   | 2104  | 1 588 | 2174  | 1107  | 1717  | 2261   |
| 25.     | 2387   | 2086  | 2247  | 3439  | 2339  | 3439   | 2020  | 1567  | 1905  | 1132  | 1679  | 2769   |
| 26.     | 2929   | 2107  | 2280  | 3316  | 2365  | 3486   | 2003  | 1615  | 1881  | 1116  | 1610  | 3189   |
| 27.     | 3798   | 2252  | 2636  | 3165  | 2504  | 5126   | 1910  | 1808  | 1828  | 1144  | 1531  | 3253   |
| 28.     | 3399   | 2274  | 2822  | 3188  | 2746  | 5392   | 1883  | 1824  | 1832  | 1127  | 1559  | 3054   |
| 29.     | 3420   |       | 2751  | 3055  | 2773  | 4236   | 22.85 | 2306  | 1884  | 1108  | 1580  | 2751   |
| 30.     | 32.55  |       | 2718  | 3025  | 2706  | 3770   | 2151  | 3566  | 1911  | 1 066 | 1521  | 2344   |
| 31.     | 3249   |       | 2548  |       | 3148  |        | 1862  | 4495  |       | 1041  |       | 1992   |
| SÚĊ.    | 566 52 | 64177 | 65166 | 95078 | 87317 | 117805 | 78326 | 56910 | 82267 | 42845 | 50510 | 53146  |
| average | 1827   | 2292  | 2102  | 3169  | 2817  | 3927   | 2527  | 1 836 | 2742  | 1 382 | 1684  | 1714   |
| \$.O.   | 14     | 17    | 16    | 24    | 21    | 30     | 19    | 14    | 21    | 11    | 13    | 13     |
| ODT.    | 4895   | 5545  | 5630  | 8215  | 7544  | 10178  | 6767  | 4917  | 71 08 | 3702  | 4364  | 4 592  |

 year sum year mean
 850199,0 year max.
 5832,0 year min.
 DEN/MES/HOD: 03/09/17
 ROČNÝ ŠP. ODTOK:
 17,740 l. s² l. km²
 l. s² l. km²

 year mean
 2329 year min.
 1041,0 DEŇ/MES/AC : 31/10
 ROČNÝ ODTOK : 73460 mil. m³
 mil. m³


 M - denné prietoky
 (Qmd)

 DNI
 30
 90
 180
 270
 330
 355
 364

 Qmd 1995
 3680
 2894
 2211
 1589
 1274
 1127
 1066

 % Qmda
 105,9
 115,6
 117,6
 117,8
 124,7
 134,5
 159,1

|       |      |       |      | Mesačné pr | ietoky |       |      |      |       |      |       |      |
|-------|------|-------|------|------------|--------|-------|------|------|-------|------|-------|------|
| Qma   | 1459 | 1716  | 2067 | 2436       | 2654   | 2891  | 2749 | 2280 | 1745  | 1510 | 1506  | 1500 |
| % Oma | 1253 | 133 6 | 1017 | 130 1      | 106 1  | 135 8 | 91 9 | 80 5 | 157 1 | 91.5 | 111 8 | 1143 |



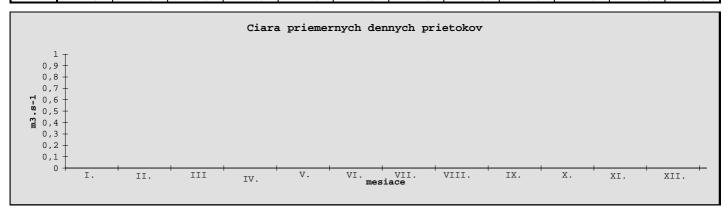
discharge

#### ROČNÉ SPRACOVANIE PRIETOKOV [m³.s·1]

station : Bratislava river : Danube

year

ROK: PLOCHA POVODIA: 1996 131329,1 km²


| month   | l.    | IJ.   | III.  | IV.   | V.    | VI.   | VII.  | VIII. | IX.   | X.    | XI.   | XII.  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day     |       |       |       |       |       |       |       |       |       |       |       |       |
| 1.      | 1873  | 1098  | 1066  | 1914  | 2466  | 2874  | 2580  | 1740  | 1903  | 1996  | 2181  | 1800  |
| 2.      | 1763  | 1086  | 1011  | 1892  | 2554  | 2765  | 2276  | 1 546 | 1795  | 1929  | 2357  | 1794  |
| 3.      | 1730  | 1014  | 1004  | 1857  | 2368  | 2741  | 2385  | 1 564 | 2079  | 2156  | 2500  | 1908  |
| 4.      | 1660  | 1088  | 972   | 1922  | 2299  | 2597  | 2587  | 2191  | 2164  | 2388  | 2263  | 1948  |
| 5.      | 1603  | 948   | 880   | 1861  | 2095  | 2440  | 2237  | 2315  | 2019  | 2164  | 2114  | 1947  |
| 6.      | 1527  | 988   | 935   | 1935  | 2012  | 2286  | 2084  | 2014  | 2507  | 2199  | 2031  | 1813  |
| 7.      | 1452  | 994   | 914   | 2153  | 1958  | 2182  | 2015  | 1739  | 2760  | 2400  | 1905  | 1795  |
| 8.      | 1410  | 1005  | 934   | 2391  | 1979  | 2114  | 2087  | 1 599 | 2921  | 2241  | 1926  | 1615  |
| 9.      | 1525  | 989   | 908   | 2574  | 2116  | 2107  | 2668  | 1668  | 2730  | 2190  | 2041  | 1 536 |
| 10.     | 1650  | 985   | 996   | 2828  | 26 01 | 1 986 | 3766  | 1614  | 2371  | 2075  | 2023  | 1 522 |
| 11.     | 1647  | 976   | 897   | 2876  | 2488  | 2045  | 3930  | 1457  | 2211  | 2002  | 1920  | 1549  |
| 12.     | 1594  | 940   | 822   | 2720  | 2222  | 2078  | 4261  | 1433  | 2068  | 1956  | 1831  | 1 588 |
| 13.     | 1677  | 928   | 859   | 2765  | 2412  | 2067  | 4279  | 1 576 | 1939  | 1798  | 1764  | 1513  |
| 14.     | 1622  | 982   | 911   | 2622  | 4238  | 2439  | 36 34 | 2120  | 2105  | 1644  | 1743  | 1 522 |
| 15.     | 1552  | 991   | 910   | 2492  | 5597  | 2120  | 3006  | 2190  | 3904  | 1565  | 2392  | 1419  |
| 16.     | 1493  | 1021  | 908   | 2384  | 4642  | 1955  | 2629  | 1 954 | 3772  | 1604  | 2624  | 1400  |
| 17.     | 1436  | 1015  | 1062  | 2240  | 3760  | 1647  | 2467  | 1 886 | 3345  | 1660  | 2731  | 1453  |
| 18.     | 1449  | 1103  | 1187  | 2148  | 3271  | 1615  | 2265  | 1949  | 2794  | 1763  | 2415  | 1497  |
| 19.     | 1340  | 1213  | 1182  | 2071  | 3077  | 1544  | 2061  | 1694  | 2507  | 1809  | 2281  | 1468  |
| 20.     | 1314  | 1429  | 1416  | 2113  | 2897  | 1511  | 1947  | 1 522 | 2338  | 1 846 | 2259  | 1654  |
| 21.     | 1227  | 1361  | 1478  | 2124  | 3027  | 1538  | 1784  | 1 504 | 2177  | 2768  | 2137  | 1790  |
| 22.     | 1168  | 1307  | 1552  | 2231  | 3083  | 1608  | 1645  | 1429  | 2083  | 5367  | 2044  | 1853  |
| 23.     | 1104  | 1212  | 1800  | 2318  | 3179  | 2306  | 1537  | 1424  | 2077  | 6216  | 2021  | 1 836 |
| 24.     | 1112  | 1100  | 2156  | 2455  | 2818  | 2903  | 1587  | 1549  | 2572  | 4905  | 1924  | 1768  |
| 25.     | 1159  | 1021  | 2490  | 2535  | 2518  | 2574  | 1667  | 1689  | 34 84 | 3456  | 1798  | 1663  |
| 26.     | 1136  | 985   | 2741  | 2482  | 2598  | 2305  | 1711  | 2107  | 2830  | 2918  | 1705  | 1568  |
| 27.     | 1150  | 929   | 2648  | 2468  | 2987  | 2207  | 1739  | 1759  | 2508  | 2549  | 1764  | 1477  |
| 28.     | 1085  | 988   | 2760  | 2274  | 3758  | 2155  | 1522  | 1785  | 2363  | 2492  | 1863  | 1 389 |
| 29.     | 1040  | 1026  | 2475  | 2213  | 4450  | 2084  | 1506  | 1964  | 2281  | 2421  | 1799  | 1 309 |
| 30.     | 1000  |       | 2308  | 2357  | 36 98 | 2109  | 1575  | 2368  | 2163  | 2304  | 1781  | 1 146 |
| 31.     | 1060  |       | 2162  |       | 3242  |       | 1739  | 2194  |       | 2260  |       | 1148  |
| SÚ Č.   | 43558 | 30723 | 44342 | 69215 | 92410 | 64902 | 73176 | 55543 | 74770 | 77041 | 62137 | 49688 |
| average | 1405  | 1059  | 1430  | 2307  | 2981  | 2163  | 2361  | 1792  | 2492  | 2485  | 2071  | 1603  |
| \$.O.   | 11    | 8     | 11    | 18    | 23    | 16    | 18    | 14    | 19    | 19    | 16    | 12    |
| ODT.    | 3763  | 2654  | 3831  | 5980  | 7984  | 5608  | 6322  | 4799  | 6460  | 6656  | 5369  | 4293  |

 year sum
 737504,6 year max.
 983,0 year min.
 DEN/MES/HOD: 23/10/17
 ROCNY SP. ODTOK:
 15,350 year min.
 1s'l.km²

 year mean
 2015 year min.
 822,3 DEN/MES/AC : 12/03
 ROCNY ODTOK : 63720 mil.m³
 63720 mil.m³

|          |      |      | M - denné priet | oky (Qmd) |       |       |       |
|----------|------|------|-----------------|-----------|-------|-------|-------|
| DNI      | 30   | 90   | 180             | 270       | 330   | 355   | 364   |
| Qmd 1996 | 2918 | 2384 | 1956            | 1546      | 1060  | 933,8 | 880,4 |
| % Omda   | 84.0 | 952  | 104.0           | 1146      | 103.7 | 111 4 | 1314  |

|       |      |      |      | Mesačné pr | ietoky |      |      |      |       |       |       |       |
|-------|------|------|------|------------|--------|------|------|------|-------|-------|-------|-------|
| Qma   | 1459 | 1716 | 2067 | 2436       | 26 54  | 2891 | 2749 | 2280 | 1745  | 1510  | 1506  | 1500  |
| % Qma | 96.3 | 61.7 | 69.2 | 94.7       | 112.3  | 74.8 | 85.9 | 78.6 | 142.8 | 164.6 | 137.5 | 106.9 |



#### ROCNE SPRACOVANIE PRIETOKOV [m3.s-1]

 station: Lenartovce
 year
 ROK
 : 1994

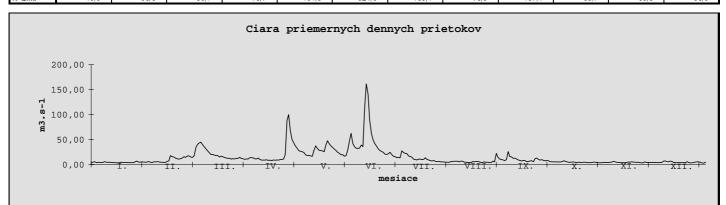
 river: Slana
 PLOCHA POVODIA:
 1829,65 km2

| month      | ı.        | II.   | III.       | IV.    | v.     | VI.          | VII.   | VIII. | IX.           | х.    | XI.   | XII.       |
|------------|-----------|-------|------------|--------|--------|--------------|--------|-------|---------------|-------|-------|------------|
| day        |           |       |            |        |        |              |        |       |               |       |       |            |
| 1.         | 16,59     | 10,41 | 10,14      | 10,65  | 20,19  | 20,93        | 7,968  | 2,390 | 7,551         | 5,643 | 16,68 | 6,193      |
| 2.         | 16,02     | 9,556 | 9,671      | 12,61  | 21,62  | 20,18        | 6,116  | 5,331 | 9,076         | 5,318 | 14,24 | 5,403      |
| 3.         | 16,18     | 10,08 | 10,08      | 29,03  | 24,71  | 18,77        | 5,424  | 4,323 | 4,634         | 5,612 | 13,61 | 5,122      |
| 4.         | 17,08     | 9,355 | 12,52      | 27,62  | 18,23  | 20,86        | 4,840  | 3,516 | 3,581         | 8,173 | 12,78 | 5,346      |
| 5.         | 19,80     | 9,639 | 11,25      | 23,92  | 16,66  | 22,03        | 4,600  | 2,939 | 3,748         | 7,090 | 11,75 | 6,783      |
| 6.         | 23,09     | 8,318 | 12,38      | 23,58  | 18,30  | 23,67        | 4,742  | 3,350 | 3,527         | 5,927 | 10,84 | 5,901      |
| 7.         | 20,55     | 8,114 | 10,75      | 25,59  | 15,70  | 24,08        | 4,552  | 3,620 | 3,133         | 6,133 | 9,738 | 5,625      |
| 8.         | 18,47     | 10,40 | 11,81      | 24,02  | 12,90  | 20,92        | 4,434  | 2,887 | 3,076         | 7,214 | 11,24 | 5,333      |
| 9.         | 19,65     | 8,859 | 12,60      | 22,37  | 12,95  | 18,70        | 4,262  | 2,728 | 2,935         | 7,336 | 11,48 | 5,372      |
| 10.        | 22,65     | 11,06 | 11,81      | 22,79  | 13,87  | 18,01        | 4,200  | 2,693 | 2,928         | 7,263 | 9,478 | 5,057      |
| 11.        | 35,26     | 12,39 | 12,88      | 31,16  | 17,58  | 18,81        | 4,200  | 2,255 | 2,604         | 8,643 | 12,98 | 4,884      |
| 12.        | 46,94     | 11,68 | 13,41      | 52,20  | 12,69  | 17,73        | 4,137  | 2,496 | 2,412         | 6,304 | 15,23 | 4,821      |
| 13.        | 47,71     | 10,31 | 14,28      | 113,80 | 11,21  | 19,32        | 4,015  | 3,175 | 2,406         | 6,724 | 13,79 | 4,887      |
| 14.        | 43,19     | 8,610 | 17,03      | 120,30 | 10,82  | 17,17        | 3,860  | 2,498 | 2,534         | 4,922 | 12,04 | 5,220      |
| 15.        | 39,69     | 9,525 | 18,46      | 101,90 | 10,76  | 12,99        | 3,767  | 2,262 | 2,432         | 4,421 | 11,75 | 6,807      |
| 16.        | 33,34     | 8,129 | 18,51      | 79,60  | 11,16  | 12,55        | 3,627  | 2,205 | 4,646         | 6,342 | 12,95 | 4,895      |
| 17.        | 31,50     | 9,936 | 19,97      | 65,15  | 11,41  | 12,51        | 3,472  | 3,047 | 4,502         | 5,180 | 10,67 | 4,479      |
| 18.        | 28,93     | 9,757 | 19,14      | 83,15  | 15,31  | 12,11        | 3,450  | 2,477 | 4,752         | 5,514 | 11,00 | 4,383      |
| 19.        | 23,50     | 9,294 | 17,08      | 111,70 | 16,28  | 10,59        | 5,813  | 2,478 | 6,972         | 4,174 | 10,01 | 4,283      |
| 20.        | 21,25     | 8,733 | 16,99      | 89,23  | 16,82  | 10,62        | 4,508  | 3,529 | 7,198         | 5,834 | 9,110 | 5,753      |
| 21.        | 20,64     | 8,209 | 16,66      | 72,57  | 17,48  | 9,707        | 3,719  | 2,418 | 6,957         | 6,025 | 10,41 | 4,508      |
| 22.        | 18,36     | 9,226 | 16,17      | 56,70  | 16,34  | 7,867        | 3,500  | 2,446 | 7,244         | 4,344 | 11,59 | 4,001      |
| 23.        | 17,79     | 7,897 | 13,63      | 51,48  | 14,64  | 7,267        | 3,356  | 2,438 | 5,922         | 4,893 | 10,30 | 3,950      |
| 24.        | 14,21     | 7,748 | 11,41      | 44,34  | 17,77  | 8,823        | 3,178  | 2,694 | 4,562         | 4,338 | 10,47 | 3,715      |
| 25.        | 13,62     | 9,652 | 12,42      | 35,53  | 21,91  | 7,895        | 3,104  | 2,905 | 4,458         | 6,072 | 10,08 | 3,640      |
| 26.        | 12,93     | 9,159 | 14,60      | 31,39  | 47,46  | 6,956        | 3,030  | 5,906 | 3,918         | 11,40 | 8,400 | 4,184      |
| 27.        | 12,66     | 8,138 | 15,38      | 29,80  | 32,47  | 6,582        | 3,169  | 8,601 | 3,869         | 12,53 | 6,996 | 5,023      |
| 28.        | 13,95     | 8,672 | 15,18      | 26,05  | 31,82  | 8,834        | 3,116  | 5,276 | 6,685         | 15,90 | 7,379 | 4,334      |
| 29.        | 13,21     | -/    | 12,77      | 24,67  | 33,31  | 7,888        | 2,842  | 3,650 | 5,701         | 24,14 | 8,080 | 5,252      |
| 30.        | 9,73      |       | 12,61      | 20,47  | 30,86  | 6,643        | 2,562  | 6,677 | 4,412         | 31,08 | 7,419 | 4,271      |
| 31.        | 9,85      |       | 12,36      | /      | 28,52  | -,           | 2,433  | 6,166 | -,            | 23,47 | .,    | 5,111      |
| 52.        | 3703      |       | 12/30      |        | 20732  |              | 27133  | 0,100 | 1             | 23/1/ | 1     | 3/111      |
| SUC.       | 698,3     | 262,9 | 434,0      | 1463,4 | 601,8  | 431,0        | 126,0  | 109,4 | 138,4         | 268,0 | 332,5 | 154,5      |
| average    | 22,53     | 9,388 | 14,00      | 48,78  | 19,411 | 14,37        | 4,064  | 3,528 | 4,613         | 8,644 | 11,08 | 4,985      |
| s.o.       | 12,31     | 5,131 | 7,651      | 26,66  | 10,61  | 7,852        | 2,221  | 1,928 | 2,521         | 4,724 | 6,057 | 2,725      |
| ODT.       | 60,34     | 22,71 | 37,49      | 126,4  | 51,99  | 37,24        | 10,89  | 9,45  | 11,96         | 23,15 | 28,73 | 13,35      |
| ROCNY SUCE | lvear gum | 5020  | year. max. |        | 123,7  | DEN/MES/HOD: | 14/4/6 |       | ROCNY SP. OD' | TOK:  | 7 517 | 1.s-1.km-2 |
| ROCNY PRIE |           |       | year min.  |        | 2,205  | DEN/MES/ACD: | : 16/8 |       | ROCNY ODTOK   | :     |       | mil.m3     |
| ROCNI PRIE | year mean | 13,75 | year miii. |        | 2,203  | DEN/MESTAC   | · 10/0 |       | KOCNI ODIOK   | •     | 433,/ | m±±.M3     |

| <b>Qmd 1994</b> 29,80 16,66 9,733 5,057 3,178 2,446 2,255  |          |       |        | M - denne | prietoky | (Qmd) |       |        |
|------------------------------------------------------------|----------|-------|--------|-----------|----------|-------|-------|--------|
|                                                            | DNI      | 30    | 90     | 180       | 270      | 330   | 355   | 364    |
| <b>% Qmda</b> 96,38 102,65 105,56 92,69 85,73 89,66 114,29 | Qmd 1994 | 29,80 | 16,66  | 9,733     | 5,057    | 3,178 | 2,446 | 2,255  |
|                                                            | % Qmda   | 96,38 | 102,65 | 105,56    | 92,69    | 85,73 | 89,66 | 114,29 |
|                                                            | % Qmda   | 96,38 | 102,65 | 105,56    | 92,69    | 85,73 | 89,66 | 114,2  |



station: Lenartovce year ROK : 1995 river: Slana POVODIA: 1829,65 km²


| month   | I. I    | II.     | III.     | IV.     | V.       | VI.      | VII.    | VIII.   | IX.      | X.      | XI.     | l XII.  |
|---------|---------|---------|----------|---------|----------|----------|---------|---------|----------|---------|---------|---------|
| day     | **      | ***     | ****     |         |          |          |         |         |          |         |         |         |
| 1.      | 5,044   | 5,120   | 14,920   | 11,440  | 43,670   | 18,100   | 13,900  | 4,580   | 9,967    | 5,580   | 4,603   | 4,360   |
| 2.      | 4,614   | 4,774   | 14,280   | 10,520  | 37,530   | 29,190   | 14,420  | 5,627   | 9,138    | 5,473   | 4,245   | 3,965   |
| 3.      | 5,613   | 4,762   | 17,390   | 11,270  | 32,740   | 47,280   | 13,520  | 6,501   | 7,983    | 5,584   | 4,192   | 3,921   |
| 4.      | 4,318   | 5,969   | 34,060   | 11,080  | 27,890   | 62,480   | 27,630  | 6,757   | 9,797    | 5,105   | 4,327   | 4,020   |
| 5.      | 4,482   | 4,952   | 40,410   | 13,700  | 26,650   | 42,150   | 24,390  | 6,587   | 26,020   | 5,585   | 4,832   | 4,130   |
| 6.      | 4,361   | 3,838   | 43,160   | 13,780  | 25,640   | 35,950   | 22,360  | 6,598   | 16,130   | 5,228   | 5,727   | 6,642   |
| 7.      | 4,275   | 5,432   | 44,720   | 13,310  | 24,410   | 32,580   | 22,260  | 5,569   | 15,250   | 6,149   | 5,997   | 7,422   |
| 8.      | 4,496   | 5,370   | 39,730   | 11,420  | 19,630   | 32,510   | 17,440  | 7,090   | 12,490   | 7,669   | 4,874   | 6,000   |
| 9.      | 5,643   | 5,610   | 35,900   | 11,360  | 18,210   | 32,930   | 16,470  | 6,712   | 12,900   | 5,990   | 4,328   | 5,419   |
| 10.     | 4,658   | 5,604   | 31,440   | 13,180  | 18,160   | 39,050   | 14,590  | 4,666   | 11,340   | 5,521   | 3,899   | 7,042   |
| 11.     | 4,400   | 4,838   | 27,520   | 9,941   | 17,280   | 35,960   | 11,030  | 4,886   | 9,231    | 4,629   | 3,955   | 6,338   |
| 12.     | 4,809   | 4,802   | 23,820   | 9,018   | 16,630   | 114,300  | 9,796   | 4,250   | 8,183    | 4,673   | 3,813   | 4,235   |
| 13.     | 4,135   | 4,304   | 20,300   | 8,903   | 28,200   | 161,600  | 9,332   | 4,041   | 7,167    | 5,131   | 3,873   | 3,700   |
| 14.     | 4,000   | 4,593   | 20,090   | 8,826   | 37,550   | 141,200  | 11,010  | 3,725   | 8,208    | 5,167   | 3,750   | 3,700   |
| 15.     | 3,751   | 6,334   | 18,960   | 9,558   | 32,070   | 89,450   | 10,800  | 5,937   | 7,950    | 4,531   | 4,996   | 3,700   |
| 16.     | 3,560   | 7,371   | 18,090   | 8,392   | 28,920   | 62,630   | 9,979   | 5,464   | 5,723    | 4,125   | 4,824   | 3,700   |
| 17.     | 3,562   | 18,070  | 17,920   | 8,940   | 28,020   | 50,100   | 10,460  | 6,224   | 6,056    | 4,854   | 5,390   | 3,841   |
| 18.     | 3,957   | 15,690  | 15,070   | 8,062   | 27,650   | 41,930   | 13,830  | 6,311   | 7,494    | 4,166   | 5,032   | 3,789   |
| 19.     | 4,765   | 14,950  | 17,070   | 9,298   | 25,640   | 37,530   | 9,854   | 5,350   | 7,562    | 4,604   | 4,753   | 3,774   |
| 20.     | 4,255   | 12,710  | 15,760   | 8,608   | 38,490   | 31,750   | 9,178   | 4,056   | 5,928    | 4,953   | 4,458   | 5,683   |
| 21.     | 4,239   | 11,610  | 14,050   | 9,145   | 47,700   | 28,190   | 7,656   | 4,548   | 11,870   | 4,353   | 4,918   | 4,297   |
| 22.     | 4,203   | 10,980  | 13,040   | 8,993   | 41,980   | 26,330   | 7,302   | 5,595   | 13,110   | 3,824   | 3,933   | 3,140   |
| 23.     | 3,958   | 11,990  | 12,450   | 9,781   | 37,500   | 24,660   | 8,075   | 4,544   | 10,250   | 3,723   | 3,474   | 3,547   |
| 24.     | 3,896   | 13,300  | 12,670   | 10,180  | 34,740   | 21,190   | 6,484   | 4,652   | 9,081    | 3,873   | 3,518   | 4,299   |
| 25.     | 3,827   | 15,550  | 11,020   | 11,350  | 31,020   | 20,320   | 5,981   | 3,699   | 9,840    | 4,624   | 5,400   | 5,054   |
| 26.     | 3,959   | 14,580  | 11,800   | 19,990  | 28,570   | 21,610   | 6,298   | 3,875   | 8,264    | 5,248   | 4,273   | 5,578   |
| 27.     | 5,445   | 17,350  | 11,310   | 88,550  | 24,700   | 24,730   | 5,513   | 7,166   | 7,358    | 4,550   | 4,007   | 5,520   |
| 28.     | 7,060   | 17,440  | 12,420   | 100,000 | 22,560   | 20,420   | 5,315   | 5,432   | 8,609    | 3,925   | 4,170   | 4,422   |
| 29.     | 5,221   |         | 12,620   | 67,430  | 19,690   | 16,790   | 5,050   | 22,330  | 7,459    | 3,659   | 4,352   | 3,069   |
| 30.     | 4,886   |         | 14,450   | 50,570  | 19,930   | 16,200   | 4,868   | 14,880  | 5,637    | 3,457   | 4,205   | 2,850   |
| 31.     | 5,561   |         | 12,310   |         | 16,530   |          | 4,828   | 11,090  |          | 4,154   |         | 4,672   |
| SÚĊ.    | 140,953 | 257,893 | 648, 750 | 586,595 | 879, 900 | 1359,110 | 359,619 | 198,742 | 295, 995 | 150,107 | 134,118 | 141,829 |
| average | 4,547   | 9,210   | 20,927   | 19,553  | 28,384   | 45,304   | 11,601  | 6,411   | 9,867    | 4,842   | 4,471   | 4,575   |
| \$.O.   | 2,485   | 5,034   | 11,438   | 10,687  | 15,513   | 24,761   | 6,340   | 3,504   | 5,393    | 2,646   | 2,443   | 2,501   |
| ODT.    | 12,178  | 22,282  | 56,052   | 50,682  | 76,023   | 117,427  | 31,071  | 17,171  | 25,574   | 12,969  | 11,588  | 12,254  |

 year sum
 5153,611
 year max.
 168,500
 DEN/MES/HOD:
 13/06/12
 ROČNÝ ŠP. ODTOK:
 7,717
 I.s² l.km²

 year mean
 14,119
 year min.
 2,850
 DEN/MES/AC : 30/12
 ROČNÝ ODTOK :
 445,272
 mil.m³

|          |        |        | M - denné priet | oky (Qmd) |       |       |       |
|----------|--------|--------|-----------------|-----------|-------|-------|-------|
| DNI      | 30     | 90     | 180             | 270       | 330   | 355   | 364   |
| Qmd 1995 | 35,900 | 16,630 | 7,669           | 4,802     | 3,957 | 3,699 | 3,069 |
| % Omda   | 1161   | 102.5  | 83.2            | 88.0      | 1067  | 1356  | 155.5 |

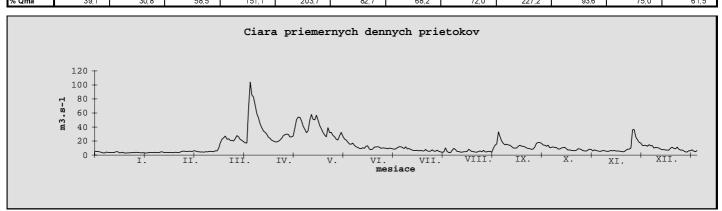
|       |       |        |        | Mesačné prieto | ky     |        |        |       |       |       |        |        |
|-------|-------|--------|--------|----------------|--------|--------|--------|-------|-------|-------|--------|--------|
| Qma   | 9,710 | 13,490 | 23,500 | 24,830         | 18,760 | 13,970 | 11,010 | 8,510 | 6,270 | 9,010 | 14,880 | 13,660 |
| % Oma | 46.8  | 68 3   | 891    | 78 7           | 151 3  | 324 3  | 105 4  | 75.3  | 157 4 | 53 7  | 30.0   | 33.5   |



station : Lenartovce river ; Slana

year

ROK: PLOCHA POVODIA:


1996 1829,7 km 2

| month   | l.      | II.     | III.    | IV.      | V.       | VI.     | VII.    | VIII.   | IX.     | X.      | XI.     | XII.    |
|---------|---------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------|---------|
| day     |         |         |         |          |          |         |         |         |         |         |         |         |
| 1.      | 5,552   | 3,004   | 6,222   | 17,320   | 38,930   | 21,530  | 8,893   | 5,144   | 33,030  | 14,080  | 5,572   | 14,730  |
| 2.      | 5,138   | 3,159   | 5,934   | 17,300   | 50,680   | 18,510  | 10,790  | 3,691   | 26,090  | 10,580  | 5,409   | 13,230  |
| 3.      | 5,119   | 3,579   | 4,794   | 65,980   | 54,030   | 15,830  | 11,760  | 3,509   | 20,070  | 11,190  | 6,617   | 13,390  |
| 4.      | 4,613   | 3,780   | 4,766   | 104,100  | 53,840   | 15,580  | 11,810  | 6,587   | 16,380  | 11,720  | 6,189   | 10,010  |
| 5.      | 4,034   | 3,696   | 4,330   | 85,810   | 48,740   | 17,020  | 10,880  | 9,659   | 14,590  | 10,930  | 5,670   | 10,920  |
| 6.      | 3,227   | 3,777   | 4,642   | 82,840   | 41,320   | 13,610  | 9,402   | 7,918   | 15,430  | 10,630  | 5,175   | 10,510  |
| 7.      | 2,996   | 3,765   | 4,068   | 70,680   | 36,620   | 11,820  | 11,820  | 5,340   | 14,270  | 8,664   | 5,680   | 10,100  |
| 8.      | 4,333   | 3,367   | 4,848   | 59,150   | 32,050   | 10,910  | 8,715   | 5,034   | 14,160  | 8,771   | 6,644   | 8,505   |
| 9.      | 3,766   | 3,631   | 4,668   | 53,490   | 34,740   | 9,559   | 9,273   | 4,309   | 12,120  | 10,070  | 5,889   | 7,819   |
| 10.     | 3,829   | 4,589   | 5,079   | 44,120   | 49,990   | 9,195   | 7,952   | 4,159   | 10,140  | 10,680  | 6,654   | 7,868   |
| 11.     | 3,708   | 4,503   | 5,382   | 38,940   | 57,980   | 10,490  | 7,179   | 4,872   | 10,040  | 11,260  | 5,699   | 7,200   |
| 12.     | 3,702   | 3,750   | 5,079   | 34,540   | 51,080   | 9,542   | 6,657   | 4,725   | 10,090  | 9,065   | 5,931   | 7,156   |
| 13.     | 3,790   | 3,963   | 4,827   | 32,340   | 50,140   | 12,700  | 6,446   | 5,080   | 12,670  | 7,088   | 5,633   | 7,121   |
| 14.     | 4,811   | 3,783   | 6,063   | 29,940   | 56,910   | 13,230  | 6,913   | 8,231   | 13,940  | 7,560   | 5,339   | 10,150  |
| 15.     | 4,691   | 3,726   | 6,042   | 25,550   | 50, 1 30 | 8,614   | 5,954   | 6,714   | 12,670  | 6,616   | 4,836   | 11,190  |
| 16.     | 3,211   | 3,624   | 9,751   | 23,620   | 42,070   | 7,818   | 6,737   | 5,017   | 12,570  | 6,274   | 4,823   | 9,626   |
| 17.     | 3,311   | 3,469   | 17,570  | 21,240   | 37,520   | 8,783   | 5,909   | 4,717   | 11,600  | 6,251   | 6,797   | 8,904   |
| 18.     | 4,184   | 3,643   | 22,770  | 20,080   | 32,450   | 11,450  | 5,999   | 4,342   | 10,380  | 6,735   | 8,413   | 11,330  |
| 19.     | 2,889   | 4,105   | 24,580  | 19,040   | 28,480   | 11,610  | 8,082   | 4,201   | 9,383   | 8,797   | 8,391   | 8,392   |
| 20.     | 2,962   | 3,672   | 27,080  | 18,780   | 26,020   | 11,940  | 5,838   | 5,325   | 9,151   | 8,906   | 10,150  | 7,034   |
| 21.     | 3,221   | 3,581   | 22,590  | 19,660   | 38,900   | 11,330  | 5,514   | 5,921   | 8,293   | 8,041   | 35,950  | 7,201   |
| 22.     | 3,129   | 4,484   | 23,250  | 21,370   | 31,910   | 9,556   | 5,729   | 4,676   | 8,574   | 6,291   | 36,470  | 5,837   |
| 23.     | 3,453   | 5,379   | 20,960  | 24,000   | 32,340   | 10,250  | 7,498   | 6,736   | 11,560  | 5,928   | 25,510  | 4,529   |
| 24.     | 3,749   | 5,706   | 20,880  | 27,660   | 28,090   | 10,020  | 5,693   | 4,498   | 16,640  | 5,796   | 21,950  | 4,276   |
| 25.     | 3,333   | 5,286   | 20,110  | 29,250   | 26,110   | 9,706   | 5,424   | 4,621   | 17,930  | 7,106   | 18,170  | 6,184   |
| 26.     | 4,049   | 5,149   | 23,560  | 29,870   | 22,530   | 8,859   | 7,117   | 5,412   | 17,690  | 8,551   | 17,040  | 6,263   |
| 27.     | 3,621   | 5,531   | 27,750  | 29,600   | 21,530   | 10,010  | 5,269   | 5,318   | 16,770  | 7,931   | 13,720  | 7,608   |
| 28.     | 3,461   | 5,469   | 25,950  | 25,840   | 27,670   | 9,679   | 4,599   | 4,065   | 14,420  | 5,818   | 13,910  | 5,703   |
| 29.     | 3,305   | 5,309   | 22,340  | 26,010   | 32,360   | 8,876   | 4,201   | 9,965   | 14,190  | 7,601   | 13,820  | 4,863   |
| 30.     | 3,409   |         | 20,910  | 27,200   | 26,920   | 8,516   | 4,645   | 14,180  | 12,570  | 6,472   | 12,640  | 6,347   |
| 31.     | 3,132   |         | 19,230  |          | 22,700   |         | 10,160  | 15,930  |         | 5,967   |         | 6,321   |
| SÚ Č.   | 117,728 | 120,479 | 426,025 | 1125,320 | 1184,780 | 346,543 | 232,858 | 189,896 | 427,411 | 261,369 | 334,691 | 260,317 |
| average | 3,798   | 4,154   | 13,743  | 37,511   | 38,219   | 11,551  | 7,512   | 6,126   | 14,247  | 8,431   | 11,156  | 8,397   |
| \$.O.   | 2,076   | 2,271   | 7,511   | 20,502   | 20,889   | 6,313   | 4,105   | 3,348   | 7,787   | 4,608   | 6,098   | 4,590   |
| ODT.    | 10,172  | 10,409  | 36,809  | 97,228   | 102,365  | 29,941  | 20,119  | 16,407  | 36,928  | 22,582  | 28,917  | 22,491  |

121,300 DEN/MES/HOD: 04/04/2 2,889 DEN/MESIAC : 19/01 ROČNÝ ŠP. ODTOK: ROČNÝ ODTOK 5027,417 year max. 13,736 year min. year sum year mean 7,508 434,369 l.s 1.km ² mil.m³

|          |        |        | M - denné priet | oky (Qmd) |       |       |       |
|----------|--------|--------|-----------------|-----------|-------|-------|-------|
| DNI      | 30     | 90     | 180             | 270       | 330   | 355   | 364   |
| Qmd 1996 | 33,030 | 17,020 | 8,783           | 5,379     | 3,780 | 3,311 | 2,996 |
| % Omda   | 106.8  | 104 9  | 95.3            | 98.6      | 1020  | 1214  | 151.8 |

|       |       |        |        | Mesačné prieto | ky     |        |        |       |       |       |        |        |
|-------|-------|--------|--------|----------------|--------|--------|--------|-------|-------|-------|--------|--------|
| Qma   | 9,710 | 13,490 | 23,500 | 24,830         | 18,760 | 13,970 | 11,010 | 8,510 | 6,270 | 9,010 | 14,880 | 13,660 |
| % Qma | 39,1  | 30, 8  | 58,5   | 151,1          | 203,7  | 82,7   | 68,2   | 72,0  | 227,2 | 93,6  | 75,0   | 61,5   |



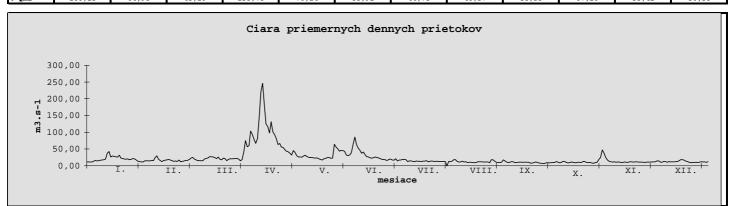
#### ROCNE SPRACOVANIE PRIETOKOV [m3.s-1]

 station: Zdana
 year
 ROK
 : 1994

 river: Hornad
 PLOCHA POVODIA:
 4232,2 km2

| month   | I.    | II.   | III.  | IV.    | v.    | VI.   | VII.  | VIII. | IX.   | x.    | XI.   | XII.  |
|---------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| day     |       |       |       |        |       |       |       |       |       |       |       |       |
| 1.      | 11,62 | 12,33 | 16,11 | 14,58  | 32,22 | 42,81 | 21,02 | 12,99 | 10,32 | 9,467 | 25,10 | 14,39 |
| 2.      | 11,47 | 11,68 | 18,86 | 18,69  | 45,25 | 32,34 | 14,34 | 12,13 | 17,56 | 9,487 | 17,41 | 14,82 |
| 3.      | 11,70 | 11,57 | 22,97 | 43,22  | 40,12 | 29,92 | 17,25 | 13,76 | 14,39 | 12,33 | 13,22 | 11,19 |
| 4.      | 11,16 | 14,67 | 24,66 | 74,86  | 30,00 | 32,58 | 17,10 | 18,13 | 11,20 | 11,18 | 12,18 | 10,61 |
| 5.      | 13,95 | 14,89 | 20,09 | 57,01  | 26,40 | 38,55 | 19,07 | 18,12 | 9,47  | 8,693 | 11,11 | 12,81 |
| 6.      | 15,57 | 14,80 | 17,57 | 60,05  | 26,19 | 64,11 | 19,05 | 13,02 | 10,88 | 10,19 | 12,09 | 12,47 |
| 7.      | 14,15 | 14,55 | 15,47 | 103,6  | 25,72 | 85,74 | 18,24 | 11,16 | 12,42 | 13,32 | 10,69 | 10,35 |
| 8.      | 15,52 | 15,56 | 15,30 | 92,94  | 28,99 | 63,41 | 12,29 | 11,39 | 11,45 | 12,75 | 11,70 | 12,57 |
| 9.      | 16,75 | 15,50 | 15,04 | 77,81  | 31,73 | 52,56 | 14,65 | 13,83 | 8,893 | 9,458 | 10,82 | 11,52 |
| 10.     | 17,25 | 23,98 | 15,33 | 67,06  | 27,08 | 46,70 | 14,27 | 11,02 | 10,23 | 8,729 | 10,23 | 11,89 |
| 11.     | 18,05 | 29,42 | 19,96 | 81,32  | 25,19 | 37,43 | 13,39 | 12,20 | 10,50 | 9,483 | 9,86  | 11,51 |
| 12.     | 19,94 | 19,42 | 22,03 | 146,6  | 24,49 | 41,26 | 14,65 | 9,37  | 10,77 | 11,58 | 11,54 | 12,44 |
| 13.     | 37,77 | 15,76 | 23,24 | 219,7  | 24,34 | 33,67 | 11,86 | 10,61 | 10,74 | 9,906 | 10,31 | 12,45 |
| 14.     | 42,73 | 12,46 | 27,36 | 245,9  | 23,51 | 27,14 | 14,13 | 10,29 | 10,30 | 9,215 | 9,96  | 15,26 |
| 15.     | 26,48 | 15,86 | 26,59 | 179,8  | 23,00 | 26,14 | 13,46 | 10,10 | 11,01 | 8,865 | 11,75 | 17,98 |
| 16.     | 29,00 | 16,53 | 26,04 | 125,2  | 23,20 | 23,94 | 13,34 | 9,27  | 10,31 | 10,98 | 12,13 | 18,21 |
| 17.     | 28,24 | 17,58 | 24,55 | 117,2  | 20,40 | 22,61 | 12,90 | 9,76  | 10,71 | 9,745 | 10,81 | 16,63 |
| 18.     | 26,62 | 18,43 | 21,59 | 98,06  | 18,53 | 24,16 | 13,98 | 11,97 | 7,708 | 10,44 | 11,68 | 13,72 |
| 19.     | 26,00 | 17,27 | 25,98 | 131,3  | 17,21 | 26,39 | 14,02 | 12,05 | 8,122 | 13,54 | 12,07 | 12,56 |
| 20.     | 31,55 | 14,79 | 19,71 | 101,5  | 21,10 | 24,59 | 15,14 | 12,02 | 9,715 | 12,10 | 10,96 | 10,22 |
| 21.     | 23,01 | 13,36 | 17,59 | 92,73  | 22,68 | 23,52 | 12,08 | 11,69 | 11,58 | 9,583 | 10,88 | 9,23  |
| 22.     | 21,59 | 14,29 | 22,79 | 81,56  | 24,46 | 20,87 | 13,21 | 11,03 | 10,02 | 9,510 | 11,07 | 10,17 |
| 23.     | 20,19 | 13,01 | 21,44 | 63,64  | 24,29 | 19,12 | 14,47 | 11,24 | 8,260 | 9,437 | 10,43 | 10,10 |
| 24.     | 19,57 | 17,08 | 15,11 | 66,40  | 22,22 | 18,46 | 13,50 | 11,61 | 7,629 | 8,114 | 10,19 | 10,32 |
| 25.     | 20,42 | 11,96 | 18,89 | 55,73  | 22,81 | 17,52 | 13,11 | 9,20  | 7,321 | 7,860 | 11,13 | 9,56  |
| 26.     | 18,36 | 13,38 | 21,01 | 54,99  | 64,00 | 15,94 | 13,72 | 18,34 | 6,869 | 9,505 | 10,80 | 11,09 |
| 27.     | 18,87 | 14,46 | 20,43 | 48,29  | 56,26 | 19,30 | 13,13 | 17,74 | 8,745 | 10,74 | 10,98 | 12,00 |
| 28.     | 21,67 | 15,55 | 21,09 | 43,54  | 50,60 | 19,88 | 12,67 | 13,29 | 9,312 | 19,07 | 11,35 | 11,67 |
| 29.     | 20,57 |       | 21,86 | 41,63  | 43,51 | 16,96 | 12,68 | 10,62 | 8,474 | 24,99 | 11,33 | 11,65 |
| 30.     | 17,13 |       | 21,99 | 37,86  | 45,85 | 16,70 | 12,61 | 9,737 | 8,858 | 47,52 | 11,84 | 10,45 |
| 31.     | 13,32 |       | 19,51 |        | 45,26 |       | 12,74 | 10,16 |       | 37,82 |       | 11,91 |
|         |       |       |       |        |       |       |       |       |       |       |       |       |
| SUC.    | 640,2 | 440,1 | 640,2 | 2642,8 | 956,6 | 964,3 | 448,1 | 377,8 | 303,8 | 405,6 | 355,6 | 381,7 |
| average | 20,65 | 15,72 | 20,65 | 88,09  | 30,86 | 32,14 | 14,45 | 12,19 | 10,13 | 13,08 | 11,85 | 12,31 |
| s.o.    | 4,880 | 3,714 | 4,879 | 20,81  | 7,29  | 7,595 | 3,415 | 2,880 | 2,393 | 3,09  | 2,801 | 2,910 |
| ODT.    | 55,32 | 38,03 | 55,31 | 228,34 | 82,65 | 83,32 | 38,71 | 32,65 | 26,25 | 35,04 | 30,73 | 32,98 |

 ROCNY SUCET
 :
 8556,9 year. max.
 261,3
 DEN/MES/HOD:
 14/4/4
 ROCNY SP. ODTOK:
 5,513 l.s-l.km-2


 ROCNY PRIEMER:
 23,444 year min.
 6,869
 DEN/MESIAC
 : 26/9
 ROCNY ODTOK
 : 735,800 mil.m3

 DNI
 30
 90
 180
 270
 330
 355
 364

 Qmd
 1994
 50,60
 23,51
 14,89
 11,47
 9,857
 8,729
 7,321

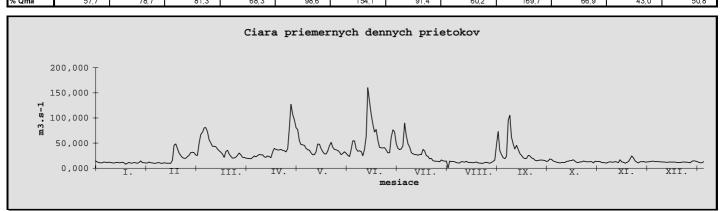
 % Qmda
 67,11
 66,68
 78,24
 98,03
 120,80
 139,00
 155,44

|       |        |       |       | Mesacn | e prietoky |       |       |       |       |       |       |       |
|-------|--------|-------|-------|--------|------------|-------|-------|-------|-------|-------|-------|-------|
| Qm    | 20,65  | 15,72 | 20,65 | 88,09  | 30,86      | 32,14 | 14,45 | 12,19 | 10,13 | 13,08 | 11,85 | 12,31 |
| % Qma | 106.25 | 64.98 | 43,16 | 158.78 | 76.24      | 88.92 | 44.75 | 46,57 | 58.33 | 67.10 | 38.42 | 50.58 |



 station : Zdana
 year
 ROK
 : 1995

 river : Hornad
 PLOCHA POVODIA : 4232,2
 km²


| m onth   | I.               | II.              | III.             | IV.              | ٧.               | VI.              | VII.             | VIII.            | IX.              | X.               | XI.              | XII.             |
|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| day      | 44070            | 10.070           | 00.700           | 00.110           | 00.500           | 05.000           | 00.040           | 11.010           | 07.100           | 17.010           | 11.010           | 44.440           |
| 1.<br>2. | 14,670<br>12,450 | 10,070<br>12,450 | 30,760<br>26,260 | 20,140<br>19,690 | 80,560<br>76,980 | 25,860<br>23,090 | 39,640<br>36,960 | 14,310<br>13,190 | 27,160<br>21,170 | 17,610<br>14,190 | 11,040<br>10,830 | 14,110<br>13,020 |
| 3.       | 11,500           | 10,930           | 25,520           | 19,120           | 54,220           | 37.040           | 38,400           | 13,190           | 19,260           | 13,210           | 10,830           | 12,970           |
| 4.       | 10,620           | 10,360           | 50,750           | 18,940           | 46,800           | 54,560           | 44,540           | 12,630           | 23,710           | 12,020           | 12,020           | 13,130           |
| 5.       | 10.890           | 9,970            | 67,340           | 21,360           | 46,520           | 54,570           | 89,730           | 11,130           | 95,510           | 10,990           | 12,730           | 12,620           |
|          | '                |                  | · ·              | · ·              | · ·              |                  | · ·              |                  | · ·              | · ·              | · ·              |                  |
| 6.       | 12,560           | 9,878            | 71,560           | 24,540           | 45,610           | 38,510           | 65,310           | 10,600           | 105,500          | 10,450           | 12,110           | 12,340           |
| 7.       | 11,720           | 10,740           | 80,360           | 22,610           | 39,620           | 33,750           | 48,530           | 10,450           | 61,870           | 11,300           | 12,130           | 12,540           |
| 8.       | 11,580           | 11,300           | 80,790           | 25,170           | 36,670           | 34,830           | 42,310           | 13,000           | 48,200           | 11,580           | 12,970           | 12,100           |
| 9.       | 12,190           | 9,792            | 72,190           | 27,400           | 35,950           | 33,060           | 31,040           | 12,710           | 38,090           | 11,600           | 12,480           | 11,940           |
| 10.      | 11,260           | 9,808            | 56,790           | 26,500           | 30,240           | 24,780           | 28,810           | 12,240           | 45,480           | 13,640           | 11,070           | 12,250           |
| 11.      | 10,850           | 10,730           | 50,140           | 26,910           | 26,790           | 36,880           | 27,390           | 13,820           | 37,540           | 13,900           | 16,780           | 12,320           |
| 12.      | 10,340           | 10,330           | 43,710           | 22,520           | 27,100           | 63,660           | 26,380           | 11,880           | 29,020           | 15,090           | 12,360           | 12,080           |
| 13.      | 11,040           | 10,000           | 43,590           | 21,620           | 32,660           | 160,200          | 27,150           | 11,030           | 25,350           | 15,150           | 12,150           | 12,310           |
| 14.      | 11,710           | 10,280           | 42,730           | 24,440           | 48,100           | 131,800          | 25,800           | 11,060           | 20,960           | 16,750           | 9,850            | 12,240           |
| 5        | 10,790           | 9,547            | 38,190           | 22,790           | 47,720           | 107,500          | 27,510           | 10,920           | 18,970           | 14,080           | 11,480           | 11,600           |
| 16.      | 10,900           | 16.070           | 34.750           | 20,910           | 39,050           | 86.820           | 27,200           | 11,420           | 19,510           | 11.720           | 13,490           | 11,080           |
| 17.      | 12,250           | 45,430           | 31,840           | 32,580           | 32,940           | 71,930           | 37,580           | 12,480           | 25,620           | 11,160           | 18,410           | 11,090           |
| 18.      | 10,860           | 48,450           | 27,950           | 39,560           | 28,630           | 77,020           | 34,520           | 10,440           | 24,550           | 12,810           | 24,550           | 12,060           |
| 19.      | 7,870            | 39,220           | 21,700           | 37,370           | 28,350           | 55,270           | 25,170           | 10,210           | 20,370           | 12,530           | 20,490           | 12,360           |
| 20.      | 9,733            | 29,940           | 33,290           | 36,380           | 34,390           | 41,770           | 23,560           | 9,747            | 19,300           | 14,220           | 14,780           | 12,210           |
| 21.      | 11.380           | 25,290           | 35,820           | 36,250           | 44.160           | 40.290           | 18,920           | 9,984            | 16.180           | 13.750           | 12.060           | 12.080           |
| 22.      | 10 110           | 21,430           | 27,690           | 37,420           | 51,690           | 40,500           | 19,570           | 11,300           | 14,670           | 12,630           | 10,520           | 11,480           |
| 23.      | 10,280           | 19,700           | 23,710           | 35,770           | 41,820           | 40,740           | 15,060           | 11,740           | 15,730           | 12,580           | 12,920           | 10,870           |
| 24.      | 11,100           | 19,640           | 20,190           | 34,670           | 37,140           | 36,430           | 14,140           | 10,860           | 16,360           | 12,980           | 12,600           | 13,960           |
| 25.      | 10,710           | 23,120           | 20,460           | 32,390           | 36,660           | 30,640           | 14,140           | 9,820            | 16,220           | 13,140           | 13,420           | 14,710           |
| 26.      | 9,977            | 25,660           | 21,970           | 39,180           | 35,310           | 30,960           | 13,750           | 11,380           | 15,910           | 10,540           | 12,230           | 14,430           |
| 27.      | 11,080           | 31,090           | 26,250           | 79,350           | 32,320           | 61,580           | 12,740           | 13,690           | 15,390           | 13,860           | 12,460           | 13,350           |
| 28.      | 14,620           | 31,870           | 30,300           | 127,300          | 27,190           | 76,410           | 16,550           | 16,210           | 13,310           | 13,220           | 12,690           | 11,870           |
| 29.      | 11,140           |                  | 26,480           | 106,900          | 29,330           | 72,310           | 14,760           | 48,220           | 14,510           | 13,230           | 13,080           | 10,840           |
| 30.      | 10,710           |                  | 21,650           | 96,860           | 32,940           | 48,250           | 14,010           | 72,790           | 18,360           | 13,410           | 13,870           | 10,820           |
| 31.      | 10,630           |                  | 21,230           |                  | 29,460           |                  | 14,210           | 35,450           |                  | 11,210           |                  | 12,940           |
| SÚČ.     | 347,520          | 533,095          | 1205, 960        | 1136,640         | 1236,920         | 1671,010         | 915, 380         | 488,211          | 883, 780         | 404,550          | 397,860          | 383,720          |
| average  | 11,210           | 19,039           | 38,902           | 37,888           | 39,901           | 55,700           | 29,528           | 15,749           | 29,459           | 13,050           | 13,262           | 12,378           |
| \$.O.    | 2,649            | 4,499            | 9,192            | 8,952            | 9,428            | 13,161           | 6,977            | 3,721            | 6,961            | 3,084            | 3,134            | 2,925            |
| ODT.     | 30,026           | 46,059           | 104,195          | 98,206           | 106,870          | 144,375          | 79,089           | 42,181           | 76,359           | 34,953           | 34,375           | 33,153           |

 year sum
 9604,646
 year max.
 186,700
 DEN/MES/HOD:
 13/06/12
 ROČNÝ ŠP ODTOK:
 6,218
 Ls² km²

 year mean
 26,314
 year min.
 7,870
 DEN/MES/AC : 19/01
 ROČNÝ ODTOK :
 829,841
 mil.m³

|          |        |        | M - denné priet | oky (Qmd) |        |       |       |
|----------|--------|--------|-----------------|-----------|--------|-------|-------|
| DNI      | 30     | 90     | 180             | 270       | 330    | 355   | 364   |
| Qmd 1995 | 54,570 | 34,520 | 18,940          | 12,240    | 10,820 | 9,977 | 9,547 |
| % Omda   | 72 4   | 979    | 99.5            | 104.6     | 1326   | 158.9 | 2027  |

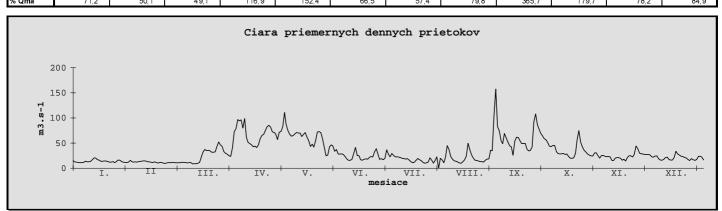
|       |        |        |        | Mesačné prieto | ky     |        |        |        |        |        |        |        |
|-------|--------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Qm    | 11,210 | 19,039 | 38,902 | 37,888         | 39,901 | 55,700 | 29,528 | 15,749 | 29,459 | 13,050 | 13,262 | 12,378 |
| % Qma | 57,7   | 78, 7  | 81,3   | 68,3           | 98,6   | 1 54,1 | 91,4   | 60,2   | 169,7  | 66,9   | 43,0   | 50,8   |



discharge

#### ROČNÉ SPRACOVANIE PRIETOKOV [m³.s·1]

station; Zdana year ROK: 1996
river: Hornad POVODIA: 4232,2 km²


| month         | l.               | II.              | III.             | IV.              | V.                | VI.              | VII.             | VIII.            | IX.              | X.               | XI.              | XII.             |
|---------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| day           |                  |                  |                  |                  |                   |                  |                  |                  |                  |                  |                  |                  |
| 1.            | 15,080           | 11,520           | 10,670           | 24,750           | 72,810            | 33,840           | 36,580           | 19,820           | 105,200          | 56,840           | 20,070           | 22,570           |
| 2.            | 12,540           | 12,060           | 10,910           | 23,690           | 82,810            | 37,120           | 27,770           | 16,500           | 157,700          | 50,780           | 25,110           | 21,840           |
| 3.<br>4.      | 12,060<br>11,580 | 15,580<br>12,700 | 10,830<br>11,270 | 40,940<br>72,490 | 110,900<br>87,370 | 28,220<br>28,010 | 22,760<br>29,340 | 10,730<br>22,060 | 82,870<br>74,480 | 43,800<br>42,840 | 25,480<br>24,000 | 24,360<br>24,630 |
|               | 10,770           | 12,700           | 11,690           | 72,490<br>78,910 | 75,310            | 28,720           | 25,330<br>25,330 | 45,000           | 55,040           | 45,370           | 23,060           | 18,640           |
| 5.            | ·                | · ·              | · ·              | ·                | ·                 | ·                | *                |                  | · ·              | ,                |                  | ·                |
| 6.            | 11,330           | 12,800           | 11,650           | 96,710           | 67,400            | 27,240           | 22,620           | 37,370           | 48,620           | 45,120           | 23,290           | 16,350           |
| 7.            | 11,550           | 12,100           | 11,040           | 94,200           | 63,590            | 23,170           | 22,480           | 23,090           | 69,080           | 32,930           | 22,510           | 16,030           |
| 8.            | 14,100           | 13,330           | 10,530           | 96,240           | 65,050            | 18,500           | 22,240           | 17,730           | 60,370           | 29,350           | 15,530           | 17,460           |
| 9.            | 12,660           | 13,780           | 11,240           | 79,870           | 68,260            | 15,640           | 20,860           | 14,750           | 52,040           | 28,300           | 15,200           | 21,470           |
| 10.           | 12,610           | 14,350           | 11,210           | 98,710           | 70,920            | 15,940           | 19,890           | 14,150           | 44,640           | 28,610           | 19,920           | 22,130           |
| 11.           | 13,490           | 14,640           | 8,649            | 61,550           | 70,130            | 17,580           | 18,950           | 12,300           | 42,710           | 29,380           | 20,990           | 17,260           |
| 12.           | 16,420           | 14,300           | 8,976            | 51,500           | 69,860            | 29,300           | 19,190           | 10,540           | 25,660           | 27,390           | 20,900           | 16,340           |
| 13.           | 20,260           | 12,610           | 8,777            | 48,980           | 63,170            | 41,380           | 18,110           | 9,791            | 54,080           | 28,420           | 19,820           | 16,280           |
| 14.           | 20,520           | 12,650           | 10,030           | 46,370           | 67,630            | 25,160           | 19,170           | 12,950           | 61,780           | 23,500           | 15,790           | 21,180           |
| 15.           | 16,930           | 11,630           | 11,770           | 42,720           | 70,880            | 24,700           | 16,400           | 16,410           | 61,030           | 20,210           | 17,810           | 33,620           |
| 16.           | 16,210           | 11,440           | 22,030           | 43,810           | 62,210            | 16,950           | 12,980           | 23,790           | 54,100           | 19,710           | 14,480           | 28,410           |
| 17.           | 13,740           | 12,790           | 32,020           | 40,970           | 54,650            | 16,080           | 10,960           | 49,600           | 49,030           | 20,780           | 21,350           | 26,250           |
| 18.           | 14,080           | 11,610           | 37,390           | 46,390           | 43,220            | 17,730           | 12,100           | 36,820           | 49,030           | 29,550           | 24,890           | 23,740           |
| 19.           | 14,300           | 10,150           | 35,150           | 58,970           | 47,860            | 18,740           | 15,970           | 26,310           | 49,350           | 56,720           | 24,540           | 23,180           |
| 20.           | 14,430           | 11,480           | 35,790           | 65,210           | 42,010            | 17,800           | 19,570           | 20,580           | 37,780           | 74,770           | 22,440           | 21,440           |
| 21.           | 13,380           | 11,480           | 34,650           | 67,360           | 54,890            | 21,710           | 17,030           | 15,880           | 34,510           | 52,040           | 27,820           | 20,350           |
| 22.           | 12,230           | 10,150           | 31,940           | 75,330           | 72,090            | 23,400           | 15,040           | 15,520           | 35,480           | 42,410           | 44,280           | 17,090           |
| 23.           | 12,150           | 9,515            | 31,740           | 82,390           | 73,060            | 22,320           | 11,600           | 14,280           | 42,350           | 35,750           | 38,880           | 15,430           |
| 24.           | 13,140           | 10,570           | 32,410           | 85,500           | 70,710            | 32,510           | 9,787            | 12,940           | 92,770           | 32,100           | 29,940           | 19,100           |
| 25.           | 11,150           | 11,270           | 43,260           | 81,770           | 58,840            | 38,910           | 10,750           | 13,030           | 1 08,000         | 28,200           | 28,690           | 16,730           |
| 26.           | 13,450           | 10,710           | 52,250           | 72,200           | 41,890            | 27,370           | 12,150           | 12,090           | 86,610           | 26,130           | 28,360           | 15,560           |
| 27.           | 16,240           | 11,770           | 46,370           | 71,250           | 24,890            | 17,600           | 20,690           | 16,010           | 78,000           | 24,670           | 27,360           | 17,590           |
| 28.           | 15,970           | 11,360           | 43,720           | 67,840           | 26,260            | 19,200           | 16,050           | 18,290           | 69,470           | 24,310           | 27,340           | 23,610           |
| 29.           | 13,190           | 11,230           | 33,240           | 57,100<br>74,770 | 42,790            | 17,020           | 10,090           | 18,510           | 64,430           | 30,190           | 27,000           | 23,960           |
| 30.           | 12,260           |                  | 29,470           | 71,770           | 46,490            | 19,840           | 15,810           | 35,940           | 58,690           | 30,760           | 26,740           | 21,900           |
| 31.           | 11,490           |                  | 27,650           |                  | 44,050            |                  | 22,630           | 34,870           |                  | 25,060           |                  | 16,470           |
| SÚĊ.          | 429,310          | 351,655          | 728, 322         | 1945,490         | 1912,000          | 721,700          | 574,897          | 647,651          | 1904,900         | 1085,990         | 723, 590         | 640,970          |
| average       | 13,849           | 12,126           | 23,494           | 64,850           | 61,677            | 24,057           | 18,545           | 20,892           | 63,497           | 35,032           | 24,120           | 20,676           |
| \$.O.<br>ODT. | 3,272            | 2,865            | 5,551            | 15,323           | 14,573            | 5,684            | 4,382            | 4,936            | 15,003           | 8,277            | 5,699            | 4,886            |
| ODI.          | 37,092           | 30,383           | 62,927           | 168,090          | 165,197           | 62,355           | 49,671           | 55,957           | 164,583          | 93,830           | 62,518           | 55,380           |

 year sum
 11666,475
 year max
 184,600
 DEN/MES/HOD:
 01/09/20
 ROČNÝ ŠP. ODTOK:
 7,532
 I.s² km²

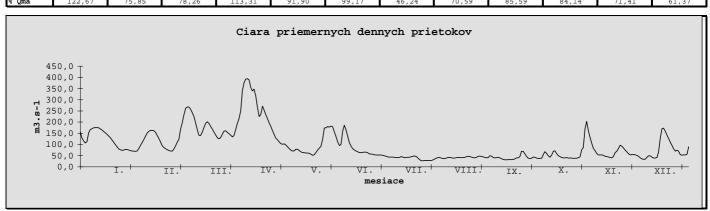
 year mean
 31,876
 year min
 8,649
 DEN/MES/AC : 11/03
 ROČNÝ ODTOK :
 1007,983
 mil.m³

|          |        |        | M - denné priet | oky (Qmd) |        |        |       |
|----------|--------|--------|-----------------|-----------|--------|--------|-------|
| DNI      | 30     | 90     | 180             | 270       | 330    | 355    | 364   |
| Qmd 1996 | 71,250 | 43,220 | 23,690          | 15,810    | 11,580 | 10,540 | 8,976 |
| % Omda   | 94.5   | 1226   | 124.5           | 135.1     | 1419   | 167.8  | 1906  |

|       |        |        |        | Mesačné prieto | ky     |        |        |        |        |        |        |        |
|-------|--------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Qm    | 13,849 | 12,126 | 23,494 | 64,850         | 61,677 | 24,057 | 18,545 | 20,892 | 63,497 | 35,032 | 24,120 | 20,676 |
| % Qma | 71,2   | 50, 1  | 49,1   | 116,9          | 152,4  | 66,5   | 57,4   | 79,8   | 365,7  | 179,7  | 78,2   | 84,9   |



#### ROCNE SPRACOVANIE PRIETOKOV [m3.s-1]


: 1994 11474,25 km2 station : Streda nad Bodrogom river : Bodrog year PLOCHA POVODIA :

| month   | I.     | II.    | III.   | IV.    | v.     | VI.    | VII.   | VIII.  | IX.    | х.     | XI.    | XII.   |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| day     |        |        |        |        |        |        |        |        |        |        |        |        |
| 1.      | 156,4  | 70,69  | 123,6  | 141,4  | 103,9  | 178,6  | 51,75  | 34,96  | 40,20  | 39,56  | 160,9  | 46,96  |
| 2.      | 129,3  | 69,83  | 167,2  | 134,0  | 100,8  | 157,1  | 49,35  | 38,98  | 41,78  | 36,94  | 132,6  | 40,62  |
| 3.      | 116,2  | 69,43  | 197,7  | 140,4  | 103,3  | 135,0  | 46,95  | 41,47  | 49,63  | 37,73  | 104,2  | 35,57  |
| 4.      | 106,7  | 70,89  | 231,5  | 168,1  | 97,09  | 112,4  | 44,56  | 41,41  | 48,46  | 38,88  | 82,96  | 33,46  |
| 5.      | 113,2  | 81,79  | 261,6  | 194,4  | 89,34  | 95,25  | 43,60  | 39,46  | 41,57  | 54,59  | 71,32  | 34,47  |
| 6.      | 151,7  | 95,65  | 267,9  | 215,1  | 81,59  | 100,3  | 43,60  | 37,46  | 40,00  | 67,61  | 60,12  | 42,35  |
| 7.      | 167,6  | 108,0  | 267,7  | 250,7  | 74,48  | 161,6  | 43,35  | 36,84  | 40,73  | 60,22  | 53,70  | 49,71  |
| 8.      | 170,6  | 122,1  | 257,7  | 338,8  | 71,16  | 186,0  | 42,51  | 39,36  | 42,74  | 49,99  | 53,08  | 49,25  |
| 9.      | 174,9  | 136,3  | 242,8  | 376,9  | 71,30  | 165,8  | 41,65  | 41,46  | 40,00  | 43,24  | 53,70  | 43,50  |
| 10.     | 175,0  | 150,4  | 225,0  | 392,1  | 78,36  | 136,8  | 40,83  | 42,44  | 36,50  | 51,66  | 51,27  | 39,35  |
| 11.     | 175,0  | 158,9  | 196,5  | 394,0  | 78,39  | 109,0  | 42,15  | 40,65  | 33,01  | 69,85  | 47,25  | 39,66  |
| 12.     | 174,3  | 162,9  | 165,3  | 388,7  | 72,95  | 92,17  | 45,67  | 39,25  | 31,60  | 71,43  | 45,59  | 41,37  |
| 13.     | 169,8  | 163,0  | 140,9  | 354,2  | 67,51  | 81,73  | 43,33  | 39,50  | 31,64  | 59,88  | 44,64  | 66,16  |
| 14.     | 164,5  | 161,4  | 139,9  | 339,4  | 63,72  | 74,92  | 41,05  | 41,00  | 32,31  | 50,20  | 41,78  | 129,0  |
| 15.     | 158,0  | 154,3  | 155,4  | 347,8  | 62,81  | 70,97  | 42,25  | 42,51  | 32,40  | 45,59  | 40,01  | 170,1  |
| 16.     | 151,5  | 140,8  | 175,4  | 316,5  | 62,13  | 67,33  | 43,22  | 41,87  | 32,40  | 42,08  | 46,62  | 173,4  |
| 17.     | 145,0  | 126,4  | 194,8  | 267,7  | 61,77  | 63,86  | 42,99  | 40,84  | 32,56  | 40,19  | 63,64  | 159,7  |
| 18.     | 138,4  | 111,9  | 201,8  | 224,9  | 60,99  | 63,10  | 44,79  | 41,24  | 35,72  | 40,33  | 69,49  | 143,3  |
| 19.     | 130,1  | 94,99  | 193,9  | 233,6  | 56,48  | 65,09  | 47,36  | 42,43  | 39,86  | 41,44  | 82,56  | 126,9  |
| 20.     | 119,9  | 86,40  | 181,1  | 270,9  | 51,78  | 66,00  | 48,40  | 44,98  | 40,29  | 39,48  | 96,28  | 110,9  |
| 21.     | 109,6  | 81,67  | 168,4  | 253,1  | 54,54  | 66,00  | 46,26  | 47,19  | 46,14  | 39,40  | 92,48  | 95,78  |
| 22.     | 99,40  | 76,56  | 155,6  | 233,9  | 64,22  | 63,31  | 39,25  | 46,47  | 69,24  | 39,08  | 84,58  | 80,66  |
| 23.     | 89,17  | 73,19  | 142,8  | 215,3  | 75,05  | 58,13  | 32,05  | 43,96  | 69,46  | 38,02  | 75,18  | 69,99  |
| 24.     | 80,23  | 71,03  | 130,1  | 197,6  | 83,34  | 57,24  | 27,48  | 41,43  | 58,36  | 38,75  | 67,01  | 74,69  |
| 25.     | 76,56  | 70,25  | 125,0  | 180,0  | 92,44  | 56,41  | 27,48  | 40,02  | 46,15  | 38,90  | 58,45  | 70,35  |
| 26.     | 73,81  | 78,37  | 130,7  | 162,4  | 121,9  | 53,78  | 28,74  | 42,49  | 38,99  | 40,60  | 54,00  | 54,26  |
| 27.     | 75,28  | 93,75  | 146,3  | 144,7  | 173,6  | 52,90  | 28,09  | 47,22  | 38,00  | 45,32  | 54,22  | 52,00  |
| 28.     | 77,92  | 109,8  | 160,5  | 128,3  | 174,3  | 52,90  | 28,11  | 47,97  | 38,27  | 75,73  | 56,09  | 53,58  |
| 29.     | 77,43  |        | 160,9  | 121,0  | 180,5  | 52,90  | 28,47  | 46,21  | 43,56  | 86,31  | 53,77  | 53,05  |
| 30.     | 74,84  |        | 154,5  | 111,4  | 177,2  | 52,90  | 28,83  | 44,40  | 42,96  | 171,0  | 51,22  | 56,83  |
| 31.     | 72,24  |        | 148,1  |        | 182,6  |        | 31,08  | 43,05  |        | 203,0  |        | 89,27  |
|         | -      |        |        |        |        |        |        | -      |        |        |        |        |
| SUC.    | 3894,6 | 2990,7 | 5610,6 | 7237,3 | 2889,5 | 2749,5 | 1235,2 | 1298,5 | 1254,5 | 1797,0 | 2048,7 | 2326,2 |
| average | 125,6  | 106,8  | 181,0  | 241,2  | 93,21  | 91,65  | 39,85  | 41,89  | 41,82  | 57,97  | 68,29  | 75,04  |
| s.o.    | 10,95  | 9,309  | 15,773 | 21,02  | 8,12   | 7,987  | 3,473  | 3,651  | 3,644  | 5,05   | 5,952  | 6,540  |
| ODT.    | 336,5  | 258,4  | 484,8  | 625,3  | 249,7  | 237,6  | 106,7  | 112,2  | 108,4  | 155,3  | 177,0  | 201,0  |

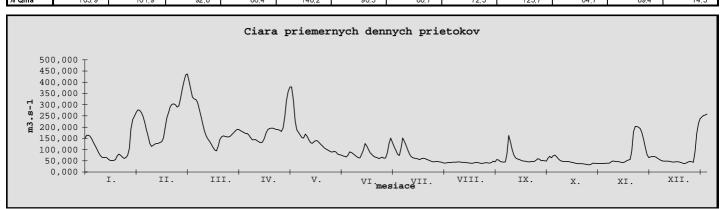
35332,4 year max. 96,80 year min. 394,0 27,48 DEN/MES/HOD: 10/4/12 DEN/MESIAC : 24/2 viac krat ROCNY SP. ODTOK: ROCNY ODTOK 8,436 l.s-1.km-2 3052,715 mil.m3 year mean

M - denne prietoky 180 270 70,35 43,96 (Qmd) DNI Qmd 1994 % Qmda 330 39,25 **355** 32,05 235,66 364 27,48 295,71 **30** 196,5 **90** 139,9 66,69 106,42 114,95 138,54 203,73

|       |        |       |       | Mesacr | ne prietoky |       |       |       |       |       |       |       |
|-------|--------|-------|-------|--------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Qm    | 125,6  | 106,8 | 181,0 | 241,2  | 93,21       | 91,65 | 39,85 | 41,89 | 41,82 | 57,97 | 68,29 | 75,04 |
| % Oma | 122,67 | 75,85 | 78.26 | 113.31 | 91.90       | 99,17 | 46,24 | 70.59 | 85.59 | 84.14 | 71.41 | 61.37 |



station: Streda nad Bodrogom


ROK : PLOCHA POVODIA : 1995 11474,25 km² y ear river : Bodrog

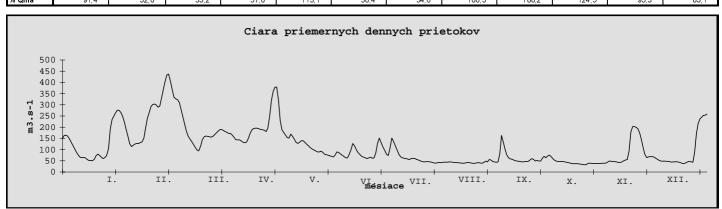
| month      | l.       | II.       | III.     | IV.       | V.       | VI.      | VII.     | VIII.    | IX.      | Х.       | XI.      | XII.     |
|------------|----------|-----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
| day        |          |           |          |           |          |          |          |          |          |          |          |          |
| 1.         | 149,500  | 276,400   | 432,700  | 189,400   | 378,800  | 72,090   | 112,100  | 41,430   | 47,100   | 63,650   | 38,830   | 66, 980  |
| 2.         | 163,500  | 275,000   | 436,900  | 1 85, 000 | 379,200  | 69, 850  | 95,680   | 42,550   | 44,690   | 71,740   | 39,000   | 61,930   |
| 3.         | 164,000  | 266,000   | 404,200  | 180,600   | 322,300  | 67,070   | 79,250   | 41,340   | 43,870   | 75,860   | 39,000   | 56,890   |
| 4.         | 159,900  | 248,700   | 366,700  | 176,200   | 230,200  | 75, 990  | 73,530   | 43,490   | 45,230   | 68,430   | 40,260   | 51,840   |
| 5.         | 147,800  | 221,800   | 333,800  | 172,000   | 188,900  | 90, 110  | 107,800  | 44,480   | 81,050   | 59, 190  | 45,320   | 48, 910  |
| 6.         | 132,800  | 189,600   | 326,300  | 172,100   | 176,700  | 87,220   | 151,700  | 43,580   | 162,900  | 52, 130  | 49,030   | 48,660   |
| 7.         | 117,800  | 160,200   | 322,700  | 163,700   | 165,100  | 81,030   | 135,700  | 44,850   | 133,500  | 48, 500  | 48,010   | 48,430   |
| 8.         | 102,800  | 126,700   | 310,500  | 1 53, 300 | 153,400  | 74, 900  | 116,800  | 45, 080  | 101,200  | 47, 380  | 46,620   | 48, 190  |
| 9.         | 87,820   | 113,900   | 279,100  | 143,400   | 151,200  | 69,220   | 97,940   | 43, 970  | 75,490   | 47,000   | 46,290   | 47, 570  |
| 10.        | 74,190   | 119,200   | 246,800  | 143,800   | 169,000  | 63,620   | 79,050   | 43, 130  | 62,540   | 46,750   | 44,750   | 45, 760  |
| 11.        | 65,880   | 125,000   | 214,600  | 143,800   | 158,900  | 62,970   | 67,580   | 43, 190  | 58,580   | 46, 160  | 43,060   | 44,210   |
| 1 2.       | 64,160   | 127,200   | 182,800  | 138,600   | 145,100  | 79, 590  | 63,510   | 41,430   | 56,400   | 44,740   | 43,000   | 44,900   |
| 13.        | 65,350   | 127,400   | 160,400  | 133,200   | 131,500  | 99, 050  | 61,690   | 41,100   | 52,940   | 42,910   | 44,930   | 45, 800  |
| 14.        | 62,520   | 131,600   | 147,800  | 130,500   | 127,700  | 127, 300 | 60,320   | 40, 150  | 49,730   | 41,080   | 50,090   | 45, 370  |
| 1 5.       | 55,910   | 135, 100  | 136,500  | 1 33, 800 | 133,900  | 115,700  | 58,090   | 39,490   | 48,780   | 39,250   | 53,380   | 44,280   |
| 16.        | 51,160   | 152.000   | 123,600  | 150.100   | 140.100  | 98, 880  | 55,720   | 39,270   | 47.570   | 37,490   | 55,830   | 42, 140  |
| 17.        | 51,000   | 1 99, 000 | 110,800  | 172,300   | 139,300  | 85,600   | 59,920   | 41,170   | 45,960   | 37,000   | 91,370   | 38,530   |
| 18.        | 51,000   | 240,800   | 98,520   | 188,100   | 131,600  | 77,760   | 61,400   | 42,680   | 44,770   | 37,000   | 179,000  | 37, 890  |
| 19.        | 56,640   | 265,500   | 94,290   | 194,200   | 123,700  | 69,940   | 59,960   | 41,760   | 46,400   | 36,860   | 203,000  | 40,830   |
| 20.        | 73,070   | 292,200   | 115,500  | 1 95, 500 | 116,100  | 66,440   | 56,700   | 40, 120  | 47,430   | 35, 930  | 202,800  | 44,740   |
| 21.        | 79.840   | 301.700   | 144.700  | 1 95, 700 | 108.600  | 63.870   | 53,430   | 38,470   | 46.920   | 34.760   | 199,600  | 46, 980  |
| 22.        | 74,500   | 303,800   | 157,100  | 192,800   | 102,700  | 60,230   | 50,160   | 39,310   | 52,600   | 33,070   | 192,900  | 45,680   |
| 23.        | 66,500   | 299,500   | 160,900  | 190,000   | 98,720   | 62,860   | 46,890   | 40,820   | 59,000   | 31,790   | 173,800  | 43,460   |
| 24.        | 60,300   | 289, 300  | 159,300  | 188,700   | 94,040   | 66,340   | 44,660   | 41,940   | 56,810   | 33, 370  | 142,700  | 88, 780  |
| 25.        | 64,230   | 294,600   | 156,800  | 186,500   | 89,660   | 61,140   | 46,040   | 40,220   | 49,630   | 39, 170  | 106,300  | 171,400  |
| 26.        | 73,740   | 329, 800  | 156,000  | 180,700   | 89,390   | 63,070   | 46,730   | 39,610   | 51,480   | 39, 330  | 77,030   | 216,700  |
| 27.        | 104,800  | 368, 100  | 159,200  | 196,200   | 92,900   | 85, 380  | 45,750   | 42,800   | 49,600   | 38, 800  | 64,230   | 237,500  |
| 28.        | 192,500  | 403,500   | 167,000  | 248, 300  | 88,270   | 128,600  | 44,740   | 48,710   | 48,700   | 38,270   | 67,920   | 245, 300 |
| 29.        | 234,100  |           | 174,900  | 319,000   | 79,270   | 151,400  | 42,560   | 44, 970  | 61,520   | 38, 000  | 68,800   | 252,800  |
| 30.        | 249,100  |           | 182,600  | 359,600   | 77,420   | 131,200  | 40,240   | 55,440   | 70,230   | 38, 000  | 68,850   | 253,800  |
| 31.        | 264,500  |           | 189,600  |           | 74,850   |          | 40,050   | 53,710   |          | 38,000   |          | 258,300  |
| SÚČ.       | 3360,910 | 6383,600  | 6652,610 | 5517,100  | 4658,520 | 2508,420 | 2155,690 | 1330,260 | 1842,620 | 1381,610 | 2565,700 | 2814,550 |
| a ve ra ge | 108,416  | 227, 986  | 214,600  | 183, 903  | 150,275  | 83,614   | 69,538   | 42,912   | 61,421   | 44,568   | 85,523   | 90, 792  |
| \$.O.      | 9,449    | 19,869    | 18,703   | 16,027    | 13,097   | 7,287    | 6,060    | 3,740    | 5,353    | 3,884    | 7,454    | 7,913    |
| ODT.       | 290,383  | 551,543   | 574,786  | 476,677   | 402,496  | 216,727  | 186,252  | 114,934  | 159,202  | 119,371  | 221,676  | 243, 177 |

ROČNÝ ŠP. ODTOK: ROČNÝ ODTOK 41171,590 112,799 DEN/MES/HOD: 01/03/20 DEN/MESIAC: 23/10 year sum year mean year max/ year min. 443,000 31,790 9,831 3557,225 l.s 1.km 2

(Qmd) 270 47,570 149,9 330 41,080 213,2 **364** 33,070 355,9 DNI Qmd 1995 % Qmda 253,800 86,1 38,000 279,4 158,900 120,9 75,990 124,2

|       |         |          |         | Mesa čné prieto | ky      |        |        |        |        |        |        |         |
|-------|---------|----------|---------|-----------------|---------|--------|--------|--------|--------|--------|--------|---------|
| Qm    | 108,416 | 227, 986 | 214,600 | 183, 903        | 150,275 | 83,614 | 69,538 | 42,912 | 61,421 | 44,568 | 85,523 | 90, 792 |
| % Qma | 1 05, 9 | 161,9    | 92,8    | 86,4            | 148,2   | 90,5   | 80, 7  | 72,3   | 125,7  | 64,7   | 89,4   | 74,3    |




station : Streda nad Bodrogom river : Bodrog ROK : PLOCHA POVODIA : 1996 11474 year km²

| month   | I.       | II.       | III.     | IV.       | V.       | VI.       | VII.     | VIII.     | IX.      | X.       | XI.      | XII.     |
|---------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|----------|----------|----------|
| day     |          |           |          |           |          |           |          |           |          |          |          |          |
| 1.      | 239,400  | 55,680    | 34,010   | 95, 230   | 125,900  | 101,100   | 50,850   | 73, 120   | 36,500   | 116,700  | 141,200  | 82,000   |
| 2.      | 192,200  | 55, 020   | 32,830   | 82,770    | 143,100  | 92,540    | 54,260   | 84,730    | 37,160   | 98,210   | 137,900  | 86,230   |
| 3.      | 151,900  | 54,360    | 32,640   | 91,620    | 139,300  | 83,270    | 55,090   | 73,640    | 39,150   | 86,940   | 126,400  | 99, 360  |
| 4.      | 139,400  | 53, 700   | 34,050   | 114,400   | 122,100  | 64,500    | 60,960   | 71,890    | 37,540   | 78, 830  | 114,600  | 107,200  |
| 5.      | 122,000  | 53, 070   | 36,850   | 145, 700  | 104,400  | 53, 140   | 61,400   | 1 04, 500 | 34,890   | 71,070   | 104,200  | 110,700  |
| 6.      | 103,500  | 52,690    | 39,890   | 173,800   | 94,860   | 50, 330   | 53,200   | 126,200   | 38,090   | 64,700   | 93,240   | 109,700  |
| 7.      | 94,490   | 52,350    | 42,930   | 184,700   | 91,710   | 49,010    | 48,000   | 112,300   | 63,190   | 59, 070  | 85,320   | 104,500  |
| 8.      | 91,260   | 51,990    | 45,230   | 181,100   | 119,400  | 49, 700   | 47,780   | 96,240    | 98,130   | 53,450   | 80,180   | 92, 930  |
| 9.      | 90,860   | 51,360    | 44,920   | 174,600   | 142,600  | 48,270    | 51,580   | 81,080    | 94,460   | 47, 840  | 75,040   | 80,250   |
| 10.     | 90,730   | 50, 500   | 44,290   | 165, 100  | 131,500  | 47, 720   | 50,070   | 64, 580   | 81,950   | 42,290   | 70,340   | 70, 390  |
| 11.     | 90,600   | 49,600    | 43,690   | 150,300   | 120,400  | 49,510    | 48,180   | 49,260    | 70,550   | 44,690   | 68,080   | 67, 830  |
| 12.     | 96,130   | 50, 720   | 43,300   | 134,400   | 124,800  | 48,080    | 45,330   | 46,080    | 53,960   | 50, 380  | 66,210   | 66,030   |
| 13.     | 114,600  | 50, 830   | 43,030   | 119,300   | 122,600  | 46,040    | 41,420   | 55, 360   | 56,510   | 49, 760  | 64,330   | 64,220   |
| 14.     | 128,200  | 45, 960   | 45,170   | 111,800   | 130,500  | 47, 390   | 38,050   | 68,270    | 68,140   | 48,720   | 62,450   | 81,400   |
| 1 5.    | 117,300  | 41,060    | 52,630   | 1 05, 500 | 158,900  | 49, 510   | 37,600   | 62,330    | 83,940   | 47,670   | 60,580   | 138,500  |
| 16.     | 102,500  | 38, 590   | 61,920   | 99,470    | 152,500  | 47,640    | 37,600   | 55, 740   | 95,470   | 46,630   | 59,220   | 160,400  |
| 17.     | 87,720   | 37,400    | 77,250   | 104,800   | 142,300  | 46,430    | 39,420   | 59, 850   | 110,100  | 45, 590  | 58,420   | 154,900  |
| 18.     | 76,520   | 37, 150   | 94,830   | 132,100   | 123,000  | 44,450    | 42,870   | 72,820    | 139,100  | 48, 520  | 58,000   | 146,100  |
| 19.     | 69,810   | 38, 170   | 110,800  | 136,700   | 103,600  | 43, 840   | 41,890   | 64,490    | 134,600  | 73,420   | 58,810   | 135,400  |
| 20.     | 65,430   | 39, 790   | 123,800  | 133,100   | 89,840   | 44,650    | 39,020   | 55, 320   | 120,200  | 143,200  | 59,000   | 127, 100 |
| 21.     | 61,290   | 42,810    | 121,800  | 126,900   | 82,400   | 47,790    | 40,230   | 49,210    | 100,000  | 172,300  | 64,010   | 125, 300 |
| 22.     | 57,160   | 45, 360   | 115,700  | 120, 500  | 92,670   | 49, 940   | 39,480   | 47,060    | 82,890   | 165, 900 | 106,500  | 125, 100 |
| 23.     | 57,060   | 41,720    | 109,600  | 114,200   | 108,200  | 47, 970   | 41,510   | 45,650    | 75,290   | 155,600  | 141,500  | 124, 300 |
| 24.     | 59,600   | 39,410    | 103,500  | 1 07, 900 | 112,800  | 48,000    | 41,600   | 45, 080   | 89,790   | 142,500  | 136,500  | 117,300  |
| 25.     | 58,130   | 36,830    | 104,700  | 101,500   | 105,400  | 45,010    | 41,600   | 44,600    | 135,700  | 122,900  | 129,000  | 107, 100 |
| 26.     | 56,500   | 35, 700   | 121,900  | 95, 220   | 94,230   | 43,940    | 43,770   | 43,070    | 156,600  | 103,400  | 119,800  | 96,840   |
| 27.     | 54,870   | 35, 390   | 124,400  | 88, 900   | 83,110   | 42, 150   | 50,750   | 41,000    | 163,000  | 90, 370  | 110,100  | 86,610   |
| 28.     | 53,880   | 35, 070   | 130,700  | 82,570    | 73,630   | 43, 930   | 53,230   | 41,000    | 164,800  | 82,070   | 102,100  | 77, 810  |
| 29.     | 60,120   | 34,750    | 133,500  | 76, 310   | 85,790   | 43,620    | 51,260   | 41,000    | 153,800  | 79,250   | 93,480   | 72, 300  |
| 30.     | 60,780   |           | 120,000  | 92,550    | 122,900  | 44, 110   | 53,000   | 41,000    | 143,000  | 94,180   | 86,980   | 68,180   |
| 31.     | 57,550   |           | 106,800  |           | 112,800  |           | 56,360   | 39,420    |          | 132,000  |          | 64,680   |
| SÚČ.    | 2901,490 | 1307, 030 | 2376,660 | 3643,040  | 3557,240 | 1563, 580 | 1457,360 | 1955,890  | 2758,500 | 2658,150 | 2733,490 | 3150,660 |
| average | 93,596   | 45,070    | 76,666   | 121,435   | 114,750  | 52,119    | 47,012   | 63,093    | 91,950   | 85, 747  | 91,116   | 101,634  |
| \$.O.   | 8,157    | 3,928     | 6,682    | 10,583    | 10,001   | 4,542     | 4,097    | 5,499     | 8,014    | 7,473    | 7,941    | 8,858    |
| ODT.    | 250,689  | 112,927   | 205,343  | 314,759   | 307,346  | 135,093   | 125,916  | 168, 989  | 238,334  | 229,664  | 236,174  | 272,217  |

ROČNÝ ŠP. ODTOK: ROČNÝ ODTOK DEN/MES/HOD: 01/01/ 1 DEN/MESIAC : 03/03 year sum yar mean 30063,090 year max. 82,140 year min. 262,000 32,640 7,1 59 25 97,4 51 l.s 1 km² mil.m³

|          |         |         | M - denné priet | oky (Qmd) |        |        |        |
|----------|---------|---------|-----------------|-----------|--------|--------|--------|
| DNI      | 30      | 90      | 180             | 270       | 330    | 355    | 364    |
| Qmd 1996 | 141,200 | 110,700 | 73,640          | 49,510    | 41,420 | 36,850 | 34,010 |
| % Om da  | 479     | 84.2    | 1203            | 156.0     | 215.0  | 271 0  | 366.0  |

|       |        |         |        | Mesa čné prieto | ky      |         |        |         |        |         |        |         |
|-------|--------|---------|--------|-----------------|---------|---------|--------|---------|--------|---------|--------|---------|
| Qm    | 93,596 | 45, 070 | 76,666 | 121,435         | 114,750 | 52, 119 | 47,012 | 63, 093 | 91,950 | 85, 747 | 91,116 | 101,634 |
| % Qma | 91,4   | 32,0    | 33,2   | 57,0            | 113,1   | 56,4    | 54,6   | 106,3   | 188,2  | 124,5   | 95,3   | 83,1    |



## **Annex 4-7 Maximal Mean Daily Discharges in Month**

#### Maximal mean daily discharges in month in m<sup>3</sup>.s<sup>-1</sup>

kmʻ

Water gauginig station: 7620 Vyškovce nad Ipľom

River:

lpeľ 4687,2 Catchment area:

| Year |       |       |       |       |       | Mor   | nth   |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 76,8  | 13,57 | 10,48 | 100,7 | 30,37 | 15,53 | 2,373 | 8,524 | 12,54 | 43,41 | 37,64 | 7,921 |
|      | 6     | 12    | 18    | 19    | 26    | 8     | 3     | 27    | 4     | 30    | 13    | 15    |
| 1995 | 28,96 | 36,44 | 53,23 | 94,41 | 67,37 | 129,2 | 14,24 | 7,105 | 11,32 | 5,272 | 5,31  | 12,71 |
|      | 28    | 27    | 9     | 27    | 21    | 17    | 6     | 31    | 23    | 4     | 30    | 28    |
| 1996 | 32,02 | 5,877 | 74,38 | 202,1 | 67,71 | 18,39 | 7,498 | 13,15 | 15,11 | 9,287 | 27,31 | 13,66 |
|      | 12    | 3     | 28    | 6     | 14    | 1     | 4     | 31    | 2     | 6     | 22    | 17    |

Water gauginig station: 7820 Lenartovce

Slaná 1829,65 River Catchment area:

| Year |        |       |       |       |       | Mor   | ith   |       |         |       |       |       |
|------|--------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|
| day  | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9       | 10    | 11    | 12    |
| 1994 | 47,71  | 12,39 | 19,97 | 120,3 | 47,46 | 24,08 | 7,968 | 8,601 | 19,1976 | 31,08 | 16,68 | 6,807 |
|      | 13     | 11    | 17    | 14    | 26    | 7     | 1     | 27    | 2       | 30    | 1     | 15    |
| 1995 | 17,196 | 18,07 | 44,72 | 100   | 47,7  | 161,6 | 27,63 | 22,33 | 26,02   | 7,669 | 5,997 | 7,422 |
|      | 28     | 17    | 7     | 28    | 21    | 13    | 4     | 29    | 5       | 8     | 7     | 7     |
| 1996 | 5,552  | 5,706 | 27,75 | 104,1 | 57,98 | 21,53 | 11,82 | 15,93 | 33,03   | 14,08 | 36,47 | 14,73 |
|      | 1      | 24    | 27    | 4     | 11    | 1     | 7     | 31    | 1       | 1     | 22    | 1     |

Water gauginig station: Streda mad Bodrogom

9670 Bodrog 11474,25 River: Catchment area:

| Year |       |       |       |       |       | Мог   | nth   |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 175   | 163   | 267,9 | 394   | 182,6 | 186   | 51,75 | 47,97 | 69,46 | 203   | 160,9 | 173,4 |
|      | 10    | 13    | 6     | 11    | 31    | 8     | 1     | 28    | 23    | 31    | 1     | 16    |
| 1995 | 264,5 | 403,5 | 436,9 | 359,6 | 379,2 | 151,4 | 151,7 | 55,44 | 162,9 | 75,86 | 203   | 258,3 |
|      | 31    | 28    | 2     | 30    | 2     | 29    | 6     | 30    | 6     | 3     | 19    | 31    |
| 1996 | 239,4 | 55,68 | 133,5 | 184,7 | 158,9 | 101,1 | 61,4  | 126,2 | 164,8 | 172,3 | 141,5 | 160,4 |
|      | 1     | 1     | 29    | 7     | 15    | 1     | 5     | 6     | 28    | 21    | 23    | 16    |

Water gauginig station: 7335 Kamenín Hron Catchment area: 5149,8

| Year |       |       |       |       |       | Mor   | nth   |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 181,7 | 59,41 | 105,3 | 449,2 | 205,1 | 81,7  | 26,66 | 111,9 | 102,8 | 202   | 107,3 | 62,42 |
|      | 12    | 11    | 27    | 15    | 26    | 1     | 20    | 27    | 4     | 30    | 1     | 15    |
| 1995 | 110,9 | 180,3 | 211,6 | 306,5 | 267,3 | 251,4 | 59,26 | 57,16 | 55,63 | 27,86 | 29,23 | 59,52 |
|      | 28    | 17    | 6     | 28    | 21    | 13    | 4     | 30    | 6     | 2     | 19    | 26    |
| 1996 | 55,9  | 19,97 | 119,5 | 459,1 | 228,1 | 82,42 | 70,24 | 76,9  | 108,4 | 41,61 | 206,7 | 48,74 |
|      | 13    | 5     | 28    | 4     | 3     | 1     | 4     | 30    | 1     | 5     | 22    | 1     |

Water gauginig station: 8930 Ždaňa

River: Catchment area: Hornád 4232,2

km"

| Year |       |       |       |       |       | Mor   | ith   |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 42,73 | 29,42 | 27,36 | 245,9 | 64    | 85,74 | 19,11 | 18,34 | 17,56 | 47,52 | 25,1  | 18,21 |
|      | 14    | 11    | 14    | 14    | 26    | 7     | 1     | 26    | 2     | 30    | 1     | 16    |
| 1995 | 14,67 | 48,45 | 80,79 | 127,3 | 80,56 | 160,2 | 89,73 | 72,79 | 105,5 | 17,61 | 24,55 | 14,71 |
|      | 1     | 18    | 8     | 28    | 1     | 13    | 5     | 30    | 6     | 1     | 18    | 25    |
| 1996 | 20,52 | 15,58 | 52,25 | 98,71 | 110,9 | 41,38 | 36,58 | 49,6  | 157,7 | 74,77 | 44,28 | 33,62 |
|      | 14    | 3     | 26    | 10    | 3     | 13    | 1     | 17    | 2     | 20    | 22    | 15    |

Water gauginig station: Bratislava 5140

River: Catchment area Dunaj 131329,1 km²

| Year | Month |      |      |      |      |      |      |      |      |      |      |      |  |  |
|------|-------|------|------|------|------|------|------|------|------|------|------|------|--|--|
| day  | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |  |  |
| 1994 | 2844  | 2120 | 3365 | 5780 | 3277 | 3017 | 2226 | 2059 | 1701 | 1267 | 2648 | 2865 |  |  |
|      | 27    | 1    | 27   | 19   | 28   | 7    | 8    | 27   | 5    | 6    | 21   | 30   |  |  |
| 1995 | 3798  | 3139 | 2822 | 4323 | 3501 | 5392 | 3525 | 4495 | 5700 | 2049 | 2802 | 3253 |  |  |
|      | 27    | 1    | 28   | 3    | 15   | 28   | 1    | 31   | 3    | 3    | 19   | 27   |  |  |
| 1996 | 1878  | 1410 | 2763 | 2884 | 5561 | 2920 | 4293 | 2369 | 3795 | 6212 | 2750 | 1949 |  |  |
|      | 1     | 20   | 28   | 11   | 15   | 24   | 13   | 30   | 15   | 23   | 17   | 5    |  |  |

Water gauginig station: 9063 Hosťovce

River: Catchment area: Bodva

km" 0,1

| Υe | ear |       |       |       |       |       | Мог   | nth   |       |       |       |       |       |
|----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| d  | ay  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 19 | 94  | 0,217 | 0,226 | 0,199 | 0,554 | 0,387 | 0,242 | 0,196 | 0,344 | 0,407 | 0,145 | 0,239 | 0,159 |
|    |     | 6     | 14    | 1     | 14    | 26    | 6     | 20    | 27    | 22    | 29    | 13    | 5     |
| 19 | 95  | 0,249 | 0,439 | 0,645 | 0,886 | 0,631 | 0,904 | 0,29  | 0,451 | 0,383 | 0,158 | 0,077 | 0,129 |
|    |     | 31    | 28    | 4     | 28    | 1     | 13    | 5     | 29    | 5     | 10    | 2     | 26    |
| 19 | 96  | 0,146 | 0,143 | 0,276 | 0,473 | 0,388 | 0,173 | 0,167 | 0,2   | 0,263 | 0,182 | 0,23  | 0,222 |
|    |     | 13    | 22    | 17    | 6     | 14    | 24    | 4     | 5     | 24    | 31    | 21    | 16    |

### Annex 4-8 Minimal Mean Daily Discharges in Month

#### Minimal mean daily discharges in month in m<sup>3</sup>.s<sup>-1</sup>

Water gauginig station: 7620 Vyškovce nad Ipľom

River lpeľ

4687.2 km' Catchment area:

| Year |       |       |       |       |       | Mon   | th    |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 13,45 | 7,896 | 7,465 | 7,712 | 7,042 | 2,276 | 0,742 | 0,72  | 1,937 | 3,711 | 6,964 | 4,623 |
|      | 31    | 16    | 31    | 1     | 19    | 30    | 31    | 1     | 13    | 3     | 30    | 3     |
| 1995 | 4,123 | 10,77 | 17,99 | 5,145 | 12,9  | 16,74 | 2,453 | 2,1   | 3,562 | 3,309 | 3,449 | 4,714 |
|      | 21    | 7     | 27    | 25    | 12    | 30    | 30    | 20    | 15    | 24    | 23    | 18    |
| 1996 | 5,126 | 4,42  |       | 13,59 | 13,79 | 3,932 | 2,257 | 1,827 | 4,11  | 4,465 | 4,384 | 6,392 |
|      | 26    | 25    | 6     | 30    | 27    | 19    | 31    | 28    | 12    | 17    | 18    | 28    |

Water gauginig station: 7820 Lenartovce

River: Slaná

km<sup>-</sup> Catchment area: 1829,65

| Year |       |       |       |       |       | Mon   | th    |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 9,733 | 7,748 | 9,671 | 10,65 | 10,76 | 6,582 | 2,433 | 2,205 | 2,406 | 4,174 | 6,996 | 3,64  |
|      | 30    | 24    | 2     | 1     | 15    | 27    | 31    | 16    | 13    | 19    | 27    | 25    |
| 1995 | 3,56  | 3,838 | 11,02 | 8,062 | 16,53 | 16,2  | 4,828 | 3,699 | 5,637 | 3,457 | 3,474 | 2,85  |
|      | 16    | 6     | 25    | 18    | 31    | 30    | 31    | 25    | 30    | 30    | 23    | 30    |
| 1996 | 2,889 | 3,004 | 4,068 | 17,3  | 21,53 | 7,818 | 4,201 | 3,509 | 8,293 | 5,796 | 4,823 | 4,276 |
|      | 19    | 1     | 7     | 2     | 27    | 16    | 29    | 3     | 21    | 24    | 16    | 24    |

Water gauginig station: 9670 Streda mad Bodrogom

Bodrog 11474,25 River:

Catchment area:

| Year |       |       |       |       |       | Mon   | th    |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 72,24 | 69,43 | 123,6 | 111,4 | 51,78 | 52,9  | 27,48 | 34,96 | 31,6  | 36,94 | 40,01 | 33,46 |
|      | 31    | 3     | 1     | 30    | 20    | 27    | 24    | 1     | 12    | 2     | 15    | 4     |
| 1995 | 51    | 113,9 | 94,29 | 130,5 | 74,85 | 60,23 | 40,05 | 38,47 | 43,87 | 31,79 | 38,83 | 37,89 |
|      | 17    | 9     | 19    | 14    | 31    | 22    | 31    | 21    | 3     | 23    | 1     | 18    |
| 1996 | 53,88 | 34,75 | 32,64 | 76,31 | 73,63 | 42,15 | 37,6  | 39,42 | 34,89 | 42,29 | 58    | 64,22 |
|      | 28    | 29    | 3     | 29    | 28    | 27    | 15    | 31    | 5     | 10    | 18    | 13    |

Water gauginig station: 7335 Kamenín

River: Hron 5149,8 Catchment area: km'

| Year |       |       |       |       |       | Mor   | ith   |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| 1994 | 45,68 | 30,73 | 35,7  | 74,74 | 52,35 | 20,26 | 12,13 | 11,26 | 15,93 | 21,87 | 40,2  | 28,95 |
|      | 31    | 23    | 1     | 1     | 15    | 29    | 27    | 17    | 13    | 24    | 30    | 11    |
| 1995 | 19,34 | 39,23 | 56,23 | 48,71 | 59,02 | 41,5  | 21,92 | 16,26 | 23,59 | 18,33 | 13,35 | 18,89 |
|      | 16    | 6     | 18    | 17    | 13    | 30    | 31    | 22    | 19    | 28    | 24    | 19    |
| 1996 | 12,07 | 14,18 | 15,89 | 58,93 | 55,38 | 29,51 | 23,03 | 18,11 | 36,34 | 27,36 | 24,31 | 14,01 |
|      | 26    | 28    | 5     | 2     | 27    | 19    | 29    | 27    | 22    | 28    | 17    | 29    |

Water gauginig station: 8930 Ždaňa River: Hornád

Catchment area: 4232,2 km²

| Year |       |       |       |       |       | Mon   | th    |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| day  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| day  |       |       |       |       |       |       |       |       |       |       |       |       |
| 1994 | 11,16 | 11,57 | 15,04 | 14,58 | 17,21 | 15,94 | 10,78 | 9,2   | 6,869 | 7,86  | 9,857 | 9,229 |
|      | 4     | 3     | 9     | 1     | 19    | 26    | 13    | 25    | 26    | 25    | 11    | 21    |
| 1995 | 7,87  | 9,547 | 20,19 | 18,94 | 26,79 | 23,09 | 12,74 | 9,747 | 13,31 | 10,45 | 9,85  | 10,82 |
|      | 19    | 15    | 24    | 4     | 11    | 2     | 27    | 20    | 28    | 6     | 14    | 30    |
| 1996 | 10,77 | 9,515 | 8,649 | 23,69 | 24,89 | 15,64 | 9,787 | 9,791 | 25,66 | 19,71 | 14,48 | 15,43 |
|      | 5     | 23    | 11    | 2     | 27    | 9     | 24    | 13    | 12    | 16    | 16    | 23    |

Water gauginig station: 5140 Bratislava River: Dunaj Catchment area: 131329,1 km²

| Year |       |       |       |      |      | Mor  | ith  |      |      |       |       |      |
|------|-------|-------|-------|------|------|------|------|------|------|-------|-------|------|
| day  | 1     | 2     | 3     | 4    | 5    | 6    | 7    | 8    | 9    | 10    | 11    | 12   |
| 1994 | 1350  | 1196  | 1462  | 1752 | 2150 | 1906 | 1322 | 1112 | 1098 | 815,2 | 807,4 | 1046 |
|      | 24    | 21    | 1     | 11   | 16   | 30   | 31   | 8    | 26   | 24    | 7     | 28   |
| 1995 | 1080  | 1969  | 1563  | 2420 | 2321 | 3073 | 1862 | 1362 | 1828 | 1041  | 1171  | 1072 |
|      | 23    | 14    | 18    | 1    | 24   | 20   | 31   | 14   | 27   | 31    | 2     | 18   |
| 1996 | 999,3 | 930,3 | 825,3 | 1853 | 1954 | 1505 | 1500 | 1423 | 1792 | 1555  | 1703  | 1127 |
|      | 30    | 13    | 12    | 3    | 7    | 20   | 29   | 23   | 2    | 15    | 26    | 31   |

Water gauginig station: 9063 Hosťovce

River: Bodva Catchment area: 0,1 km²

Year Month day 11 0,121 0,179 0,226 0,125 0,06 0,024 0,038 0,001 0,064 0,11 1994 0,113 0,145 18 22 13 18 17 25 19 28 8 4 0,148 23 0,076 0,1 22 0,071 0,231 27 1995 0,101 0,157 0,05 0,000 0,11 0,07 0,03 0,066 0,137 30 0,079 31 0,054 27 24 30 21 0,077 1996 0,086 0,011 0 0,066 0,101 0,116 31 31 12 28 13 30 16 9 9 1

## Annex 4-9 Data to Flow Duration Curves

#### Čiary prekročenia za jednotlivé roky v požadovaných vodomerných staniciach

#### Data to flow duration curves

Water gauginig station: 5140 Bratislava

River: Dunaj

Catchment area: 131329,1 km²

| Year | 1    | 2    | 5    | 10   | 20   | 50   | 70   | 80   | 90   | 92   | 95   | 97   | 99   |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1994 | 4782 | 4392 | 3083 | 2844 | 2413 | 1701 | 1362 | 1237 | 1065 | 1046 | 955  | 911  | 829  |
| 1995 | 4968 | 4733 | 4100 | 3566 | 3073 | 2198 | 1668 | 1507 | 1283 | 1237 | 1171 | 1132 | 1089 |
| 1996 | 5059 | 4293 | 3537 | 2825 | 2482 | 1949 | 1603 | 1447 | 1049 | 1010 | 978  | 933  | 906  |

Water gauginig station: 7335 Kamenín River: Hron Catchment area: 5149,8 km²

Year 50 80 92 95 99 1994 312,600 244,300 156,200 109,900 83,760 46,030 30,980 24,420 18,290 15,930 13,820 12,710 11,890 1995 235,500 228,100 170,000 112,900 83,620 37,540 24,100 20,950 19,050 18,780 18,330 17,340 16,780 211,500 72,570 23,450 1996 294,600 144,600 107,400 35,840 27,360 18,110 17,480 16,270 15,890 14,180

Water gauginig station: 7620 Vyškovce nad Ipľom

River: Ipel

Catchment area 4687,2 km²

Year 50 80 99 1994 89,110 83,580 60,310 16,740 8,240 5,125 3,581 1,552 1,429 1,238 0.902 0.742 33.390 1995 110,100 93,020 53,230 38,500 27,020 6,126 4,537 3,937 3,534 3,313 2,612 2,453 2,188 1996 189,200 112,800 56,910 38,350 22,010 6,340 5,018 4,555 2,856 2,580 2,322 2,076 1,960

Water gauginig station: 7820 Lenartovce

River: Slaná

Catchment area: 1829,65 km²

| Year | 1       | 2      | 5      | 10     | 20     | 50    | 70    | 80    | 90    | 92    | 95    | 97    | 99    |
|------|---------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1994 | 101,900 | 79,600 | 39,690 | 24,710 | 18,460 | 9,652 | 5,514 | 4,421 | 3,350 | 3,076 | 2,693 | 2,477 | 2,406 |
| 1995 | 100,000 | 67,430 | 41,980 | 32,070 | 19,930 | 7,494 | 4,996 | 4,482 | 3,958 | 3,896 | 3,751 | 3,700 | 3,474 |
| 1996 | 70,680  | 57,980 | 44,120 | 29,940 | 20,910 | 8,664 | 5,699 | 4,823 | 3,783 | 3,708 | 3,509 | 3,311 | 3,129 |

Water gauginig station: 9063 Hosťovce

River: Bodya

Catchment area: 0,1 km²

| Year | 1     | 2     | 5     | 10    | 20    | 50    | 70    | 80    | 90    | 92    | 95    | 97    | 99    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1994 | 0,510 | 0,448 | 0,388 | 0,303 | 0,226 | 0,152 | 0,127 | 0,107 | 0,053 | 0,042 | 0,032 | 0,027 | 0,012 |
| 1995 | 0,780 | 0,662 | 0,485 | 0,384 | 0,298 | 0,156 | 0,103 | 0,076 | 0,054 | 0,047 | 0,040 | 0,030 | 0,008 |
| 1996 | 0,440 | 0,385 | 0,316 | 0,261 | 0,182 | 0,130 | 0,099 | 0,087 | 0,077 | 0,074 | 0,069 | 0,057 | 0,032 |

Water gauginig station: 9670 Streda mad Bodrogom

River: Bodrog Catchment area: 11474,25 km

20 50 70 90 92 95 97 99 Year 10 80 1994 376,900 339,400 242,800 180,500 155,600 69,850 46,470 41,870 39,250 38,750 34,960 32,310 28,470 1995 368,100 301,700 74,900 39,000 38,000 403.500 240.800 172,300 49,730 45,230 41.100 40.150 35,930 1996 181,100 172,300 152,500 136,500 120,000 41,510 38,050 34,750 73,120 51,360 46,080 39,890 36,850

Water gauginig station: 8930 Ždaňa

River: Hornád

Catchment area: 4232,2 km²

| Year | 1       | 2       | 5      | 10     | 20     | 50     | 70     | 80     | 90     | 92     | 95     | 97     | 99    |
|------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| 1994 | 146,600 | 117,200 | 67,060 | 43,540 | 26,000 | 14,790 | 11,670 | 10,960 | 9,906  | 9,556  | 9,270  | 8,745  | 7,860 |
| 1995 | 107,500 | 96,860  | 72,790 | 48,450 | 37,140 | 18,360 | 12,540 | 11,600 | 10,830 | 10,630 | 10,290 | 9,984  | 9,792 |
| 1996 | 105,200 | 96,240  | 78,910 | 69,080 | 48,980 | 23,400 | 16,400 | 13,740 | 11,600 | 11,360 | 10,830 | 10,540 | 9,787 |

### Annex 4-10 Sediment Discharges

sediment discharge

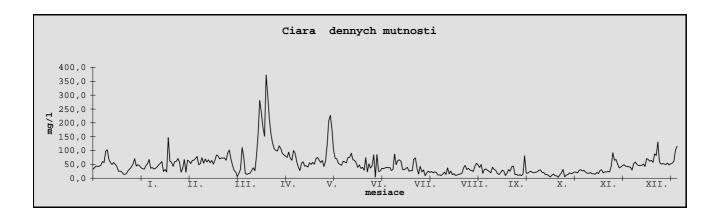
#### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN

[ mg.l-1]

km2

station : Bratislava year ROK : 1994 river : Danube PLOCHA POVODIA : 131329,1

| m ont h    | l.             | II.          | III.             | IV.            | V.           | VI.          | VII.         | VIII.        | IX.         | Х.           | XI.          | XII.          |
|------------|----------------|--------------|------------------|----------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|---------------|
| day        |                |              |                  |                |              |              |              |              |             |              |              |               |
| 1.         | 32, 1          | 33,9         | 65,6             | 6,0            | 80,0         | 72,5         | 34,0         | 19,8         | 18,2        | 25,3         | 30,4         | 40,9          |
| 2.         | 37, 8          | 33,0         | 61,3             | 17,8           | 75,0         | 69,9         | 37,1         | 23,0         | 31,8        | 20,1         | 26,0         | 40,0          |
| 3.         | 43, 8          | 45,3         | 52,5             | 32,2           | 94,0         | 53,7         | 39,2         | 20,0         | 33,6        | 19,6         | 28,4         | 29,6          |
| 4.         | 42,8           | 51,2         | 64,3             | 111,1          | 72,0         | 50,0         | 37,4         | 11,8         | 28,2        | 21,7         | 22,1         | 52,4          |
| 5.         | 43, 5          | 67,7         | 65,5             | 78,1           | 65,0         | 46,6         | 38,5         |              | 24,7        | 23,3         | 18,1         | 58,1          |
| 6.         | 46,6           | 35,9         | 71,1             | 16,6           | 100,0        | 61,6         | 27,8         | 10,0         | 19,2        | 28,9         | 17,9         | 49,6          |
| 7.         | 60,3           | 38,7         | 78,5             | 13,7           | 90,0         | 58,7         | 31,2         | 14,9         | 39, 9       | 30, 1        | 20,7         | 46,2          |
| 8.         | 56,7           | 32,7         | 48,8             | 16,9           | 60,0         | 55,3         | 87,1         | 21,7         | 32, 3       | 20,3         | 15,4         | 46,0          |
| 9.         | 97, 8          | 36,1         | 52,6             | 17,7           | 40,0         | 74,9         | 49,4         | 13,1         | 28,4        | 20,3         | 16,4         | 46,4          |
| 10.        | 1 02, 9        | 41,0         | 73,8             | 28,1           | 27,6         | 75,9         | 64,1         | 37,7         | 17,6        | 12,6         | 14,7         | 51,6          |
| 11.        | 68,1           | 48,1         | 54,6             | 37,8           | 53,7         | 90,3         | 66,6         |              | 13,6        | 13,4         | 21,0         | 42,0          |
| 12.        | 56, 1          | 53,5         | 69,5             | 27,2           | 59,3         | 66,5         | 61,2         | 26,2         | 19,7        | 9,3          | 16,8         | 71,1          |
| 13.        | 49,6           | 60,0         | 58,5             | 81,5           | 43,4         | 64,5         | 31,7         | 12,5         | 29, 1       | 4,7          | 27,8         | 67,8          |
| 14.        | 56, 5          | 24,5         | 66,8             | 160,6          | 45,4         | 56,0         | 30,7         | 16,7         | 26,0        | 10,4         | 30,6         | 61,1          |
| 15.        | 50, 0          | 31,8         | 55,8             | 280,8          | 40,4         | 39,2         | 34,7         | 9,8          | 10, 1       | 15,2         | 19,3         | 64,2          |
| 16.        | 41,9           | 22,4         | 64,1             | 237,8          | 55,7         | 47,8         | 39,3         | 11,6         | 17,5        | 9,3          | 23,1         | 57,1          |
| 17.        | 24,8           | 146,6        | 51,2             | 184,0          | 49,4         | 35,5         | 25,3         | 13,9         | 31,2        | 9,0          | 22,3         | 87,9          |
| 18.        | 26, 1          | 61,7         | 64,4             | 151,6          | 57,3         | 39,5         | 27,1         | 15,4         | 25,4        | 3,7          | 24,3         | 82,0          |
| 19.<br>20. | 23, 1<br>15, 2 | 57,8         | 84,0             | 373,1          | 50,3<br>71,1 | 28,8<br>74,1 | 26,6         | 18,2<br>37.3 | 41,6        | 12,0         | 22,5         | 130,4<br>59,6 |
|            |                | 42,7         | 80,6             | 300,0          |              |              | 68,4         |              | 44,0        | 19,1         | 44,1         |               |
| 21.        | 13,6           | 60,2         | 70,0             | 215,0          | 75,4         | 23,0         | 73,2         | 46,5         | 12,8        | 32,0         | 91,8         | 51,0          |
| 22.<br>23. | 17,2<br>27,4   | 60,6<br>71,2 | 73,3             | 160,0<br>127,0 | 65,2         | 52,1         | 36,3         | 31,4<br>35,8 | 14,6<br>9,9 | 5,1          | 64,5<br>67,7 | 52,4<br>51,3  |
| 23.<br>24. | 27,4<br>34,3   | 71,2<br>58,5 | 72,1<br>73,1     | 127,0          | 56,9<br>64,4 | 36,4<br>46,1 | 14,8<br>42,7 | 35,6<br>29,5 | 9,9<br>12,6 | 11,2<br>13,2 | 50,8         | 49,1          |
| 25.        |                |              |                  | 107,0          | 42,5         | 84.2         |              | 29,5<br>28,6 | 9,4         | 19,2<br>19.6 | 36,7         | 54.8          |
| 25.<br>26. | 41,1<br>51,2   | 21,8<br>34,8 | 64,9<br>90,1     | 98.0           | 42,3<br>62,0 | 4.8          | 22,6<br>29,9 | 24,2         | 15,3        | 16,3         | 40.7         | 47.2          |
| 26.<br>27. | 70,3           | 54,6<br>67.7 | 90, 1<br>1 01. 8 | 117.0          | 120,1        | 4,0<br>85,1  | 29,9         | 42.0         | 81.1        | 18,3         | 45,0         | 52,2          |
| 28.        | 43,9           | 22.0         | 70.0             | 108.0          | 207.4        | 25.0         | 18,8         |              | 18.4        | 22.7         | 49.0         | 54,3          |
| 29.        | 48,9           | 22,0         | 70,0<br>46,6     | 90.0           | 207,4        | 25,0<br>25,3 | 25,6         |              | 18,5        |              | 43,6         | 61.0          |
| 30.        | 45, 9<br>45, 0 |              | 28,5             | 84.0           | 177.4        | 25,5<br>36.0 | 21,0         |              | 22.6        | 19,5         | 42,4         | 100,3         |
| 31.        | 38, 1          |              | 20,3             | 04,0           | 100.9        | 30,0         | 24.0         |              | 22,0        | 28,7         | 42,4         | 115,6         |
| 31.        | 30, 1          |              | 22,1             |                | 100,9        |              | 24,0         | 49,4         |             | 20,1         |              | 113,6         |
| sum        | 1406,4         | 1361,2       | 1996,3           | 3378,6         | 2428,7       | 1579,2       | 1175,0       | 789,6        | 746.8       | 536,6        | 993, 9       | 1873,1        |
| mean       | 45.4           | 48.6         | 64.4             | 112,6          | 78,3         | 52.6         | 37.9         |              | 24.9        | 17,3         | 33,1         | 60.4          |
| MIN.       | 13,6           | 21,8         | 22,7             | 6.0            | 27.6         | 4.8          | 9.0          | 9.8          | 9,4         | 3.7          | 14,7         | 29,6          |
| MAX.       | 102.9          | 146.6        | 101,8            | 373,1          | 227,1        | 90.3         | 87,1         | 53.5         | 81, 1       | 32.0         | 91.8         | 130,4         |


 year sum
 18265,3 year max.
 373,1
 DEN/MESIAC:
 19/04

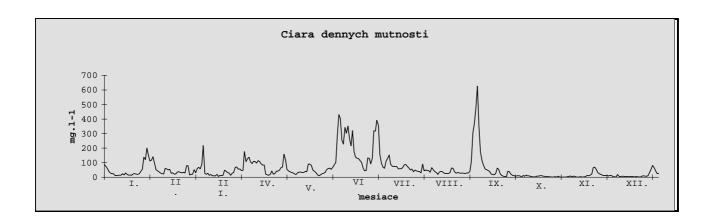
 year mean
 50,0 year min.
 3,7
 DEN/MESIAC:
 18/10

 MSD
 kg/s
 118,3

 YRSD
 t
 3731729

 SYRSD
 t/km2
 28,4



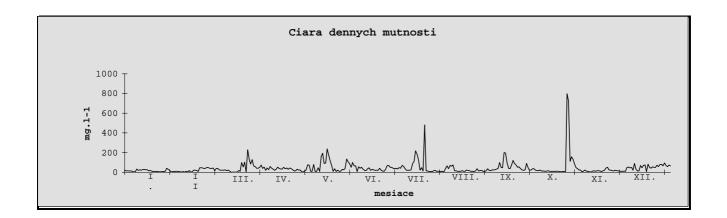

#### ROČNÉ SPRACOVANIE MŮTNOSTI PLAVENÍN [mg.l<sup>-1</sup>]

sediment discharge 5140 BRATISLAVA DUNAJ station: river: ROK : 1995 PLOCHA POVODIA : 131 329,1 km² year

| month    | l.           | II.            | III.         | IV.           | ٧.           | VI.           | VII.          | VIII.        | IX.            | X.         | XI.        | XII.       |
|----------|--------------|----------------|--------------|---------------|--------------|---------------|---------------|--------------|----------------|------------|------------|------------|
| day      | 00.7         | 447.5          | 54.0         | 40.0          | 50.0         | 05.0          | 450.7         | 15.4         | 007.0          | 0.0        | 0.0        | 0.5        |
| 1.<br>2. | 86,7<br>74,6 | 117,5<br>140,9 | 51,3<br>31,2 | 46,0<br>47.6  | 53,3<br>42,9 | 85,0<br>104,0 | 156,7<br>95,6 | 45,1<br>45,3 | 367,8<br>481,2 | 9,0<br>1,5 | 3,2<br>5,0 | 3,5<br>3,5 |
| 2.<br>3. | 74,6<br>60,2 | 95.0           | 59,7         | 47,6<br>176,4 | 42,9<br>37,1 | 283,4         | 95,6<br>68,0  | 45,3<br>34,2 | 461,2<br>625,9 | 12,3       | 5,0<br>8,8 | 3,5<br>1,6 |
| 4.       | 39,3         | 51,3           | 67.7         | 108.2         | 32,4         | 430,5         | 61,4          | 66,1         | 341,1          | 6.9        | 3,3        | 19,1       |
| 5.       | 28,1         | 44.4           | 57,7         | 126,1         | 29.2         | 404.0         | 110,8         | 51,9         | 173,8          | 15,5       | 3,3<br>8,1 | 5.0        |
| 5.       | · ·          | ,              | ·            | · ·           |              | · ·           |               | · ·          | · ·            |            | · ·        |            |
| 6.       | 23,9         | 36,7           | 88,2         | 138,0         | 22,5         | 254,1         | 128,4         | 39,0         | 113,7          | 8,6        | 5,0        | 5,2        |
| 7.       | 24,3         | 29,1           | 217,9        | 105,5         | 18,8         | 228,3         | 153,5         | 32,6         | 82,0           | 10,3       | 0,8        | 6,1        |
| 8.       | 11,9         | 24,6           | 26,6         | 93,5          | 30,7         | 342,3         | 90,3          | 18,4         | 57,4           | 4,8        | 1,4        | 6,9        |
| 9.       | 10,6         | 22,6           | 19,7         | 109,2         | 34,9         | 302,3         | 75,5          | 35,3         | 51,6           | 3,7        | 2,0        | 4,8        |
| 10.      | 13,3         | 61,0           | 25,9         | 108,3         | 35,3         | 351,8         | 73,4          | 39,4         | 46,6           | 2,2        | 3,6        | 4,4        |
| 11.      | 14.4         | 57,2           | 12.8         | 96.6          | 33,0         | 267,1         | 74.4          | 38,1         | 39.5           | 2.4        | 1,6        | 4,2        |
| 12.      | 14,7         | 50.4           | 18,8         | 114,4         | 33,1         | 215.2         | 73.6          | 28.9         | 22.1           | 7.7        | 2.2        | 3,0        |
| 1 3.     | 24,2         | 54,5           | 9,6          | 107,6         | 39,5         | 320,3         | 57,1          | 25,4         | 18,8           | 7,6        | 4,1        | 5,1        |
| 14.      | 15,1         | 27,1           | 10,1         | 90,9          | 38,1         | 175,0         | 58,2          | 25,6         | 16,0           | 10,1       | 12,4       | 4,9        |
| 15.      | 30,2         | 29,3           | 9,2          | 84,0          | 90,2         | 138,4         | 58,1          | 24,9         | 25,2           | 11,1       | 10,0       | 2,6        |
| 16.      | 18,5         | 21,4           | 19,9         | 83.7          | 90.7         | 129,8         | 66,7          | 32,1         | 62,2           | 8.0        | 14.6       | 4,1        |
| 17.      | 14,4         | 22.7           | 5,6          | 20.4          | 81,7         | 127,9         | 85.8          | 63.8         | 53,8           | 6.3        | 20.6       | 3,6        |
| 18.      | 15.0         | 36,8           | 12,3         | 16.5          | 48.4         | 113,3         | 87.0          | 60.0         | 21,7           | 3.5        | 64.4       | 2,2        |
| 19.      | 13,2         | 37.2           | 12,5         | 13,0          | 41,2         | 101,1         | 73.7          | 36.7         | 12.5           | 4.0        | 69.3       | 1,0        |
| 20.      | 22,6         | 33,5           | 12,8         | 20,6          | 31,2         | 60,1          | 64,3          | 27,3         | 7, 0           | 3,4        | 53,9       | 8,2        |
| 21.      | 24.0         | 30,0           | 48.1         | 42.7          | 16,1         | 44.2          | 49.0          | 31,7         | 5, 5           | 2.5        | 31,5       | 10,0       |
| 22.      | 21,3         | 33,6           | 40,4         | 21,1          | 10,1         | 46,8          | 56,0          | 30,0         | 3,6            | 0,7        | 23,4       | 7,5        |
| 23.      | 19,8         | 28,6           | 31,9         | 24,0          | 16,3         | 132,4         | 37,9          | 27,0         | 40,7           | 0,7        | 19,3       | 6,5        |
| 24.      | 23,7         | 79,2           | 27,6         | 42,3          | 24,1         | 130,3         | 49,4          | 28,4         | 37, 9          | 4,6        | 14,5       | 10,4       |
| 25.      | 39,6         | 79,2           | 13,3         | 42,2          | 27,5         | 91,6          | 42,5          | 28,0         | 20,4           | 0,4        | 11,5       | 31,5       |
| 26.      | 54,5         | 15,1           | 27,8         | 48,6          | 32,7         | 131,8         | 40,9          | 25,7         | 13,0           | 7,8        | 11,9       | 54,1       |
| 27.      | 137,3        | 20,1           | 33,4         | 65,4          | 53,3         | 318,9         | 38,6          | 29,7         | 10,5           | 1,0        | 12,3       | 81,9       |
| 28.      | 120,7        | 21,1           | 68,0         | 70,1          | 59, 5        | 316,9         | 30,2          | 29,1         | 6,5            | 1,0        | 8,9        | 67,3       |
| 29.      | 200,7        | 39,8           | 70,4         | 158,7         | 62,3         | 391,5         | 90,7          | 40,0         | 10,0           | 1,0        | 12,3       | 44,5       |
| 30.      | 148,9        |                | 55,3         | 119,3         | 53,4         | 355,9         | 44,3          | 107,0        | 10,4           | 1,0        | 12,2       | 25,8       |
| 31.      | 111,0        |                | 56,9         |               | 68,6         |               | 50,7          | 306,6        |                | 1,0        |            | 25,0       |
| sum      | 1456,7       | 1340,0         | 1242,1       | 2340,9        | 1288, 1      | 6394,2        | 2242,7        | 1453,3       | 2778,4         | 160,6      | 452,1      | 463, 5     |
| mean     | 47,0         | 46,2           | 40,1         | 78,0          | 41,6         | 213,1         | 72,3          | 46,9         | 92,6           | 5,2        | 1 5, 1     | 15,0       |
| MAX.     | 200,7        | 140,9          | 217,9        | 176,4         | 90, 7        | 430,5         | 153,5         | 306,6        | 625, 9         | 15,5       | 69,3       | 81,9       |
| MIN.     | 10,6         | 15,1           | 5,6          | 13,0          | 10,1         | 44,2          | 30,2          | 18,4         | 3,6            | 0,4        | 0,8        | 1,0        |

21612,6 59,2 DEN/MESIAC DEN/MESIAC 625,9 0,4 03 / IX. 25 / X. year sum year average year max year min

MSD YRSD SYRSD kg/s **t** t/km2 196,046 6182496 47,1




ROČNÉ SPRACOVANIE PLAVENÍN [mg. l ¹]

| station<br>river                       |                                           | 5140 BRATIS<br>DUNAJ         | LAVA                                          | sediment                           | disch.                                         | year                                 | ROK:<br>PLOCHA POV                         |                                             |                                      | 1996<br>131329                        | km²                                 |                                              |
|----------------------------------------|-------------------------------------------|------------------------------|-----------------------------------------------|------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------------|
| m ont h<br>day                         | l.                                        | II.                          | III.                                          | IV.                                | V.                                             | VI.                                  | VII.                                       | VIII.                                       | IX.                                  | X.                                    | XI.                                 | XII.                                         |
| 1.                                     | 17,9                                      | 1,4                          | 16,6                                          | 73,4                               | 25,0                                           | 100,0                                | 32,5                                       | 6,0                                         | 15,0                                 | 20,5                                  | 5,0                                 | 48,0                                         |
| 2.                                     | 14,7                                      | 8,9                          | 37,3                                          | 39,6                               | 75,0                                           | 65,0                                 | 47,5                                       | 40,0                                        | 25,0                                 | 18,5                                  | 11,5                                | 53,0                                         |
| 3.                                     | 15,2                                      | 7,3                          | 40,0                                          | 51,9                               | 73,0                                           | 65,5                                 | 40,0                                       | 65,0                                        | 22,5                                 | 14,0                                  | 22,0                                | 44,5                                         |
| 4.                                     | 12,8                                      | 10,4                         | 23,6                                          | 19,7                               | 10,0                                           | 8,0                                  | 70,0                                       | 35,0                                        | 25,5                                 | 23,0                                  | 10,5                                | 49,0                                         |
| 5.                                     | 13,5                                      | 10,5                         | 21,0                                          | 43,5                               | 10,5                                           | 55,0                                 | 60,5                                       | 70,0                                        | 33,0                                 | 12,5                                  | 9,5                                 | 20,5                                         |
| 6.                                     | 11,4                                      | 7,5                          | 20,5                                          | 25,5                               | 80,0                                           | 40,5                                 | 35, 0                                      | 60,0                                        | 37,5                                 | 13,5                                  | 5,0                                 | 89,0                                         |
| 7.                                     | 3,7                                       | 4,7                          | 20,6                                          | 59,3                               | 8,0                                            | 50,0                                 | 20, 0                                      | 75,5                                        | 100,0                                | 11,0                                  | 1,9                                 | 30,0                                         |
| 8.                                     | 4,1                                       | 2,8                          | 24,0                                          | 40,1                               | 10,0                                           | 30,0                                 | 20, 5                                      | 15,0                                        | 50,0                                 | 10,0                                  | 11,0                                | 12,5                                         |
| 9.                                     | 32,9                                      | 6,1                          | 16,1                                          | 30,9                               | 45,0                                           | 20,0                                 | 19, 0                                      | 15,0                                        | 45,0                                 | 15,0                                  | 15,0                                | 12,5                                         |
| 10.                                    | 19,1                                      | 1,6                          | 22,5                                          | 18,7                               | 8,0                                            | 16,5                                 | 25, 0                                      | 10,0                                        | 200,0                                | 13,0                                  | 10,0                                | 67,5                                         |
| 11.                                    | 23,6                                      | 9,1                          | 11,6                                          | 30,9                               | 160,0                                          | 35,5                                 | 90, 0                                      | 10,5                                        | 195,0                                | 7,5                                   | 16,5                                | 46,0                                         |
| 12.                                    | 21,5                                      | 2,5                          | 0,5                                           | 52,3                               | 194,0                                          | 45,0                                 | 111, 0                                     | 10,0                                        | 100,0                                | 9,5                                   | 14,5                                | 69,5                                         |
| 13.                                    | 26,0                                      | 17,4                         | 1,0                                           | 38,5                               | 90,0                                           | 20,0                                 | 217, 5                                     | 16,0                                        | 40,0                                 | 10,0                                  | 12,5                                | 74,0                                         |
| 14.                                    | 29,4                                      | 0,3                          | 1,0                                           | 32,7                               | 95,0                                           | 30,0                                 | 180, 0                                     | 10,0                                        | 35,0                                 | 8,0                                   | 6,0                                 | 7,0                                          |
| 15.                                    | 25,0                                      | 5,8                          | 1,1                                           | 32,9                               | 237,5                                          | 25,0                                 | 120, 5                                     | 10,0                                        | 75,0                                 | 11,0                                  | 14,0                                | 81,5                                         |
| 16.                                    | 26,0                                      | 21,2                         | 1,2                                           | 50,2                               | 179,5                                          | 20,0                                 | 20, 5                                      | 22,5                                        | 120,0                                | 10,0                                  | 19,0                                | 50,0                                         |
| 17.                                    | 15,1                                      | 20,4                         | 17,2                                          | 35,3                               | 115,0                                          | 20,5                                 | 46, 5                                      | 18,0                                        | 90,0                                 | 6,0                                   | 41,5                                | 40,0                                         |
| 18.                                    | 18,3                                      | 18,6                         | 10,0                                          | 43,9                               | 70,0                                           | 20,0                                 | 12, 5                                      | 15,0                                        | 72,5                                 | 5,5                                   | 50,0                                | 55,0                                         |
| 19.                                    | 11,3                                      | 8,6                          | 99,3                                          | 28,8                               | 10,5                                           | 40,0                                 | 480, 1                                     | 10,0                                        | 50,5                                 | 7,5                                   | 22,5                                | 50,0                                         |
| 20.                                    | 8,5                                       | 45,2                         | 53,0                                          | 43,6                               | 35,5                                           | 20,5                                 | 15, 0                                      | 10,5                                        | 55,0                                 | 7,5                                   | 22,0                                | 49,0                                         |
| 21.                                    | 9,5                                       | 45,5                         | 101,8                                         | 37,2                               | 8,0                                            | 12,5                                 | 13,0                                       | 8,0                                         | 35,0                                 | 8,0                                   | 16,5                                | 71,5                                         |
| 22.                                    | 5,7                                       | 43,8                         | 0,9                                           | 26,2                               | 20,5                                           | 10,0                                 | 8,5                                        | 12,5                                        | 25,0                                 | 797,0                                 | 13,5                                | 57,0                                         |
| 23.                                    | 7,9                                       | 37,3                         | 228,4                                         | 13,4                               | 10,0                                           | 30,0                                 | 6,5                                        | 35,0                                        | 20,0                                 | 725,0                                 | 21,0                                | 78,0                                         |
| 24.                                    | 5,2                                       | 42,5                         | 134,3                                         | 15,0                               | 10,0                                           | 65,0                                 | 6,0                                        | 12,5                                        | 25,0                                 | 111,0                                 | 16,0                                | 81,0                                         |
| 25.                                    | 5,2                                       | 48,2                         | 83,5                                          | 30,7                               | 30,0                                           | 70,0                                 | 15,0                                       | 17,5                                        | 90,0                                 | 158,5                                 | 14,5                                | 65,0                                         |
| 26.<br>27.<br>28.<br>29.<br>30.<br>31. | 6,5<br>7,4<br>9,6<br>41,4<br>29,0<br>19,3 | 45,0<br>39,2<br>39,8<br>43,7 | 129,2<br>63,7<br>56,9<br>40,5<br>40,7<br>50,2 | 21,5<br>23,9<br>6,7<br>1,3<br>13,6 | 25,0<br>38,5<br>135,5<br>105,0<br>87,5<br>50,0 | 50,0<br>50,0<br>40,0<br>35,0<br>40,0 | 20,0<br>10,5<br>12,0<br>6,0<br>10,0<br>6,0 | 20,0<br>10,5<br>8,0<br>12,5<br>35,0<br>20,0 | 45,0<br>20,0<br>22,5<br>35,0<br>35,0 | 133,5<br>82,5<br>46,5<br>36,5<br>23,5 | 11,5<br>9,5<br>10,5<br>11,5<br>10,0 | 95,0<br>68,0<br>56,5<br>72,5<br>63,5<br>64,0 |
| sum                                    | 496,7                                     | 595,3                        | 1368,2                                        | 981,2                              | 2051,5                                         | 1129,5                               | 1777,1                                     | 715,5                                       | 1739,0                               | 2379,0                                | 454,4                               | 1720,5                                       |
| mean                                   | 16,0                                      | 20,5                         | 44,1                                          | 32,7                               | 66,2                                           | 37,7                                 | 57,3                                       | 23,1                                        | 58,0                                 | 76,7                                  | 15,1                                | 55,5                                         |
| MIN.                                   | 3,7                                       | 0,3                          | 0,5                                           | 1,3                                | 8,0                                            | 8,0                                  | 6,0                                        | 6,0                                         | 15,0                                 | 5,5                                   | 1,9                                 | 7,0                                          |
| MAX.                                   | 41,4                                      | 48,2                         | 228,4                                         | 73.4                               | 237,5                                          | 100,0                                | 480,1                                      | 75,5                                        | 200,0                                | 797.0                                 | 50.0                                | 95.0                                         |

DEN/MESIAC DEN/MESIAC 154 07,9 42,2 797,0 0,3 03 / IX. 25 / X. year sum year average year max. year min.

MSD YRSD STRSD kg/s t t/km2 114,06867 3607125,2 27,5



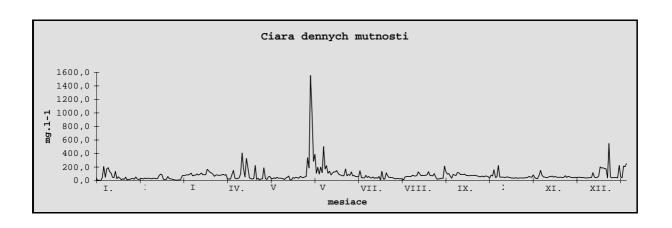
#### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN

[ mg.l-1]

station : Z8h Zahorska Ves river : Morava

ROK : PLOCHA POVODIA : year

1994 25521,3 km2


| month      | 1 1. 1         | II.        | III.         | IV.           | ٧.             | VI.          | VII.         | VIII.         | IX.            | X.           | XI.          | XII.          |
|------------|----------------|------------|--------------|---------------|----------------|--------------|--------------|---------------|----------------|--------------|--------------|---------------|
| day        | ••             |            |              |               |                |              |              |               |                |              |              |               |
| 1.         | 16, 1          | 29.8       | 74.0         | 18,0          | 29.0           | 107,5        | 143,9        | 53,4          | 65.0           | 1 58, 1      | 80,0         | 46,2          |
| 2.         | 4,7            | 21,2       | 70,0         | 24,1          | 25,6           | 194,4        | 39,6         | 56,0          | 33,8           | 45,5         | 150,0        | 39,5          |
| 3.         | 1,6            | 35,3       | 79,0         | 20,1          | 40,0           | 94,7         | 40,7         | 60,6          | 90, 1          | 51,2         | 75,0         | 36,7          |
| 4.         | 2, 1           | 28,3       | 85,5         | 83,9          | 28,2           | 197,7        | 38,5         | 59,6          | 80, 2          | 223,0        | 52,0         | 38,9          |
| 5.         | 42,2           | 32,8       | 80,5         | 149,4         | 47,2           | 114,9        | 75,6         | 58,0          | 74, 0          | 53,2         | 50,0         | 41,2          |
| 6.         | 205, 7         | 32,4       | 92,5         | 36,4          | 33,4           | 502,2        | 45,4         | 79,2          | 117,5          |              | 45,0         | 42,3          |
| 7.         | 46, 9          | 31,1       | 1 09, 1      | 24,9          | 34,4           | 169,9        | 58,1         | 68,6          | 111,8          |              | 44,3         | 45,0          |
| 8.         | 172,5          | 24,0       | 67,6         | 28,1          | 32,7           | 219,4        | 39,7         | 67,0          | 87, 1          | 47,8         | 57,6         | 115,7         |
| 9.         | 1 90, 0        | 34, 5      | 78,0         | 39,5          | 27,9           | 105,3        | 37,0         | 70,2          | 91,4           | 44,8         | 56,8         | 52,9          |
| 10.        | 1 30, 0        | 31,2       | 78, 1        | 100,0         | 13,4           | 137,6        | 52,9         | 126,8         | 88,6           | 53,5         | 65,4         | 39,2          |
| 11.        | 110,0          | 26, 5      | 98,2         | 406,9         | 36,3           | 83,6         | 31,6         | 96,3          | 94, 1          | 46,2         | 50,3         | 43,8          |
| 12.        | 46,2           | 30,6       | 81,6         | 174,7         | 46,4           | 109,5        | 41,8         | 71,9          | 73, 0          | 46,1         | 60,2         | 65,8          |
| 13.        | 43, 7          | 72,6       | 89,3         | 51,1          | 66,9           | 127,8        | 34,3         | 75,7          | 74,7           | 36,7         | 50,2         | 201,7         |
| 14.        | 134,2          | 95, 3      | 110,2        | 326,4         | 8, 1           | 125,9        | 58,4         | 74,0          | 67,8           | 38,6         | 47,3         | 184,6         |
| 15.        | 25,6           | 82,5       | 84,9         | 194,2         | 10,8           |              | 6,3          | 79,2          | 74,2           | 33,2         | 47,1         | 186,9         |
| 16.        | 55,2           | 16,3       | 85,4         | 37,5          | 43,1           | 104,1        | 135,9        | 82,6          | 77, 5          | 42,2         | 50,0         | 176,2         |
| 17.        | 36,6           | 17,0       | 85,5         | 28,2          | 32,3           | 83,1         | 21,5         | 130,5         | 72, 3          | 33,7         | 42,7         | 172,0         |
| 18.        | 11, 1          | 17,5       | 166,7        | 20,7          | 47,4           | 80,9         | 21,2         | 76,8          | 78,6           | 36,3         | 46,7         | 36,9          |
| 19.        | 25, 1          | 58,3       | 145,1        | 29,5          | 40,9           | 69,6         | 114,3        | 70,6          | 67,5           | 36,9         | 70,8         | 547,9         |
| 20.        | 16,6           | 26,1       | 120,0        | 223,3         | 34,1           | 71,3         | 71,2         | 67,8          | 65,6           | 37,2         | 45,8         | 51,9          |
| 21.        | 48,7           | 24,6       | 111,2        | 17,7          | 62,1           | 169,8        | 45,7         | 100,9         | 54, 1          | 34,6         | 60,5         | 37,6          |
| 22.        | 7, 1           | 19,2       | 92,7         | 33,7          | 47,7           | 68,1         | 45,7         | 48,8          | 57, 5          | 40,4         | 53,8         | 43,9          |
| 23.        | 19,1           | 12,3       | 62,3         | 8,1           | 41,8           |              | 41,6         | 19,9          | 66,2           | 39,1         | 45,9         | 45,2          |
| 24.        | 16,4           | 7,8        | 79,8         | 22,6          | 53,1           | 76,4         | 37,3         | 23,8          | 52,6           | 42,2         | 44,4         | 45,4          |
| 25.<br>26. | 29,0<br>28,8   | 5,1<br>7,5 | 83,0         | 24,4          | 58,6           | 127,2        | 23,8<br>28,2 | 27,2          | 66,9           | 60,2         | 41,0         | 36,9<br>222,0 |
| 26.        | ∠o, o<br>19, 1 | 7,5<br>8,1 | 76,2<br>77,1 | 186,6<br>29,0 | 335,1<br>185,4 | 69,2         | 26,2<br>31,2 | 32,8<br>34,2  | 64,2           | 53,1<br>46,4 | 46,2<br>43,6 | 222,0<br>55,5 |
| 28.        | 19, 1<br>52, 5 | 23,1       | 77,1<br>82,1 | 29,0<br>13,3  | 1552,9         | 73,8<br>55,7 | 31,2<br>24,9 | 34,2<br>212,9 | 58, 9<br>35, 9 | 46,4<br>84,0 | 43,6         | 55,5<br>41,3  |
| 29         | 20,4           | 23, 1      | 89,1         | 54.3          | 1051,9         | 59,2         | 24,9<br>26,8 | 127,9         | 33, 9<br>79, 1 | 45,3         | 49,3<br>47,9 | 213,4         |
| 30.        | 20,4<br>16,9   |            | 78,9         | 54,3<br>58,8  | 284,5          | 59,2<br>50,6 | 20,0         | 93,8          | 79, 1<br>66,2  | 45,5<br>29,2 | 41,9         | 213,4         |
|            |                |            |              | 30,0          |                | 50,6         |              |               | 00,2           |              | 41,7         |               |
| 31.        | 22,7           |            | 87,0         |               | 386,0          |              | 11,6         | 101,3         |                | 29,0         |              | 248,7         |
| sum        | 1596,8         | 850,8      | 2800,5       | 2465,3        | 4737,1         | 3685,6       | 1446,4       | 2348,4        | 2186,2         | 1666,8       | 1661,5       | 3357,9        |
| mea n      | 51,5           | 30,4       | 90.3         | 82.2          | 152,8          | 122.9        | 46.7         | 75,8          | 72.9           | 53.8         | 55.4         | 108,3         |
| MIN.       | 1,6            | 5,1        | 62,3         | 8,1           | 8,1            | 50,6         | 6,3          | 19,9          | 33,8           | 29.0         | 41,0         | 36,7          |
| MAX.       | 205.7          | 95.3       | 166.7        | 406.9         | 1552.9         |              | 135,9        | 212.9         | 117.5          |              | 150,0        | 547.9         |

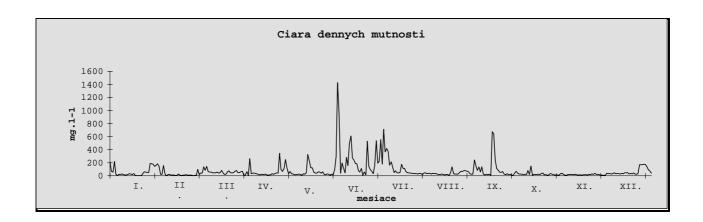
y ear sum y ear mean

28803,2 year max. 78,9 year min.

1552,9 1,6 DEN/MESIAC: 28/05 DEN/MESIAC: 03/01

MSD YRSD SYRSD kg/s t t/km2 8,2 258419,38 10,1




#### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN [mg.l<sup>-1</sup>]

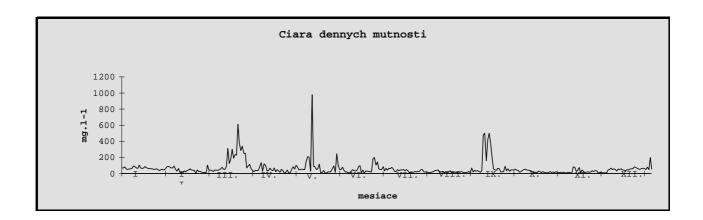
sediment discharge 5085 ZÄHORSKÄ VES MORAVA ROK : PLOCHA POVODIA : 1 995 25 521 km² station river year

| month | I.     | II.   | III.   | IV.    | V.     | VI.    | VII.     | VIII.   | IX.    | X.    | XI.   | XII.   |
|-------|--------|-------|--------|--------|--------|--------|----------|---------|--------|-------|-------|--------|
| day   |        |       |        |        |        |        |          |         |        |       |       |        |
| 1.    | 212,7  | 162,9 | 98,5   | 7, 8   | 31,7   | 93,5   | 218,1    | 46,0    | 24,7   | 69,2  | 39,1  | 39,2   |
| 2.    | 67,3   | 185,1 | 18,6   | 11,2   | 65,3   | 292,0  | 555,6    | 31,0    | 25,6   | 41,1  | 16,0  | 31,5   |
| 3.    | 56,7   | 139,5 | 40,8   | 62,7   | 31,0   | 1429,1 | 179,7    | 36,7    | 243,8  | 27,9  | 9, 1  | 33,9   |
| 4.    | 217,2  | 22,6  | 42,3   | 8,4    | 29,6   | 982,0  | 713,0    | 38,7    | 151,3  | 26,0  | 8,3   | 26,8   |
| 5.    | 22,5   | 21,8  | 138,6  | 261,9  | 13,7   | 39,8   | 364,8    | 27,6    | 83,9   | 23,6  | 21,3  | 31,0   |
| 6.    | 3, 7   | 156,0 | 82,6   | 31,0   | 17,2   | 195,5  | 419,8    | 38,7    | 134,4  | 15,8  | 18,0  | 45,9   |
| 7.    | 23, 0  | 24,2  | 145,0  | 41,1   | 22,5   | 120,3  | 373, 8   | 31,0    | 59,6   | 24,1  | 20,4  | 31,1   |
| 8.    | 20,3   | 0,8   | 64,8   | 41,7   | 25,7   | 44,5   | 162,9    | 35,6    | 136,2  | 18,8  | 21,6  | 34,1   |
| 9.    | 28,6   | 18,3  | 56,3   | 30, 9  | 20,9   | 281,3  | 212,5    | 25,1    | 27,2   | 80,4  | 15,2  | 32,7   |
| 10.   | 16,3   | 18,8  | 57,2   | 28,8   | 6,5    | 156,4  | 136,6    | 23,3    | 13,0   | 19, 1 | 23,5  | 26,9   |
| 11.   | 11,8   | 10,9  | 44,6   | 18,4   | 31,0   | 494,2  | 48,6     | 19,2    | 24,2   | 148,6 | 12,4  | 36,3   |
| 12.   | 12,5   | 11,2  | 47,3   | 15, 1  | 24,3   | 610,8  | 75,2     | 26,9    | 14,0   | 10,0  | 13,3  | 30,3   |
| 13.   | 20,5   | 13,3  | 45,1   | 24,8   | 43,1   | 270,5  | 44,4     | 21,7    | 24,3   | 19,4  | 13,6  | 47,4   |
| 14.   | 30, 7  | 5,7   | 56,6   | 16, 1  | 326,0  | 243,3  | 45,0     | 13,4    | 7,7    | 20,4  | 10,5  | 43,5   |
| 1 5.  | 26,4   | 4,0   | 41,4   | 21,3   | 225,4  | 186,5  | 50, 3    | 20,3    | 674,6  | 21,7  | 15,3  | 48,6   |
| 16.   | 17,4   | 27,4  | 46,6   | 25,7   | 123,3  | 183,9  | 177,9    | 19,4    | 644,9  | 24,7  | 13,7  | 26,2   |
| 17.   | 34,3   | 9,6   | 82,8   | 4,6    | 121,9  | 82,2   | 111,9    | 5,7     | 230,0  | 16,0  | 16,3  | 37,7   |
| 18.   | 5, 5   | 3,9   | 41,7   | 14,4   | 52,9   | 55,7   | 114,9    | 49,2    | 110,0  | 36, 3 | 9,3   | 29,6   |
| 19.   | 2,2    | 10,9  | 22,9   | 15,3   | 41,2   | 113,8  | 64,5     | 138,1   | 86,1   | 42, 1 | 22,2  | 43,7   |
| 20.   | 3, 0   | 9,2   | 25,3   | 32,8   | 39,9   | 7,2    | 45, 5    | 29,4    | 53,0   | 15,4  | 17,3  | 23,6   |
| 21.   | 1,9    | 16,4  | 60,5   | 21,0   | 60,2   | 59,2   | 44,7     | 27,7    | 53,4   | 16,7  | 29,4  | 25,0   |
| 22.   | 1,7    | 8,9   | 77,3   | 34,7   | 56,5   | 15,3   | 42,7     | 25,3    | 64,0   | 9,6   | 20,9  | 33,1   |
| 23.   | 28,9   | 11,0  | 46,6   | 43,3   | 39,1   | 531,1  | 39, 7    | 26,4    | 27,2   | 11,4  | 37,7  | 169,9  |
| 24.   | 61,4   | 10,7  | 44,5   | 42,3   | 61,4   | 144,5  | 32,5     | 49,2    | 17,8   | 33,4  | 22,1  | 169,3  |
| 25.   | 56,2   | 10,7  | 46,2   | 345,4  | 20,0   | 99,0   | 37, 0    | 68,1    | 32,2   | 28,2  | 21,4  | 170,2  |
| 26.   | 50,6   | 1,1   | 69,7   | 94,5   | 17,9   | 69,7   | 32,0     | 66,0    | 17,9   | 18,0  | 14,2  | 177,6  |
| 27.   | 52,6   | 6,4   | 81,2   | 65,6   | 30,6   | 31,4   | 27,3     | 81,3    | 21,3   | 12,0  | 12,8  | 175,0  |
| 28.   | 189,5  | 7,0   | 46,1   | 114,0  | 25,0   | 155,8  | 38, 8    | 75,0    | 10,5   | 12,0  | 8,7   | 138,5  |
| 29.   | 183,4  | 16,0  | 49,8   | 247,5  | 8,4    | 538,0  | 34,8     | 70,5    | 4,1    | 12,0  | 8,0   | 93,8   |
| 30.   | 179,8  |       | 61,6   | 122,5  | 25,0   | 193,8  | 18,1     | 61,7    | 36,3   | 10,0  | 8,0   | 71,1   |
| 31.   | 141,8  |       | 69,8   |        | 13,0   |        | 42,5     | 30,6    |        | 35,0  |       | 39,2   |
| sum   | 1780,5 | 944,3 | 1852,3 | 1844,8 | 1650,2 | 7720,3 | 4 505, 1 | 1258,8  | 3053,2 | 898,9 | 519,6 | 1962,7 |
| mean  | 57,4   | 32,6  | 59,8   | 61,5   | 53,2   | 257,3  | 145,3    | 40,6    | 101,8  | 29,0  | 17,3  | 63,3   |
| MAX.  | 217,2  | 185,1 | 145,0  | 345,4  | 326,0  | 1429,1 | 713,0    | 1 38, 1 | 674,6  | 148,6 | 37,7  | 177,6  |
| MIN.  | 1,7    | 0,8   | 18,6   | 4,6    | 6,5    | 7,2    | 18, 1    | 5,7     | 4,1    | 9,6   | 8,0   | 23,6   |

27990,7 76,7 DEN/MESIAC DEN/MESIAC 03/IX. 25/X. year sum year average year max. year min 1429,1 0,8

10,535 332219,7 13,0 MSD YRSD SYRSD kg/s **t** t/km2




#### ROČNÉ SPRACOVANIE PLAVENÍN [mg. l ¹] discharges

5085 ZÁHORSKÁ VES MORAVA ROK : PLOCHA POVODIA : 1 996 25521 km² station : river : yea r

| month | l.     | II.    | l III. | IV.     | ٧.     | VI.    | VII.   | VIII. | IX.    | X.    | XI.    | XII.   |
|-------|--------|--------|--------|---------|--------|--------|--------|-------|--------|-------|--------|--------|
| day   |        |        |        |         |        |        |        |       |        |       |        |        |
| 1.    | 69,7   | 83,4   | 42,1   | 24,3    | 80,0   | 80,0   | 65,0   | 16,5  | 30,5   | 17,5  | 12,5   | 45,5   |
| 2.    | 69,8   | 88,6   | 44,5   | 39,2    | 45,0   | 40,0   | 42,7   | 20,0  | 37,5   | 25, 0 | 6,0    | 52,5   |
| 3.    | 83, 5  | 81,8   | 38,1   | 38, 0   | 50,5   | 20,0   | 65, 0  | 30,0  | 25,0   | 40,0  | 13,5   | 67,0   |
| 4.    | 57, 9  | 69,5   | 25,9   | 38, 9   | 55,0   | 21,5   | 62,0   | 40,0  | 15,5   | 50, 0 | 15,0   | 49,5   |
| 5.    | 51,7   | 68,6   | 44,5   | 83, 7   | 50,0   | 8,0    | 76, 5  | 40,0  | 35,0   | 55, 5 | 9,0    | 59,0   |
| 6.    | 58,2   | 92,8   | 40,8   | 134,8   | 50,5   | 16,0   | 55, 0  | 45,0  | 480,0  | 43,5  | 6,5    | 49,5   |
| 7.    | 57,4   | 53,0   | 42,5   | 30, 0   | 150,0  | 25,0   | 25, 0  | 15,0  | 500,0  | 41,5  | 82,5   | 32,5   |
| 8.    | 65,7   | 29,4   | 47,9   | 121,3   | 210,0  | 50,0   | 25, 0  | 20,0  | 160,5  | 40,0  | 75,0   | 58,0   |
| 9.    | 96,1   | 63,0   | 55,3   | 1 00, 1 | 205,0  | 35,0   | 50,0   | 25,0  | 420,0  | 31,0  | 26,5   | 50,5   |
| 10.   | 86,0   | 13,2   | 77,1   | 33, 5   | 30,0   | 32,5   | 35, 0  | 10,0  | 500,0  | 17,0  | 40,0   | 59,0   |
| 11.   | 69,0   | 12,8   | 56,3   | 36,2    | 980,0  | 41,5   | 45,0   | 20,0  | 380,0  | 12,0  | 75,0   | 43,0   |
| 12.   | 64,9   | 6,4    | 52,3   | 67,8    | 90,5   | 85,0   | 45, 5  | 6,0   | 200,0  | 15,5  | 6,5    | 42,5   |
| 13.   | 104,6  | 35,8   | 90,3   | 44,6    | 83,0   | 100,0  | 50, 0  | 18,0  | 55,0   | 10,0  | 46,0   | 35,5   |
| 14.   | 70, 3  | 20,8   | 312,6  | 36,6    | 52,5   | 8,0    | 35, 5  | 35,0  | 45,0   | 32,5  | 23,5   | 48,0   |
| 1 5.  | 63,9   | 40,5   | 124,3  | 70, 3   | 57,5   | 44,7   | 50, 5  | 12,5  | 40,0   | 23, 5 | 14,0   | 46,5   |
| 16.   | 69,5   | 44,1   | 179,7  | 21,0    | 118,0  | 6,0    | 35, 0  | 10,0  | 65,0   | 11,5  | 17,0   | 56,5   |
| 17.   | 87, 8  | 59,4   | 301,9  | 49,2    | 10,0   | 32,5   | 10,0   | 20,5  | 60,0   | 23,5  | 20,0   | 60,0   |
| 18.   | 71,5   | 44,1   | 190,2  | 31,7    | 10,0   | 30,0   | 20,0   | 15,0  | 20,5   | 16,0  | 17,5   | 60,0   |
| 19.   | 66, 1  | 41,2   | 236,4  | 16,7    | 40,5   | 27,5   | 20,5   | 10,0  | 22,5   | 14,5  | 20,0   | 83,5   |
| 20.   | 60, 9  | 39,5   | 229,2  | 54, 1   | 8,0    | 24,0   | 16,0   | 20,4  | 25,0   | 5, 0  | 35,0   | 75,5   |
| 21.   | 60,5   | 2,8    | 612,1  | 37, 3   | 8,5    | 20,0   | 25, 0  | 16,0  | 90,0   | 15,0  | 25,0   | 65,0   |
| 22.   | 60, 5  | 46,4   | 373,9  | 4,6     | 22,5   | 181,5  | 20,0   | 25,0  | 34,5   | 23,5  | 35,0   | 55,5   |
| 23.   | 52,6   | 26,4   | 285,2  | 15,0    | 20,0   | 200,0  | 25, 0  | 15,0  | 60,0   | 14, 5 | 35,0   | 53,0   |
| 24.   | 53,4   | 25,9   | 339,6  | 43,6    | 24,0   | 105,0  | 25, 5  | 10,5  | 27,0   | 19,0  | 10,0   | 61,5   |
| 25.   | 59, 5  | 18,5   | 249,8  | 6,8     | 61,5   | 145,5  | 50, 0  | 15,0  | 45,0   | 12,0  | 12,5   | 68,5   |
| 26.   | 45,0   | 13,8   | 252,4  | 8, 3    | 95,0   | 55,3   | 50, 0  | 15,0  | 45,0   | 22,5  | 11,0   | 62,5   |
| 27.   | 37, 1  | 14,1   | 69,8   | 58, 1   | 15,0   | 52,5   | 20,0   | 25,0  | 44,0   | 15,0  | 10,0   | 49,0   |
| 28.   | 49, 9  | 6,3    | 93,5   | 85, 5   | 244,0  | 50,5   | 20,0   | 12,5  | 55,0   | 8, 5  | 10,0   | 79,0   |
| 29.   | 53,2   | 105,2  | 114,8  | 56,2    | 100,5  | 85,0   | 15,0   | 70,0  | 42,5   | 17,5  | 7,5    | 50,5   |
| 30.   | 43,4   | -      | 58,9   | 103,6   | 52,0   | 34,5   | 17, 5  | 20,0  | 40,0   | 6,5   | 12,5   | 199,5  |
| 31.   | 60,0   | -      | 41,0   | -       | 50,0   | -      | 10,0   | 40,0  | -      | 18,5  | -      | 55,0   |
| sum   | 1999,6 | 1247,3 | 4722,9 | 1491,0  | 3069,0 | 1657,0 | 1107,2 | 692,9 | 3600,0 | 697,5 | 729, 5 | 1873,0 |
| mean  | 64,5   | 43,0   | 152,4  | 49,7    | 99,0   | 55,2   | 35, 7  | 22,4  | 120,0  | 22,5  | 24,3   | 60,4   |
| MIN.  | 37, 1  | 2,8    | 25,9   | 4,6     | 8,0    | 6,0    | 10,0   | 6,0   | 15,5   | 5, 0  | 6,0    | 32,5   |
| MAX.  | 104,6  | 105,2  | 612,1  | 134,8   | 980,0  | 200,0  | 76,5   | 70,0  | 500,0  | 55,5  | 82,5   | 199,5  |

22886,9 62,7 DEN/MESIAC DEN/MESIAC 980,0 2,8 03/IX. 25/X. year sum year average year max. year min.

MSD YRSD SYRSD kg/s **t** t/km2 9,849 311435,0 12,2



sediment discharge

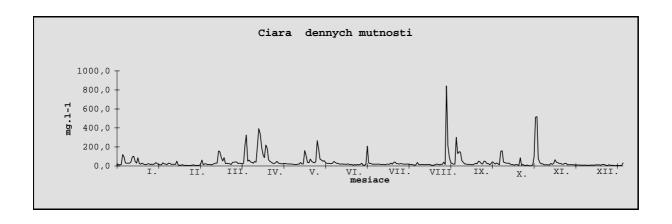
#### ROČNÉ SPRACOVANIE PLAVENÍN [mg.l-1]

station : Brehy river : Hron

year

ROK : PLOCHA POVODIA : 1994 3821,38 km2

| n ont h   | l.            | II.          | III.         | IV.          | ٧.           | VI.          | VII.         | VIII.        | IX.           | Χ.            | XI.          | XII.       |
|-----------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|--------------|------------|
| lay       | 04.0          | 40.4         | 0.7          | 00.5         | 00.0         | 07.0         | 00.0         | 44.4         | 10.0          | 01.0          | 00.0         | 0.0        |
| 1.        | 21,3          | 12,1         | 6,7          | 22,5         | 26,2         | 27,3         | 30,9         | 14, 1        | 19,8          | 31,3          | 39,2         | 8,2        |
| 2.        | 13,1          | 12,7         | 16,0         | 29,4         | 26,0         | 28,3         | 27,3         | 14, 1        | 301,5         | 23,5          | 22,5         | 7,9<br>9,0 |
| 3.        | 11,7          | 34,2         | 62,6         | 220,3        | 21,9         | 25,1         | 23,8         | 7,0          | 129,0         | 11,4          | 25,3         |            |
| 4.        | 13,9          | 22,7         | 14,1         | 325,0        | 22,4         | 24,2         | 16,1         | 12,5         | 150,6         | 1 55,0        | 13,7         | 10,5       |
| 5.<br>C   | 119,5<br>97,9 | 19,9<br>15,6 | 22,5<br>22,8 | 50,8         | 20,8         | 30,8         | 20,9<br>17,9 |              | 146,0<br>56,0 | 160,4<br>42,3 | 11,9         | 7,2<br>7,9 |
| 6.<br>7.  | 97,9<br>31,8  |              |              | 63,1         | 21,8<br>19,3 | 47,6<br>37,2 | 17,9         |              | 36,0<br>37,9  |               | 13,8         | 7,8        |
| 7.<br>8.  |               | 30,8         | 12,8         | 41,7         |              |              |              | 14,3         |               | 33,5          | 12,6         |            |
| o.<br>9.  | 28,4<br>30,0  | 27,3<br>17,4 | 15,2<br>14,6 | 38,5<br>28,8 | 17,8<br>14,5 | 27,4<br>29,2 | 20,6<br>18,1 | 15,3<br>15,2 | 22, 5<br>19,6 | 30,6<br>28,2  | 10,2<br>27,3 | 10,0       |
| 9.<br>10. | 29,4          | 19,3         | 11,3         | 20,0<br>47,4 | 14,5         | 29,2<br>20,2 | 15,6         | 15,∠<br>13,1 | 19,6          | 26,2<br>30,0  | 27,3<br>16,8 | 9,4<br>7,7 |
| 11.       | 43,6          | 18,6         | 18,7         | 40,6         | 20,0         | 20,2<br>17,8 | 18,6         |              | 18,4          | 16,8          | 25,1         | 11,1       |
| 12.       | 94, 0         | 16,5         | 25,8         | 222,6        | 20,0<br>18,6 | 23,3         | 14.0         |              | 14,4          | 17,3          | 66,2         | 12,2       |
| 13.       | 102,4         | 50,0         | 30,9         | 392,5        | 37,8         | 23,3<br>17,1 | 12.7         | 14,3         | 12,8          | 17,3          | 41,2         | 12,6       |
| 14.       | 47.0          | 9,3          | 31,0         | 335,9        | 37,6<br>19,6 | 20,7         | 20,4         | 16,3         | 13,3          | 10,1          | 35.0         | 11,0       |
| 15.       | 29,9          | 7.2          | 157,9        | 196,1        | 22.6         | 17,2         | 18,6         |              | 19.8          | 14.6          | 26,2         | 9,1        |
| 16.       | 86,4          | 9.2          | 148,9        | 115,4        | 162,0        | 21.3         | 18,2         | 7,6<br>8,6   | 28,3          | 13,2          | 26,5         | 15,6       |
| 17.       | 25,4          | 14,2         | 87.0         | 88.2         | 105,5        | 16,5         | 30,5         |              | 22,3          | 4.5           | 18,1         | 16.        |
| 18.       | 18,2          | 6.6          | 53,0         | 220,1        | 37,0         | 13.0         | 18,8         | 7,5<br>16,6  | 49.9          | 86.2          | 18,2         | 11,0       |
| 19.       | 29,6          | 6,0          | 86,9         | 183,5        | 34,1         | 15,9         | 39.1         | 19,5         | 43, 1         | 4.3           | 27.7         | 5,         |
| 20.       | 20,3          | 6,4          | 25,6         | 65,8         | 73,2         | 8.5          | 41,1         | 16, 1        | 24.1          | 17,5          | 29,0         | 6,         |
| 21.       | 15,2          | 4,4          | 28,2         | 47,2         | 49,5         | 15,3         | 24.7         | 11,4         | 20,6          | 5.7           | 12,6         | 13,        |
| 22.       | 14,8          | 4,8          | 23,7         | 38,2         | 39,2         | 9,8          | 24.3         | 19.0         | 51,5          | 4,4           | 13,3         | 6,         |
| 23.       | 22, 1         | 6,4          | 24,3         | 28,2         | 32,2         | 14.9         | 19,6         | 16,5         | 47.3          | 10,1          | 13,0         | 6,         |
| 24.       | 24,4          | 7.8          | 15,6         | 26,6         | 47,2         | 11.6         | 25.1         | 40.8         | 23.8          | 5,8           | 14,2         | 9,1        |
| 25        | 13,5          | 12,3         | 37.6         | 34,1         | 266,7        | 16.6         | 21.8         |              | 25,6          | 2,5           | 13,3         | 4,         |
| 26.       | 19,5          | 7,4          | 40.8         | 48.5         | 176,7        | 28.8         | 19.7         | 842.4        | 13,2          | 3.4           | 10,8         | 5,         |
| 27.       | 15.5          | 5.9          | 41,8         | 31,2         | 74,1         | 6,4          | 18.7         | 212,0        | 24.5          | 13,8          | 12,5         | 6,         |
| 28.       | 24.4          | 5.9          | 42.1         | 25.0         | 62,5         | 7,6          | 19.6         |              | 44.5          | 95,8          | 10.8         | 4,         |
| 29.       | 35,3          | -,-          | 25,1         | 24.1         | 51,3         | 17,5         | 20.1         | 35,9         | 31,8          | 513,4         | 10,2         | 7,         |
| 30.       | 22,4          |              | 30.9         | 22.1         | 55.6         | 209.1        | 17.3         | 26,5         | 20.7          | 518.0         | 10.9         | 5,         |
| 31.       | 16,7          |              | 26,5         |              | 34.8         |              | 16,6         | 18,8         |               | 80.9          | ,-           | 31,        |
| •         | 10,7          |              | 20,0         |              | 01,0         |              | 10,0         | .0,0         |               | 55,5          |              |            |
| sum       | 1117,6        | 410,9        | 1200,9       | 3053,4       | 1625,8       | 806,2        | 668,8        | 1624,4       | 1450,4        | 1996,6        | 628, 1       | 295,       |
| mean      | 36,1          | 14,7         | 38,7         | 101,8        | 52,4         | 26,9         | 21,6         | 52,4         | 48, 3         | 64,4          | 20,9         | 9,         |
| MAX.      | 119,5         | 50, 0        | 157,9        | 392,5        | 266,7        | 209,1        | 41,1         | 842,4        | 301,5         | 518,0         | 66,2         | 31,9       |
| MIN.      | 11,7          | 4,4          | 6,7          | 22,1         | 14,5         | 6,4          | 12,7         | 7, 0         | 12,8          | 2,5           | 10,2         | 4,1        |


 year sum
 14878,2 year max.
 1139,5 gramma
 DEN/MESIAC: 26/08

 year mean
 40,8 year min.
 2,5 den/MESIAC: 25/10

 MSD
 kg/s
 4,5

 YRSD
 t
 143350,2

 SYRSD
 t/km2
 37,5



#### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN [mg.l<sup>-1</sup>]

sediment discharge

| station: | 7290 BREHY | year | ROK            | : 1995   |     |
|----------|------------|------|----------------|----------|-----|
| river :  | HRON       |      | PLOCHA POVODIA | : 3821.4 | km² |
|          |            |      |                |          |     |

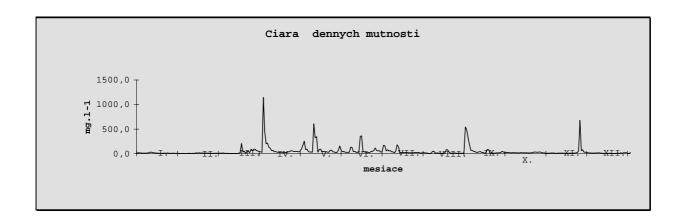
| month | l l    | 11.    | III.   | IV.    | V.     | VI.    | VII.   | VIII.  | IX.     | X.    | XI.   | XII.  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|-------|-------|
| day   |        |        |        |        |        |        |        |        |         |       |       |       |
| 1.    | 35, 9  | 17,7   | 18,1   | 36,4   | 48,4   | 70,4   | 17,5   | 15,3   | 108,3   | 10    | 14,6  | 17,3  |
| 2.    | 12,3   | 13,7   | 19,6   | 17,1   | 32,1   | 369,2  | 20,7   | 13,5   | 41,5    | 9,2   | 11,0  | 15,2  |
| 3.    | 11,2   | 11,6   | 76,1   | 20,0   | 30,2   | 201,5  | 41,3   | 72,3   | 20,8    | 7,5   | 2,8   | 14,8  |
| 4.    | 13,6   | 9,9    | 71,0   | 10,6   | 20,6   | 138,7  | 102,6  | 139,0  | 25,7    | 6,5   | 3,2   | 13,3  |
| 5.    | 5, 7   | 8,1    | 75,6   | 12,8   | 22,8   | 56,9   | 84,2   | 35, 5  | 100,9   | 7,6   | 4,4   | 9,0   |
| 6.    | 6,6    | 6,1    | 198,4  | 46,9   | 18,2   | 52,4   | 40,6   | 24,3   | 71,0    | 10,0  | 3,5   | 9,0   |
| 7.    | 2,9    | 6,4    | 81,9   | 18,6   | 18,0   | 46,3   | 46,9   | 66,2   | 26,6    | 9,5   | 43,7  | 9,9   |
| 8.    | 5, 2   | 106,3  | 77,8   | 21,1   | 20,5   | 55,9   | 45,6   | 4,3    | 24,3    | 9,7   | 6,9   | 11,2  |
| 9.    | 3, 7   | 38,0   | 36,8   | 19,8   | 20,6   | 104,8  | 32,8   | 20,0   | 22,5    | 10,4  | 7,1   | 8,8   |
| 10.   | 3,6    | 137,9  | 33,2   | 14,9   | 19,8   | 173,3  | 27,5   | 26,0   | 22,9    | 9,8   | 0,2   | 9,6   |
| 11.   | 29,6   | 6.8    | 24,9   | 14,9   | 18,6   | 743,9  | 34.0   | 20.3   | 23,6    | 9.6   | 2,5   | 8,1   |
| 1 2.  | 29,3   | 5,4    | 25,9   | 22,7   | 19,3   | 984,7  | 27,7   | 19,2   | 13,2    | 14,9  | 3,9   | 7,8   |
| 1 3.  | 27, 1  | 30, 9  | 22,7   | 15,2   | 80,2   | 275,2  | 24,2   | 17,5   | 15,4    | 15,9  | 3,9   | 8,3   |
| 14.   | 25,3   | 13,8   | 18,9   | 12,9   | 282,0  | 109,3  | 36,7   | 17,9   | 12,5    | 9,1   | 2,5   | 10,0  |
| 1 5.  | 24,8   | 18,6   | 19,5   | 14,9   | 51,7   | 85,2   | 194,3  | 17,7   | 12,8    | 9,1   | 6,0   | 7,3   |
| 16.   | 32,4   | 257.5  | 16,5   | 15,2   | 33,7   | 60,7   | 642.6  | 19,9   | 13,4    | 9.7   | 2,1   | 8.6   |
| 17.   | 28,8   | 412,6  | 18,9   | 15,0   | 25,7   | 46,7   | 148,5  | 23,7   | 19,2    | 10,7  | 7,4   | 8,8   |
| 18.   | 27,0   | 261,1  | 15,9   | 13,3   | 27,5   | 49,2   | 63,1   | 19,5   | 12,0    | 9,7   | 7,2   | 9,5   |
| 19.   | 20,0   | 287,8  | 133,2  | 15,9   | 68,1   | 32,4   | 50,8   | 18,6   | 10,5    | 8,3   | 25,1  | 10,9  |
| 20.   | 21,0   | 47,7   | 186,5  | 16,4   | 170,0  | 30,0   | 51,4   | 23,6   | 14,5    | 9,4   | 38,3  | 4,0   |
| 21.   | 25, 0  | 48,6   | 55,0   | 19,4   | 124,5  | 26,1   | 32,1   | 17,7   | 112,3   | 8,5   | 27,1  | 5,9   |
| 22.   | 22,0   | 24,6   | 49,0   | 19,3   | 76,0   | 28,3   | 34,9   | 19,2   | 106,9   | 8,4   | 6,4   | 5,3   |
| 23.   | 20,0   | 25,6   | 32,3   | 18,8   | 43,3   | 34,7   | 20,8   | 29,8   | 47, 1   | 8,3   | 3,3   | 3,7   |
| 24.   | 21,0   | 18,8   | 19,8   | 19,7   | 32,9   | 23,1   | 19,0   | 26,6   | 49,7    | 6,1   | 5,7   | 5,8   |
| 25.   | 20,0   | 18,3   | 19,9   | 35,4   | 29,9   | 28,3   | 40,9   | 23,9   | 17,4    | 6,2   | 2,4   | 151,7 |
| 26.   | 25,0   | 17,2   | 15,8   | 128,9  | 22,3   | 17,1   | 39,5   | 25,2   | 16, 1   | 7,6   | 3,5   | 104,1 |
| 27.   | 132,3  | 58,2   | 19,7   | 310,1  | 32,0   | 16,4   | 25,8   | 24,1   | 10,7    | 7,2   | 13,3  | 110,9 |
| 28.   | 206,7  | 50, 7  | 26,0   | 189,8  | 29,7   | 11,4   | 26,7   | 23,2   | 9, 0    | 6,7   | 14,4  | 52,0  |
| 29.   | 191,5  |        | 47,4   | 110,8  | 29,3   | 22,6   | 20,4   | 109,2  | 10,4    | 5,0   | 15,8  | 9,8   |
| 30.   | 15,3   |        | 46,5   | 57,8   | 36,0   | 22,9   | 20,2   | 177,5  | 11,9    | 7,2   | 54,7  | 8,9   |
| 31.   | 17,4   |        | 15,5   |        | 109,0  |        | 16,7   | 170,5  |         | 7,2   |       | 5,5   |
| sum   | 1062,2 | 1959,9 | 1518,3 | 1284,6 | 1592,9 | 3917,6 | 2030,0 | 1261,2 | 1 003,1 | 275,0 | 342,9 | 665,0 |
| mean  | 34,3   | 70,0   | 49,0   | 42,8   | 51,4   | 130,6  | 65,5   | 40,7   | 33,4    | 8,9   | 11,4  | 21,5  |
| MAX.  | 206,7  | 412,6  | 198,4  | 310,1  | 282,0  | 984,7  | 642,6  | 177,5  | 112,3   | 15,9  | 54,7  | 151,7 |
| MIN.  | 2,9    | 5,4    | 15,5   | 10,6   | 18,0   | 11,4   | 16,7   | 4,3    | 9,0     | 5,0   | 0,2   | 3,7   |


 year sum
 16912,7
 year max.
 1488,0
 DEN/MESIAC:
 12 / VI

 year average
 46,3
 year min.
 0,2
 DEN/MESIAC:
 10 / XI

 MSD
 kg/s
 4,546

 YRSD
 t
 142918,0


 SYRSD
 t/km2
 37,4



ROČNÉ SPRACOVANIE PLAVENÍN [mg.l<sup>-1</sup>] sediment discharge ROK: PLOCHA POVODIA : year

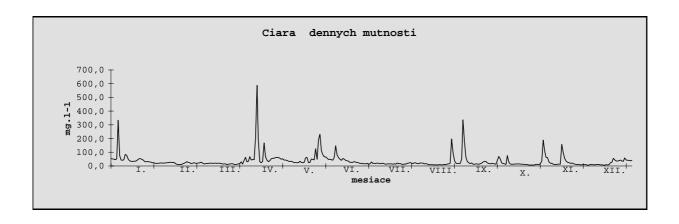
|                      |       |                    |        | sediment dis | charge |        |                   |         |        |                 |        |       |
|----------------------|-------|--------------------|--------|--------------|--------|--------|-------------------|---------|--------|-----------------|--------|-------|
| station :<br>river : |       | 7290 BREHY<br>HRON |        |              |        | year   | ROK:<br>PLOCHA PO | VODIA : |        | 1996<br>3821,38 | km²    |       |
| m onth<br>da y       | l.    | II.                | III.   | IV.          | V.     | VI.    | VII.              | VIII.   | IX.    | Χ.              | XI.    | XII.  |
| 1.                   | 3,0   | 5, 1               | 7, 9   | 36,1         | 95, 1  | 41,9   | 160,8             | 12,7    | 195    | 17,8            | 10,8   | 10,1  |
| 2.                   | 15,0  | 4,0                | 9,4    | 26,0         | 176,1  | 28,2   | 57,0              | 4,1     | 67,3   | 17,1            | 13,3   | 12,9  |
| 3.                   | 16,0  | 4,3                | 11,0   | 1144,5       | 255,4  | 26,1   | 79,8              | 2,9     | 68,3   | 18,6            | 5,8    | 12,0  |
| 4.                   | 12,0  | 6,0                | 10,5   | 450,7        | 82,9   | 25,1   | 52,4              | 7,7     | 44,1   | 16,0            | 7,0    | 11,5  |
| 5.                   | 11,0  | 4,3                | 11,5   | 202,4        | 90,7   | 25,6   | 62,0              | 46,2    | 43,0   | 16,4            | 10,4   | 16,3  |
| 6.                   | 10,5  | 4.3                | 2,0    | 216,7        | 37.6   | 130,2  | 35.9              | 49.7    | 24.8   | 15,3            | 9.6    | 10,8  |
| 7.                   | 10.2  | 4.0                | 5.5    | 129.9        | 31,6   | 127.6  | 35,8              | 6.4     | 24.8   | 12,7            | 10,1   | 10,5  |
| 8.                   | 10,0  | 6,8                | 5,0    | 109,7        | 33,8   | 40,4   | 19,7              | 13,8    | 35,5   | 16,2            | 9,7    | 6,3   |
| 9.                   | 11,9  | 6,9                | 1,9    | 62,2         | 30,4   | 44,2   | 46,5              | 12,1    | 43,6   | 19,9            | 8,3    | 6,9   |
| 10.                  | 13,0  | 4,1                | 3, 0   | 67,7         | 606,2  | 26,6   | 180,6             | 6,7     | 22,6   | 17,3            | 8,3    | 7,6   |
| 11.                  | 29.4  | 6,9                | 2,2    | 37, 1        | 322,4  | 25.7   | 138,6             | 7.6     | 21,2   | 17,3            | 3,6    | 6,3   |
| 12.                  | 28,6  | 7,8                | 3,5    | 41,1         | 344,9  | 33,0   | 22,1              | 5,3     | 11,4   | 15,5            | 4,2    | 6,2   |
| 13.                  | 15,2  | 6,2                | 2,0    | 27, 9        | 30,9   | 352,9  | 23,1              | 8,5     | 11,6   | 17,1            | 9,2    | 10,7  |
| 14.                  | 16,1  | 16,2               | 4,7    | 27,5         | 86,1   | 360,9  | 23,0              | 14,4    | 82,9   | 14,5            | 11,2   | 4,0   |
| 15.                  | 12,7  | 9,5                | 2,2    | 27,0         | 91,7   | 40,6   | 19,9              | 80,5    | 81,2   | 13,5            | 9,1    | 4,8   |
| 16.                  | 8,6   | 16,5               | 10,0   | 27,9         | 42,4   | 37,2   | 22,1              | 79,4    | 11,5   | 15,6            | 8,3    | 4,3   |
| 17.                  | 11,2  | 10, 1              | 15,0   | 19,3         | 42,5   | 30,7   | 21,2              | 30,1    | 13,0   | 16,3            | 9,6    | 5,4   |
| 18.                  | 7,4   | 12,4               | 207,0  | 17,6         | 35,2   | 17,7   | 19,9              | 10,2    | 10,5   | 30,1            | 12,1   | 5,5   |
| 19.                  | 7,5   | 9,7                | 31,6   | 23, 1        | 37,4   | 21,0   | 17,5              | 10,3    | 10,6   | 32,4            | 24,4   | 10,4  |
| 20.                  | 5,3   | 9,4                | 47,4   | 19,5         | 27,8   | 24,0   | 14,9              | 6,2     | 10,5   | 28,9            | 56,2   | 8,0   |
| 21.                  | 8,7   | 10,1               | 4,3    | 35, 1        | 27,9   | 45,2   | 16,4              | 12,7    | 16,6   | 27,3            | 679,2  | 15,9  |
| 22.                  | 8,6   | 10,6               | 46,4   | 35, 0        | 69,8   | 47,1   | 17,6              | 8,4     | 12,7   | 32,8            | 59,9   | 6,2   |
| 23.                  | 8,0   | 9,3                | 47,2   | 55,6         | 68,5   | 64,5   | 22,1              | 6,5     | 16,0   | 32,2            | 77,2   | 16,2  |
| 24.                  | 14,4  | 6,7                | 19,3   | 58,4         | 34,3   | 114,9  | 22,0              | 7,0     | 24,2   | 16,0            | 29,0   | 15,9  |
| 25.                  | 6,5   | 7,8                | 92, 9  | 45,6         | 32,0   | 63,0   | 23,8              | 8,8     | 46,5   | 15,8            | 29,1   | 20,5  |
| 26.                  | 7,0   | 6,6                | 60,2   | 42,6         | 21,8   | 54,3   | 22,6              | 7,0     | 34,0   | 12,6            | 18,2   | 4,4   |
| 27.                  | 8,0   | 6,4                | 88,6   | 43,0         | 27,4   | 60,2   | 11,0              | 10,3    | 12,6   | 6,3             | 15,6   | 3,3   |
| 28.                  | 8,4   | 8,7                | 91,2   | 47, 1        | 70, 0  | 33,8   | 13,2              | 6,1     | 25,0   | 8,4             | 14,2   | 19,1  |
| 29.                  | 7,9   | 6,7                | 57, 5  | 31,2         | 157,6  | 34,8   | 18,1              | 541,6   | 23,3   | 7,7             | 13,0   | 10,0  |
| 30.                  | 7,7   |                    | 54, 0  | 55,2         | 71,6   | 169,3  | 17,1              | 491,1   | 19,4   | 10,9            | 11,2   | 15,0  |
| 31.                  | 7,1   |                    | 38,4   |              | 34, 9  |        | 14,0              | 322,6   |        | 11,7            |        | 11,0  |
| sum                  | 346,9 | 227,4              | 993, 3 | 3162,7       | 3116,9 | 2146,7 | 1250,7            | 1836,9  | 1063,7 | 550,2           | 1187,8 | 308,0 |
| mean                 | 11,2  | 7,8                | 32,0   | 105,4        | 100,5  | 71,6   | 40,3              | 59,3    | 35,5   | 17,7            | 39,6   | 9,9   |
| MAX.                 | 29,4  | 16,5               | 207,0  | 1144,5       | 606,2  | 360,9  | 180,6             | 541,6   | 195,0  | 32,8            | 679,2  | 20,5  |
| MIN.                 | 3,0   | 4,0                | 1,9    | 17,6         | 21,8   | 17,7   | 11,0              | 2,9     | 10,5   | 6,3             | 3,6    | 3,3   |

DEN/MESIAC: 03/04 DEN/MESIAC: 09/03 16191,2 44,2 1329,0 1,9 year sum year average year max. year min. 4,919 155560,0 40,7 MSD YRSD SYRSD kg/s t t/km2



sediment discharge

#### ROČNÉ SPRACOVANIE PLAVENÍN [mg.I-1]


station ; Slovenske Darmoty river : Ipel

1994 2768,00 km2 ROK : PLOCHA POVODIA : year

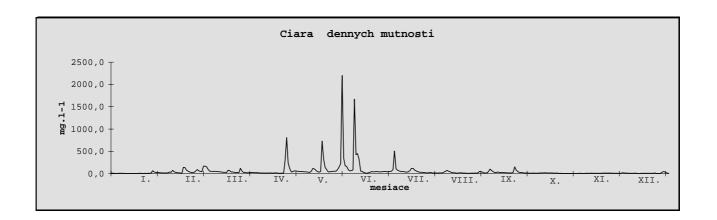
| month      | I I. I       | II.          | III.         | IV.          | ٧.            | VI.          | VII.         | VIII.       | IX.          | Χ.         | XI.         | XII.         |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|-------------|--------------|------------|-------------|--------------|
| day        |              |              |              |              |               |              |              |             |              |            |             |              |
| 1.         | 52,2         | 20,1         | 21,1         | 16,3         | 52,2          | 57,5         | 15,8         |             | 17,5         | 22,0       | 61,7        | 6,3          |
| 2.         | 51,7         | 18,8         | 18,8         | 30,9         | 42,9          | 48,4         | 29,4         | 22,1        | 19,0         | 17,7       | 60,9        | 12,2         |
| 3.         | 50,6         | 19,5         | 22,5         | 14,4         | 43,4          | 49,0         | 18,4         | 18,0        | 50,8         | 14,6       | 29,2        | 8, 8         |
| 4.         | 45, 9        | 21,2         | 21,8         | 39,3         | 41,0          | 45,5         | 20,4         | 16,5        | 335,9        | 11,9       | 19,3        | 9,2          |
| 5.         | 51,6         | 22,2         | 27, 5        | 63,0         | 35,2          | 41,9         | 18,4         | 22,1        | 181,9        | 75,5       | 19,9        | 7, 9         |
| 6.         | 334, 1       | 20,5         | 20, 7        | 30,1         | 32,2          | 62,1         | 20,5         | 21,0        | 67,0         | 29,2       | 12,5        | 10,2         |
| 7.         | 76,6         | 20,7         | 15, 3        | 34,3         | 35, 1         | 147,3        | 19,6         | 20,6        | 32,4         | 13,5       | 11,9        | 11,8         |
| 8.         | 42,7         | 22,2         | 16, 1        | 67,5         | 29,8          | 80,8         | 16,6         | 15,7        | 23,0         | 12,3       | 9,6         | 10, 9        |
| 9.         | 41,9         | 23,8         | 18,4         | 43,7         | 23,8          | 60,9         | 17,3         | 16,6        | 18,0         | 13,3       | 12,9        | 8, 3         |
| 10.        | 43,8         | 24,2         | 18, 7        | 46,8         | 24,6          | 49,3         | 20,8         |             | 22,6         | 13,6       | 14,3        | 7, 9         |
| 11.        | 84, 0        | 27,1         | 21, 1        | 45,4         | 23,4          | 40,7         | 15,3         |             | 12,9         | 14,4       | 12,4        | 7,2          |
| 1 2.       | 77, 9        | 26,3         | 19, 9        | 209,7        | 24,6          | 55,2         | 13,4         | 9,7         | 12,9         | 15,4       | 157,2       | 6,3          |
| 13.        | 50, 8        | 25,0         | 19,3         | 588,3        | 34,1          | 49,5         | 15,4         | 9,6         | 14,6         | 14,6       | 97,9        | 9, 7         |
| 14.        | 37,4         | 27,0         | 19,3         | 192,6        | 25,2          | 40,9         | 14,9         | 7,9         | 13,8         | 14,2       | 54,5        | 6,5          |
| 15.        | 34, 5        | 17,5         | 20,5         | 32,4         | 23,8          | 37,2         | 15,3         | 7,9         | 12,6         | 12,7       | 36,2        | 9, 1         |
| 16.        | 33,2         | 13,3         | 18,4         | 23,8         | 26,1          | 35,5         | 15,2         | 8,6         | 16,7         | 12,7       | 27,2        | 22,8         |
| 17.        | 34,5         | 9,1          | 21,5         | 33,3         | 57,8          | 26,9         | 12,5         | 6,9         | 21,1         | 11,8       | 25,0        | 27,2         |
| 18.        | 35, 5        | 10,4         | 19,8         | 168,2        | 63,2          | 27,1         | 15,9         | 9,1         | 29,7         | 10,1       | 19,2        | 56,5         |
| 19.        | 38,4         | 10,8         | 17,0         | 67,4         | 25,7          | 27,1         | 13,1         | 9,9         | 34,3         | 8,9        | 22,4        | 43,9         |
| 20.        | 49,4         | 15,1         | 14,0         | 41,5         | 24,5          | 31,0         | 20,8         |             | 33,4         | 7,0        | 16,8        | 35, 8        |
| 21.        | 54, 1        | 18,1         | 15,5         | 31,7         | 51,7          | 28,1         | 16,5         |             | 22,6         | 7,0        | 14,1        | 36,4         |
| 22.<br>23. | 51,4         | 24,5<br>31,9 | 15,2<br>10,1 | 39,0<br>52,5 | 48,0<br>44,6  | 24,0<br>23,9 | 17,1<br>13,6 | 12,1<br>9,7 | 19,0<br>14,7 | 7,0<br>7,0 | 11,5<br>9,6 | 38,9<br>43,0 |
| 23.<br>24. | 47,2<br>36,9 | 31,9<br>26,2 | 10, 1        | 52,5<br>56,3 | 44,6<br>124,5 | ∠3,9<br>18,6 | 10,1         | 9,7<br>14,1 | 18,7         | 7,0<br>6,9 | 9,6<br>10,4 | 43,0<br>36,4 |
| 25.        | 29,9         | 28,2         | 13,4         | 50,3<br>57.4 | 48,9          | 19,3         | 15,6         | 14,1        | 17,5         | 13,2       | 7,8         | 33,3         |
| 25.<br>26. | 29,9<br>31.3 | 18,0         | 16,8         | 61.2         | 190,8         | 15,9         | 13,0         | 19.8        | 15,5         | 10.3       | 7,8<br>8,0  | 58, 3        |
| 27.        | 31,3         | 19,7         | 16.6         | 62,1         | 231,2         | 15,8         | 19,5         |             | 12,7         | 9.9        | 10,2        | 43,3         |
| 28.        | 28.9         | 23.7         | 11.9         | 61.8         | 111,3         | 15.0         | 21.0         |             | 41.6         | 17,7       | 9.3         | 42.3         |
| 29.        | 28,2         | 23,7         | 11.8         | 56.0         | 82.0          | 19,0         | 24.0         |             | 69.8         | 34.5       | 9,9         | 40.8         |
| 30.        | 22,8         |              | 12.0         | 48.9         | 67.0          | 11,8         | 20.7         | 21,2        | 49.7         | 189,2      | 6.0         | 37, 5        |
| 31.        | 22.8         |              | 15,6         | 40,3         | 66.6          | 11,0         | 17.8         | 17.9        | 43,7         | 111.2      | 0,0         | 41.7         |
|            | 22,0         |              | 15,6         |              | 00,0          |              | 17,0         | 17,9        |              | 111,2      | J           | 41,7         |
| sum        | 1651,5       | 580,0        | 543,2        | 2315,8       | 1755,2        | 1205,4       | 537, 9       | 728,7       | 1251,6       | 759,3      | 817,8       | 770,4        |
| mean       | 53.3         | 20.7         | 17,5         | 77.2         | 56.6          | 40,2         | 17,4         | 23,5        | 41.7         | 24.5       | 27.3        | 24.9         |
| MAX        | 334,1        | 31,9         | 27.5         | 588.3        | 231,2         | 147,3        | 29.4         | 196,7       | 335.9        | 189,2      | 157.2       | 58.3         |
| MIN.       | 22,8         | 9,1          | 10,1         | 14,4         | 23,4          | 11,8         | 10,1         | 6,9         | 12,6         | 6,9        | 6,0         | 6,3          |

12916,8 year max. 35,4 year min. 767,0 6,0 DEN/MESIAC:13/04 DEN/MESIAC:30/11 year sum year mean

MSD YRSD SYRSD kg/s t t/km2 0,4 13782,2 5,0



### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN [mg.l<sup>-1</sup>]


sediment dishage

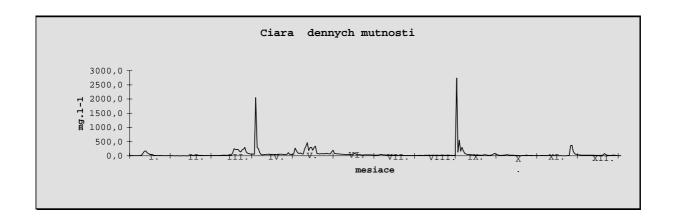
station : Slovenske Darmoty river : IPEĽ ROK : 1995 PLOCHA POVODIA : 2768 km² year

| month | I.    | II.    | III.   | IV.    | ٧.     | VI.    | VII.   | VIII. | IX.    | Χ.    | XI.   | XII.  |
|-------|-------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|-------|
| day   | 1     |        |        |        |        |        |        |       |        |       |       |       |
| 1.    | 7,0   | 20,8   | 61,9   | 19,1   | 41,5   | 224,3  | 39,8   | 12,6  | 30,6   | 10,2  | 4,4   | 18,1  |
| 2.    | 8, 0  | 18,6   | 50,8   | 18,0   | 61,0   | 2201,7 | 41,8   | 15,0  | 16,0   | 8,5   | 4,4   | 14,8  |
| 3.    | 6,0   | 14,9   | 43,2   | 22,1   | 58,9   | 339,8  | 49,4   | 11,0  | 12,8   | 11,6  | 7,7   | 10,5  |
| 4.    | 3, 0  | 15,8   | 164,0  | 24,5   | 52,5   | 175,6  | 51,6   | 13,7  | 16, 1  | 10,5  | 7,8   | 9,6   |
| 5.    | 5, 0  | 13,0   | 168,4  | 25,3   | 48,2   | 157,2  | 93,8   | 15,1  | 47,2   | 9,4   | 5,3   | 8,5   |
| 6.    | 6,0   | 13,9   | 150,2  | 21,9   | 44,7   | 86,2   | 508,2  | 13,3  | 101,1  | 7,9   | 5,3   | 7,5   |
| 7.    | 6,0   | 13,8   | 97,6   | 19,3   | 46,7   | 60,0   | 102,4  | 32,7  | 69,9   | 9,2   | 6,3   | 7,4   |
| 8.    | 7, 0  | 35, 1  | 54,1   | 19,9   | 41,1   | 66,1   | 75,0   | 45,4  | 43,0   | 9,9   | 6,5   | 7,6   |
| 9.    | 6,0   | 28,7   | 49,7   | 15,2   | 41,1   | 81,1   | 57,5   | 71,3  | 25,0   | 15,1  | 8,3   | 9,2   |
| 10.   | 5, 0  | 72,3   | 49,6   | 13,8   | 35,7   | 1669,8 | 50,6   | 52,2  | 24,8   | 15,3  | 7,5   | 7,0   |
| 11.   | 4,0   | 43,6   | 48,7   | 11,8   | 31,5   | 423,8  | 42,3   | 44,2  | 35,6   | 14,8  | 9,3   | 2,8   |
| 12.   | 5, 0  | 25,1   | 49,2   | 13,4   | 25,7   | 448,6  | 42,3   | 26,2  | 25,7   | 16,2  | 7,6   | 1,3   |
| 13.   | 4,0   | 17,7   | 45,0   | 9,0    | 55,2   | 319,1  | 35,5   | 17,9  | 23,0   | 12,6  | 7,5   | 7,5   |
| 14.   | 3, 0  | 16,4   | 39,2   | 10,7   | 116,6  | 52,1   | 33,9   | 17,2  | 21,2   | 10,6  | 6,4   | 6,8   |
| 15.   | 2,0   | 11,9   | 39,8   | 12,6   | 104,3  | 50,2   | 39,6   | 12,5  | 20,9   | 12,6  | 8,2   | 7,3   |
| 16.   | 4,0   | 11,0   | 32,0   | 12,0   | 73,1   | 25,6   | 67,9   | 11,7  | 16,6   | 14,8  | 7,6   | 7,2   |
| 17.   | 4, 0  | 140,0  | 28,1   | 13,2   | 42,9   | 12,9   | 116,0  | 13,7  | 18,7   | 10,0  | 7,6   | 7,0   |
| 18.   | 4, 0  | 132,8  | 28,7   | 12,3   | 32,9   | 6,5    | 117,3  | 16,5  | 15,4   | 9,8   | 9,0   | 7,3   |
| 19.   | 6,0   | 77,9   | 26,2   | 11,7   | 45,0   | 13,7   | 80,4   | 12,6  | 13,6   | 11,3  | 11,0  | 7,9   |
| 20.   | 5, 9  | 54,3   | 77,2   | 18,6   | 730,9  | 27,1   | 60,2   | 10,1  | 13,3   | 9,5   | 10,0  | 5,6   |
| 21.   | 4,0   | 35,4   | 65,7   | 9,1    | 319,9  | 43,1   | 43,0   | 12,0  | 27,7   | 3,0   | 9,5   | 5,5   |
| 22.   | 5, 0  | 30,4   | 36,9   | 7,8    | 138,3  | 39,5   | 32,7   | 7, 0  | 150,2  | 7,6   | 9,5   | 15,4  |
| 23.   | 6,4   | 26,7   | 36,3   | 8,0    | 88,0   | 40,3   | 27,0   | 8,9   | 80,6   | 5,0   | 9,3   | 4,1   |
| 24.   | 4,5   | 24,1   | 29,6   | 9,5    | 35,9   | 44,4   | 27,6   | 8, 3  | 45,0   | 5,3   | 10,7  | 4,3   |
| 25.   | 6,2   | 25,5   | 24,5   | 10,7   | 38,5   | 42,7   | 24,5   | 10,6  | 26,4   | 3,3   | 7,0   | 1,9   |
| 26.   | 6,2   | 28,1   | 24,0   | 302,5  | 47,9   | 40,0   | 18,6   | 12,0  | 23,9   | 2,5   | 6,7   | 12,0  |
| 27.   | 9,6   | 57,4   | 26,6   | 807,2  | 49,1   | 37,1   | 15,8   | 9,3   | 22,6   | 2,8   | 6,4   | 39,5  |
| 28.   | 63,3  | 90,5   | 119,2  | 239,4  | 53,0   | 42,9   | 17,0   | 10,6  | 11,6   | 4,1   | 6,4   | 44,5  |
| 29.   | 36,9  | 1      | 55,4   | 113,1  | 53,6   | 43,7   | 20,5   | 11,1  | 15,6   | 4,8   | 5,4   | 26,4  |
| 30.   | 26,8  | 1      | 29,5   | 35,1   | 87,1   | 49,1   | 20,5   | 48, 3 | 13,6   | 5,0   | 7,4   | 11,2  |
| 31.   | 26,8  |        | 23,6   |        | 147,5  |        | 10,0   | 42,0  |        | 4,5   |       | 7,6   |
| sum   | 296,6 | 1095,7 | 1774,9 | 1866,8 | 2788,3 | 6864,2 | 1962,7 | 645,0 | 1007,7 | 277,7 | 226,0 | 333,3 |
| mean  | 9,6   | 39,1   | 57,3   | 62,2   | 89,9   | 228,8  | 63,3   | 20,8  | 33,6   | 9,0   | 7,5   | 10,8  |
| MAX.  | 63,3  | 140,0  | 168,4  | 807,2  | 730,9  | 2201,7 | 508,2  | 71,3  | 150,2  | 16,2  | 11,0  | 44,5  |
| MIN.  | 2,0   | 11,0   | 23,6   | 7,8    | 25,7   | 6,5    | 10,0   | 7, 0  | 11,6   | 2,5   | 4,4   | 1,3   |

DEN/MESIAC: DEN/MESIAC: 19138,9 52,4 3419,0 1,3 02 / VI 12 / XII year sum year average year max. year min.

MSD YRSD SYRSD kg/s **t** t/km2 1,100 33197,2 12,0




## ROĆNÉ SPRACOVANIE PLAVENÍN [mg.l<sup>-1</sup>] discharge

se diment 7540 SLOVENSKÉ ĎARMOTY IPEĽ station: river: ROK: PLOCHA POVODIA : 1 996 2768,00 km² yea r

| month | 1       | II.   | III.    | IV.    | ٧.     | VI.    | VII.  | VIII.  | IX.    | Χ.    | XI.    | XII.  |
|-------|---------|-------|---------|--------|--------|--------|-------|--------|--------|-------|--------|-------|
| day   |         |       |         |        |        |        |       |        |        |       |        |       |
| 1.    | 8,5     | 3,7   | 11,5    | 61,4   | 55,9   | 72,6   | 23,9  | 18,2   | 161,5  | 15,4  | 12,1   | 22,8  |
| 2.    | 10,5    | 3,5   | 12,5    | 57,7   | 268,6  | 70,1   | 27,8  | 15,3   | 301,6  | 16,4  | 10,8   | 22,8  |
| 3.    | 10,1    | 2,7   | 11,5    | 2050,0 | 183,6  | 65,6   | 28,7  | 15,2   | 168,9  | 28,9  | 9,1    | 25, 1 |
| 4.    | 6,2     | 2,8   | 11,4    | 296,6  | 103,9  | 63,8   | 51,8  | 13,7   | 91,7   | 24, 1 | 10,4   | 22,1  |
| 5.    | 8,4     | 3,3   | 10,3    | 250,2  | 84,4   | 58,3   | 50,4  | 15,5   | 62,9   | 43, 3 | 8,8    | 21,4  |
| 6.    | 6,8     | 1,9   | 11,1    | 101,9  | 100,9  | 55,2   | 29,7  | 21,1   | 48,2   | 29,0  | 8,7    | 25,3  |
| 7.    | 5,7     | 2,0   | 11,5    | 46,2   | 67,9   | 50,4   | 32,3  | 17, 1  | 42,0   | 25,2  | 7,5    | 22,4  |
| 8.    | 7,1     | 1,2   | 15,9    | 36,2   | 62,4   | 46,4   | 29,5  | 21,6   | 33,2   | 22,0  | 6,2    | 21,1  |
| 9.    | 9,7     | 2,5   | 16,4    | 40,2   | 238,4  | 42,0   | 21,6  | 16,5   | 32,6   | 23,6  | 9,4    | 16,7  |
| 10.   | 30,0    | 3,6   | 21,0    | 43,9   | 340,0  | 52,2   | 25,0  | 18,1   | 32,8   | 20,9  | 5,1    | 14,5  |
| 11.   | 98,5    | 2,3   | 22,0    | 51,4   | 461,1  | 41,6   | 27,6  | 15,6   | 24,1   | 14,3  | 6,3    | 15,1  |
| 1 2.  | 161,3   | 2,1   | 22,0    | 55,7   | 185,2  | 39,2   | 21,0  | 15,6   | 23,9   | 14,2  | 5,0    | 18,0  |
| 1 3.  | 166,4   | 2,5   | 10,7    | 58,0   | 289,7  | 58,7   | 14,7  | 16,4   | 19,7   | 9,3   | 4,8    | 15,7  |
| 14.   | 1 09, 1 | 3,6   | 11,0    | 50,5   | 296,4  | 48,0   | 18,7  | 12, 1  | 21,2   | 10,5  | 5,8    | 16,6  |
| 1 5.  | 75,3    | 4,7   | 11,0    | 48,0   | 196,7  | 93,4   | 12,9  | 15,0   | 25,0   | 8, 3  | 2,3    | 31,4  |
| 16.   | 56,3    | 9,0   | 30,0    | 50,7   | 296,6  | 50,0   | 14,6  | 19,2   | 20,8   | 9, 1  | 2,6    | 80,8  |
| 17.   | 43,6    | 8,8   | 1 00, 0 | 46,5   | 337,4  | 39,2   | 11,0  | 19,3   | 16,5   | 12,0  | 2,4    | 41,5  |
| 18.   | 33,0    | 9,1   | 250,0   | 47,2   | 83,3   | 40,3   | 12,3  | 19,8   | 34,2   | 12,7  | 7,9    | 25,1  |
| 19.   | 16,7    | 10,5  | 223,2   | 53,0   | 72,0   | 41,3   | 14,1  | 18,4   | 38,8   | 19,9  | 9,5    | 18,7  |
| 20.   | 13,9    | 12,4  | 222,2   | 54,0   | 67,6   | 28,4   | 10,5  | 19,0   | 31,0   | 20,4  | 12,9   | 17,4  |
| 21.   | 14,0    | 14,3  | 224,3   | 56,3   | 75,0   | 28,9   | 12,1  | 16,2   | 19,2   | 12,5  | 353,2  | 17,0  |
| 22.   | 7,7     | 14,8  | 161,8   | 54,8   | 71,3   | 33,5   | 12,2  | 18,7   | 17,9   | 10,5  | 371,4  | 25,3  |
| 23.   | 8,9     | 15,2  | 135,2   | 53,5   | 71,0   | 32,2   | 12,0  | 16,2   | 21,2   | 14,7  | 152,4  | 28,8  |
| 24.   | 8,7     | 11,8  | 206,5   | 45,2   | 66,8   | 32,2   | 12,6  | 15, 7  | 30,9   | 11,6  | 81,3   | 16,5  |
| 25.   | 3,9     | 10,4  | 229,4   | 49,1   | 91,1   | 33,0   | 10,2  | 14,4   | 59,1   | 8,4   | 52,3   | 12,0  |
| 26.   | 2,9     | 9,1   | 298,9   | 48,0   | 75,3   | 32,6   | 10,2  | 14,5   | 83,2   | 11,4  | 41,3   | 7,0   |
| 27.   | 3,4     | 8,9   | 135,5   | 113,1  | 66,8   | 32,7   | 10,8  | 18,5   | 56,6   | 9,2   | 31,9   | 5,6   |
| 28.   | 4,7     | 8,8   | 87,9    | 50,1   | 65,1   | 26,0   | 12,5  | 17, 1  | 38,0   | 8, 8  | 26,3   | 8,4   |
| 29.   | 8, 1    | 8,3   | 79,2    | 53,4   | 143,0  | 24,4   | 12,9  | 2741,3 | 20,5   | 8, 3  | 25,1   | 9,5   |
| 30.   | 6,5     |       | 61,3    | 53,4   | 198,1  | 24,8   | 13,8  | 131,8  | 18,2   | 8, 9  | 21,8   | 4,4   |
| 31.   | 4,9     |       | 57,0    |        | 86,7   |        | 13,9  | 555, 3 |        | 15,1  |        | 8,4   |
| sum   | 950,8   | 193,8 | 2712,2  | 4076,2 | 4802,2 | 1357,0 | 611,3 | 3902,4 | 1595,4 | 498,9 | 1304,6 | 637,4 |
| mean  | 30,7    | 6,7   | 87,5    | 135,9  | 154,9  | 45,2   | 19,7  | 125, 9 | 53,2   | 16, 1 | 43,5   | 20,6  |
| MAX.  | 166,4   | 15,2  | 298,9   | 2050,0 | 461,1  | 93,4   | 51,8  | 2741,3 | 301,6  | 43, 3 | 371,4  | 80, 8 |
| MIN.  | 2,9     | 1,2   | 10,3    | 36,2   | 55,9   | 24,4   | 10,2  | 12, 1  | 16,5   | 8,3   | 2,3    | 4,4   |

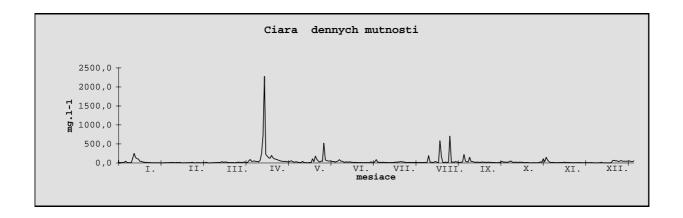
DEN/MESIAC: 03/04 DEN/MESIAC: 08/02 22642,2 61,9 3271,0 1,2 year sum year average year max. year min.

MSD YRSD SYRSD 1,277 40377,9 14,6 kg/s t t/km2



sediment discharge

### ROČNÉ SPRACOVANIE PLAVENÍN [mg.l-1]


station: Lenartovce river: Slana year ROK : PLOCHA POVODIA :

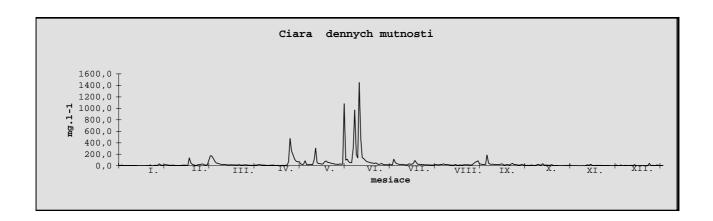
1994 1829,65 km2

| 1. 14,5 0,9 8,6 8,7 26,6 31,6 28,2 10,9 30,5 26,3 33,2 2,1 11,2 7,2 9,4 10,6 42,0 41,3 80,8 15,5 223,6 20,7 18,2 3,4 15,2 8,8 7,5 10,2 55,5 58,9 2,5 2,6 13,2 47,4 22,7 13,2 4,1 15,2 8,8 22,0 91,4 33,4 37,1 21,1 12,0 28,3 32,2 17,5 18,4 7,3 4,5 40,9 19,8 49,3 17,9 15,1 28,0 36,6 11,8 6,4 11,1 3,6 45,5 31,2 88,5 17,3 11,2 151,8 23,5 8,5 7, 12,9 10,9 2,0 54,1 28,8 46,4 21,2 22,9 38,5 17,5 9,5 8,8 8,2 16,0 7,8 39,4 15,2 45,2 14,1 192,5 36,7 20,1 12,4 9,9 9,5 6,9 9,5 38,8 13,2 27,0 15,7 22,5 24,0 19,7 14,7 10, 15,6 8,4 6,4 27,6 13,2 19,5 11,6 21,2 18,2 16,8 13,4 11,1 12,16 16,3 14,2 71,3 42,5 28,5 10,3 10,7 23,3 19,4 16,8 12,2 250,5 8,6 11,8 247,3 14,7 20,6 10,7 25,5 20,3 20,5 22,5 13,1 14,4 11,5 4,7 3 16,4 2277,1 9,1 24,6 10,7 25,5 20,3 20,5 22,5 13,1 14,4 11,5 4,7 3 16,4 2277,1 9,1 24,6 12,7 16,5 22,6 11,3 12,2 15,6 10,1 16,6 22,6 11,3 12,2 15,6 10,1 16,6 22,6 11,3 12,2 15,6 10,1 16,6 22,6 11,3 12,2 16,6 10,1 16,6 22,6 11,3 12,2 16,6 10,1 16,6 22,6 11,3 12,2 16,6 10,1 16,6 22,6 11,3 12,2 17,7 17,1 16,5 22,5 14,0 19,7 14,7 14,3 12,2 15,6 10,1 16,6 22,6 11,3 12,2 16,6 10,1 16,6 22,6 11,3 12,2 17,7 14,7 15,5 19,7 3 34,5 18,6 12,2 12,1 14,2 14,3 12,2 17,4 14,3 12,2 17,4 14,4 14,4 14,5 14,4 14,5 14,4 14,5 14,4 14,5 14,4 14,5 14,4 14,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | month | l.     | II.   | III.  | IV.     | V.     | VI.  | VII.  | VIII. | IX.    | Χ.    | XI.   | XII.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|-------|---------|--------|------|-------|-------|--------|-------|-------|-------|
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | day   |        |       |       |         |        |      |       |       |        |       |       |       |
| 3. 8.7 7.5 10.2 55.5 59.9 22.5 20.6 13.2 47.4 22.7 13.2 4.5 15.2 8.8 22.0 91.4 33.4 37.1 21.1 12.0 28.3 32.2 17 5. 18.4 7.3 4.5 40.9 19.8 49.3 17.9 15.1 28.0 56.6 11.8 6. 44.8 11.1 3.6 45.5 31.2 88.5 17.3 11.2 151.6 23.5 8.5 7. 12.9 10.9 2.0 54.1 28.8 46.4 21.2 22.9 38.5 17.5 9.5 8. 8. 8.2 16.0 7.8 39.4 15.2 45.2 14.1 192.5 36.7 20.1 12.4 9. 9.5 6.9 9.5 38.8 13.2 27.0 15.7 22.5 24.0 19.7 14.7 10. 15.6 8.4 6.4 27.6 13.2 19.5 13.6 21.2 18.2 16.8 13.4 11.1 121.6 16.3 14.2 71.3 42.5 25.5 13.3 10.7 23.3 19.4 16.8 13.4 11.1 121.6 16.3 14.2 71.3 42.5 25.5 10.3 10.7 23.3 19.4 16.8 12.2 250.5 8.6 11.8 247.3 14.7 20.6 10.7 25.5 20.3 20.5 22.5 13. 144.3 14.8 13.5 71.3 6.4 227.1 9.1 24.6 12.7 15.5 22.6 11.3 12.2 15.5 12.1 12.1 15.6 16.3 14.2 71.3 14.5 12.2 15.5 12.8 18.1 22.0 18.1 15.4 15.5 15.1 15.4 7.3 16.4 227.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12.2 15.5 15.1 12 |       |        | 0,9   |       |         |        |      |       |       |        |       |       | 14,2  |
| 4. 152 8.8 22.0 91.4 33.4 37.1 21.1 12.0 28.3 32.2 17.  5. 184 7.3 4.5 40.9 19.8 49.3 17.9 15.1 28.0 66.6 11.8  6. 44.8 11.1 3.6 45.5 31.2 88.5 17.3 11.2 151.8 23.5 8.5  7. 12.9 10.9 2.0 54.1 28.8 46.4 21.2 22.9 38.5 17.5 9.5  8. 82 16.0 7.8 39.4 15.2 45.2 14.1 192.5 36.7 20.1 12.4  9. 9.5 6.9 9.5 38.8 13.2 27.0 15.7 22.5 24.0 19.7 14.7  10. 15.6 8.4 6.4 27.6 13.2 19.5 13.6 21.2 18.2 16.8 13.4  11. 121.6 16.3 14.2 71.3 42.5 28.5 10.3 10.7 23.3 19.4 16.8 12.2 250.5 8.6 11.8 247.3 14.7 20.6 10.7 25.5 20.3 20.5 22.5 13. 144.3 14.8 13.5 71.3 7.6 29.6 12.3 35.8 18.1 22.0 18. 14. 115.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 11.6 13.1 15.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 11.6 16.3 13.6 23.3 6.0 15.1 20.8 11.7 25.1 11.2 11.1 16. 47.3 5.0 19.2 17.9 1 17.1 16.5 21.5 586.2 21.1 14.3 12.2 11.2 11.2 11.1 16. 47.3 5.0 19.2 17.9 1 17.1 16.5 21.5 586.2 21.1 14.3 12.2 11.2 11.2 11.1 18. 29.8 6.0 24.0 126.3 11.00 15.1 24.4 14.2 14.9 7.2 84.1 11.5 15.0 17.1 15.5 197.3 34.5 84.3 25.5 12.0 22.3 4.5 10.0 10.7 23.3 19.4 16.8 12.2 13.0 10.1 15.1 24.4 14.2 14.9 7.2 84.1 15.5 197.3 34.5 84.3 35.5 12.0 22.3 4.5 10.0 10.7 17.8 6.8 14.2 137.4 182.2 13.0 33.1 23.6 21.5 3.5 81.1 19.4 10.7 99.6 49.5 9.3 23.8 19.6 15.8 7.6 10.8 23.3 11.0 8.0 15.1 24.4 14.2 14.9 7.2 84.1 19.4 10.7 99.6 49.5 9.3 23.8 19.6 15.8 7.6 10.8 23.3 11.8 4.9 11.3 89.0 25.9 7.3 12.8 24.1 19.9 7.0 2.9 11.0 8.7 8.9 25.5 10.0 11.0 8.7 8.9 12.5 11.0 8.6 8.7 7.2 10.4 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 520.5 7.6 1 | 2.    | 11,2   | 7,2   |       |         |        |      |       |       |        |       |       | 8, 8  |
| 6.         18.4         7.3         4.5         40.9         19.8         49.3         17.9         15.1         28.0         56.6         11.8           7.         12.9         10.9         2.0         54.1         28.8         46.4         21.2         22.9         38.5         17.5         9.5           8.         8.2         16.0         7.8         39.4         15.2         45.2         14.1         182.5         38.7         20.1         12.4           9.         9.5         6.9         9.5         38.8         13.2         27.0         15.7         22.5         24.0         19.7         14.7           10.         15.6         8.4         6.4         27.6         13.2         19.5         13.6         21.2         18.2         16.8         13.4           12.         250.5         8.6         11.8         247.3         14.7         20.6         10.7         25.5         20.3         20.5         22.5           13.         144.9         14.8         13.5         713.6         76.         29.6         12.3         35.8         18.1         22.0         18           14.         115.4         7.3 <t< th=""><th>3.</th><th></th><th>7,5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>13,2</th><th>4, 1</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.    |        | 7,5   |       |         |        |      |       |       |        |       | 13,2  | 4, 1  |
| 6. 44,8 11,1 3,6 45,5 31,2 88,5 17,3 11,2 151,8 23,5 8,5 7. 12,9 10,9 2.0 54,1 28,8 46,4 21,2 22,9 38,5 17,5 9,5 8. 8,2 16,0 7,8 39,4 15,2 45,2 14,1 192,5 36,7 20,1 12,4 9. 9,5 6,9 9,5 38,8 13,2 27,0 15,7 22,5 24,0 19,7 14,7 10. 15,6 8.4 6.4 27,6 13,2 19,5 13,6 21,2 18,2 16,8 13,4 11. 121,6 16,3 14,2 71,3 42,5 28,5 10,3 10,7 23,3 19,4 16,8 12. 250,5 8,6 11,8 247,3 14,7 20,6 10,7 25,5 20,3 20,5 22,5 13. 144,3 14,8 13,5 71,36 7,6 29,6 12,3 35,8 18,1 22,0 18 14. 115,4 7,3 16,4 2277,1 9,1 24,6 12,7 16,5 22,6 11,3 12,2 15. 10,1 1, 6,0 38,8 231,3 6,0 15,1 20,8 11,7 25,1 11,2 11,1 6.0 47,3 5,0 19,2 17,9 1 17,1 16,5 21,5 586,2 21,1 14,3 12,2 17,7 40,4 6,5 25,1 133,6 8,6 15,2 24,1 164,2 22,7 13,0 10 17,7 28,4 19,9 20,1 7,1 15,5 197,3 34,5 8,4 32,5 12,0 22,3 4,5 10,2 17,8 6,8 14,2 13,7 4 182,2 13,0 33,1 23,6 21,5 3,5 8,1 19,4 10,7 99,6 49,5 9,3 23,8 19,6 15,8 7,6 10,8 7,7 24,1 10,0 15,1 24,4 14,2 14,9 7,2 8,4 19,9 11,8 4,9 11,3 89,0 25,9 7,3 11,9 706,9 13,0 6,3 8,7 24,1 10,0 16,0 16,0 16,0 44,3 50,0 49,4 10,4 10,7 20,1 11,0 8,7 8,9 12,0 12,0 13,0 10,0 16,2 13,0 10,0 16,2 13,0 10,0 16,2 13,0 10,0 16,2 13,0 10,0 16,2 13,0 10,0 15,1 24,4 14,2 14,9 7,2 8,4 19,9 11,3 89,0 25,9 7,3 11,9 706,9 13,0 6,3 8,7 24,1 15,1 9,6 9,5 25,5 5,0 7,8 13,1 57,3 41,6 10,9 16,9 25,6 7,6 17,4 10,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 25,1 11,0 8,6 15,1 20,1 11,0 8,7 33,1 20,5 11,0 11,0 | 4.    | 15,2   | 8,8   |       |         | 33,4   |      |       |       |        |       |       | 3, 7  |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.    |        |       |       |         |        |      |       |       |        |       |       | 3,4   |
| 8. 8.2 16.0 7,8 39.4 15.2 45.2 14.1 192.5 36.7 20.1 12.4 9.5 9.5 6.9 9.5 38.8 13.2 27.0 15.7 22.5 24.0 19.7 14.7 10. 15.6 8.4 6.4 27.6 13.2 19.5 13.6 21.2 18.2 16.8 13.4 11. 121.6 16.3 14.2 71.3 42.5 28.5 10.3 10.7 23.3 19.4 16.8 12.2 250.5 8.6 11.8 247.3 14.7 20.6 10.7 25.5 20.3 20.5 22.5 13. 144.3 14.8 13.5 713.6 7.6 29.6 12.3 35.8 18.1 22.0 18 14.1 115.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 15.5 10.1 16.6 23.3 35.8 18.1 22.0 18 14.1 115.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 15.5 10.1 1.6 0. 33.8 231.3 6.0 15.1 20.8 11.7 25.1 11.2 11 16. 47.3 5.0 19.2 179.1 17.1 16.5 21.5 586.2 21.1 14.3 12.2 17. 40.4 6.5 25.1 133.6 8.6 15.2 24.1 164.2 22.7 13.0 10.1 18. 29.8 6.0 24.0 126.3 110.0 15.1 24.4 14.2 14.9 7.2 8.4 19. 20.1 7.1 15.5 197.3 34.5 8.4 32.5 12.0 22.3 4.5 10.2 20.1 17.8 6.8 14.2 137.4 182.2 13.0 33.1 23.6 21.5 3.5 8.1 21. 15.6 6.7 8.7 110.2 95.2 14.5 26.2 12.1 15.1 9.6 9.5 22. 8.1 19.4 10.7 99.6 49.5 9.3 23.6 19.6 15.8 7.6 10.8 23.1 11.8 4.9 11.3 89.0 25.9 7.3 11.9 70.6 9 13.0 6.3 8.7 24. 6.8 6.1 4.9 73.0 49.4 10.4 10.7 20.1 11.0 8.7 8.9 25. 24. 6.8 6.1 4.9 73.0 49.4 10.4 10.7 20.1 11.0 8.7 8.9 25. 5.0 7.8 13.1 57.3 41.6 10.9 16.9 25.6 7.6 17.4 10.9 26. 6.8 7.7 21.0 48.3 50.0 16.2 13.9 13.2 37.3 29.5 9.1 30.0 30. 2.8 10.0 36.6 8.4 14.3 178.8 58.0 27.7 56.6 11.7 23.0 74.2 10.5 11.7 23.0 74.2 10.5 11.7 23.0 10.5 11.7 23.0 10.5 12.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 44,8   |       |       |         |        |      |       |       |        |       |       | 6,8   |
| 9. 9.5 6.9 9.5 38.8 13.2 27.0 15.7 22.5 24.0 19.7 14.7 10. 15.6 84 6.4 27.6 13.2 19.5 13.6 21.2 18.2 16.8 13.4 14.7 11.1 121.6 16.3 14.2 71.3 42.5 28.5 10.3 10.7 23.3 19.4 16.8 12. 250.5 86 11.8 247.3 14.7 20.6 10.7 25.5 20.3 20.5 22.5 13.3 144.3 14.8 13.5 713.6 7.6 29.6 12.3 35.8 18.1 22.0 18.1 115.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 15. 101.1 6.0 33.8 231.3 6.0 15.1 20.8 11.7 25.1 11.2 11.5 15. 101.1 6.0 33.8 231.3 6.0 15.1 20.8 11.7 25.1 11.2 11.2 11.3 12.2 17. 40.4 6.5 25.1 133.6 8.6 15.2 24.1 164.2 22.7 13.0 10.1 18. 29.8 6.0 24.0 126.3 110.0 15.1 24.4 14.2 14.9 7.2 8.4 18.2 29.8 6.0 24.0 126.3 110.0 15.1 24.4 14.2 14.9 7.2 8.4 19.2 20.1 71.8 6.8 14.2 137.4 182.2 13.0 33.1 23.6 21.5 3.5 8.1 21. 15.6 6.7 8.7 110.2 95.2 14.5 26.2 12.1 15.1 9.6 9.5 22. 8.1 19.4 10.7 99.6 49.5 9.3 23.8 19.6 15.8 7.6 10.8 23. 11.8 4.9 11.3 89.0 25.9 7.3 11.9 70.9 13.0 6.3 8.7 24. 6.8 6.1 4.9 73.0 49.4 10.4 10.7 20.1 11.0 8.7 8.9 25. 25. 11.0 11.0 8.7 8.9 27.7 25. 11.0 2.8 11.7 25.0 11.0 2.5 8.1 11.8 4.9 11.3 89.0 25.9 7.3 11.9 70.9 13.0 6.3 8.7 24. 6.8 6.1 4.9 73.0 49.4 10.4 10.7 20.1 11.0 8.7 8.9 27. 6.3 7.1 21.9 47.2 80.2 7.3 12.3 36.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 50.5 76.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 50.5 76.6 18.4 18.9 9.3 28.6 5.8 27.7 21.0 48.3 50.0 16.2 13.9 13.2 37.3 29.5 9.1 30. 2.8 10.0 2.8 11.0 2.5 8 18.6 38.1 50.0 16.2 13.9 13.2 37.3 29.5 9.1 30. 2.8 10.0 2.8 11.0 2.5 8 18.6 38.1 65.1 28.1 15.9 26.4 27.6 111.0 8.6 29. 110.0 36.6 31. 36.0 27.7 56.6 11.7 23.0 12.6 58.0 12.0 12.5 58.0 12.0 27.7 29.5 29.5 9.1 30.0 16.2 13.9 13.2 37.3 29.5 9.1 30.0 2.8 30.6 8.4 14.3 178.8 58.0 24.3 50.0 16.2 13.9 13.2 37.3 29.5 9.1 30.0 2.8 36.6 8.4 14.3 178.8 58.0 24.3 50.0 16.2 23.0 12.5 12.5 12.5 12.0 22.3 33.9 27.3 12.6 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.0 12.5 12.0 12.0 12.5 12.0 12.0 12.5 12.0 12.0 12.5 12.0 12.0 12.0 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0      | 7.    | 12,9   |       |       |         |        |      |       |       |        |       |       | 4,2   |
| 10. 15.6 8.4 6.4 27.6 13.2 19.5 13.6 21.2 18.2 16.8 13.4 11. 121.6 16.3 14.2 71.3 42.5 28.5 10.3 10.7 23.3 19.4 16.8 12.5 250.5 8.6 11.8 247.3 14.7 20.6 10.7 25.5 20.3 20.5 22.5 13. 144.3 14.8 13.5 713.6 7.6 29.6 12.3 35.8 18.1 22.0 18 14. 115.4 7.3 16.4 2277.1 9.1 24.6 12.7 16.5 22.6 11.3 12.2 11.3 12.2 11.5 10.1 6.0 33.8 231.3 6.0 15.1 20.8 11.7 25.1 11.2 11 16. 47.3 5.0 19.2 179.1 17.1 16.5 21.5 586.2 21.1 14.3 12.2 17. 16.4 29.8 6.0 24.0 12.3 13.6 8.6 15.2 24.1 164.2 22.7 13.0 10.1 18. 29.8 6.0 24.0 126.3 110.0 15.1 24.4 14.2 14.9 7.2 8.4 19. 20.1 7.1 15.5 197.3 34.5 8.4 32.5 12.0 22.3 4.5 10. 20. 17.8 6.8 14.2 13.7 4 182.2 13.0 33.1 23.6 21.5 3.5 8.1 20. 22.3 4.5 10. 20. 17.8 6.8 14.2 13.7 4 182.2 13.0 33.1 23.6 21.5 3.5 8.1 22.2 22.3 4.5 10. 22.3 11.8 4.9 11.3 89.0 25.9 7.3 11.9 706.9 13.0 6.3 8.7 25. 22.6 10.8 13.1 57.3 41.6 10.9 16.9 25.6 7.6 17.4 10. 25. 25. 11.0 25. 25. 11.0 8.7 8.9 25. 11.0 25. 11.0 25. 11.0 26. 6.8 7.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 28. 10.2 5.8 18.6 38.1 65.1 28.1 15.9 26.4 27.6 111.0 8.7 8.9 25. 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11.0 2.5 11 | 8.    | 8,2    | 16,0  |       |         |        |      |       |       |        |       |       | 19, 3 |
| 11.     12.6     16.3     14.2     71.3     42.5     28.5     10.3     10.7     23.3     19.4     16.8       12.     250.5     8.6     11.8     247.3     14.7     20.6     10.7     25.5     20.3     20.5     22.5       13.     144.3     14.8     13.5     713.6     7.6     29.6     12.3     35.8     18.1     22.0     18       14.     115.4     7.3     16.4     2277.1     9.1     24.6     12.7     16.5     22.6     11.3     12.2       15.     101.1     6.0     33.8     231.3     6.0     15.1     20.8     11.7     25.1     11.2     11       16.     47.3     5.0     19.2     179.1     17.1     16.5     21.5     586.2     21.1     14.3     12.2       17.     40.4     6.5     25.1     133.6     8.6     15.2     24.1     164.2     22.7     13.0     10       18.     29.8     6.0     24.0     126.3     110.0     15.1     24.4     14.2     14.9     7.2     8.4       19.     20.1     7.1     15.5     197.3     34.5     8.4     32.5     12.0     22.3     4.5     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 9, 5   |       |       |         | 13,2   |      |       |       |        |       |       | 4,8   |
| 12.       250.5       86       11.8       247.3       14.7       20.6       10.7       25.5       20.3       20.5       22.5         13.       144.3       14.8       13.5       713.6       7.6       29.6       12.3       35.8       18.1       22.0       18         14.       115.4       7.3       16.4       227.7       1       9.1       24.6       12.7       16.5       22.6       11.3       12.2         15.       101.1       6.0       33.8       231.3       6.0       15.1       20.8       11.7       25.1       11.2       11         16.       47.3       5.0       19.2       179.1       17.1       16.5       21.5       586.2       21.1       14.3       12.2         17.       40.4       6.5       25.1       133.6       8.6       15.2       24.1       164.2       22.7       13.0       10         18.       29.8       6.0       24.0       126.3       110.0       15.1       24.4       14.2       14.9       7.2       8.4         19.       20.1       7.1       15.5       197.3       34.5       8.4       32.5       12.0       22.3 <td< th=""><th></th><th>15,6</th><th>8,4</th><th></th><th></th><th>13,2</th><th></th><th></th><th></th><th>18,2</th><th></th><th>13,4</th><th>3, 5</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 15,6   | 8,4   |       |         | 13,2   |      |       |       | 18,2   |       | 13,4  | 3, 5  |
| 13.     144,3     14,8     13,5     713,6     7,6     29,6     12,3     35,8     18,1     22,0     18       14.     115,4     7,3     16,4     2277,1     9,1     24,6     12,7     16,5     22,6     11,3     12,2       15.     101,1     6,0     33,8     231,3     6,0     15,1     20,8     11,7     25,1     11,2     11       16.     47,3     5,0     19,2     179,1     17,1     16,5     21,5     586,2     21,1     14,3     12,2       17.     40,4     6,5     25,1     133,6     86     15,2     24,1     164,2     22,7     13,0     10       18.     29,8     6,0     24,0     126,3     110,0     15,1     24,4     14,2     14,9     7,2     8,4       19.     20,1     7,1     15,5     197,3     34,5     8,4     32,5     12,0     22,3     4,5     10       20.     17,8     6,8     14,2     137,4     182,2     13,0     33,1     23,6     21,5     3,5     8,1       21.     15,6     6,7     8,7     110,2     95,2     14,5     26,2     12,1     15,1     96     9,5 </th <th></th> <th>121,6</th> <th></th> <th></th> <th></th> <th>42,5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>16,8</th> <th>4</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 121,6  |       |       |         | 42,5   |      |       |       |        |       | 16,8  | 4     |
| 14.     115.4     7,3     16.4     2277.1     9.1     24.6     12.7     16.5     22.6     11.3     12.2       15.     101.1     6,0     33.8     231.3     6,0     15.1     20.8     11.7     25.1     11.2     11       16.     47.3     5,0     19.2     179.1     17.1     16.5     21.5     586.2     21.1     14.3     12.2       17.     40.4     6,5     25.1     133.6     8.6     15.2     24.1     164.2     22.7     13.0     10       18.     29.8     6,0     24.0     126.3     110.0     15.1     24.4     14.2     14.9     7.2     8.4       19.     20.1     7.1     15.5     197.3     34.5     8.4     32.5     12.0     22.3     4.5     10       20.     17.8     6.8     14.2     137.4     182.2     13.0     33.1     23.6     21.5     3.5     8.1       21.     15.6     6.7     8.7     110.2     95.2     14.5     26.2     12.1     15.1     9.6     9.5       22.     8.1     19.4     10.7     79.6     49.5     9.3     23.8     19.6     15.8     7.6     10.8 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3,6</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |       |       |         |        |      |       |       |        |       |       | 3,6   |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |       |       |         |        |      |       |       |        |       |       | 2,2   |
| 16.         47,3         5,0         19,2         179,1         17,1         16,5         21,5         586,2         21,1         14,3         12,2           17.         40,4         6,5         25,1         133,6         86         15,2         24,1         164,2         22,7         13,0         10           18.         29,8         6,0         24,0         126,3         110,0         15,1         24,4         14,2         14,9         7,2         8,4           19.         20,1         7,1         15,5         197,3         34,5         8,4         32,5         12,0         22,3         4,5         10           20.         17,8         6,8         14,2         137,4         182,2         13,0         33,1         23,6         21,5         3,5         8,1           21.         15,6         6,7         8,7         110,2         95,2         14,5         26,2         12,1         15,1         9,6         9,5           22.         8,1         19,4         10,7         99,6         49,5         9,3         23,8         19,6         15,8         7,6         10,8           23.         11,8         4,9 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>12,2</th><th>6</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |       |       |         |        |      |       |       |        |       | 12,2  | 6     |
| 17.     40.4     6,5     25.1     133.6     8.6     15.2     24.1     164.2     22.7     13.0     10       18.     29.8     6,0     24.0     126.3     110.0     15.1     24.4     14.2     14.9     7.2     8.4       19.     20.1     7.1     15.5     197.3     34.5     8.4     32.5     12.0     22.3     4.5     10       20.     17.8     6.8     14.2     137.4     182.2     13.0     33.1     23.6     21.5     3.5     8.1       21.     15.6     6.7     8.7     110.2     95.2     14.5     26.2     12.1     15.1     9.6     9.5       22.     8.1     19.4     10.7     99.6     49.5     9.3     23.8     19.6     15.8     7.6     10.8       23.     11.8     4.9     11.3     89.0     25.9     7.3     11.9     706.9     13.0     6.3     8.7       24.     6.8     6.1     4.9     73.0     49.4     10.4     10.7     20.1     11.0     8.7     8.9       25.     5.0     7.8     13.1     57.3     41.6     10.9     16.9     25.6     7.6     17.4     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |       |       |         | 6,0    |      |       |       |        |       |       | 6,8   |
| 18.         29.8         6,0         24,0         126,3         110,0         15,1         24,4         14,2         14,9         7,2         8,4           19.         20.1         7,1         15,5         197,3         34,5         8,4         32,5         12,0         22,3         4,5         10           20.         17,8         6,8         14,2         137,4         182,2         13,0         33,1         23,6         21,5         3,5         8,1           21.         15,6         6,7         8,7         110,2         95,2         14,5         26,2         12,1         15,1         9,6         9,5           22.         8,1         19,4         10,7         99,6         49,5         9,3         23,8         19,6         15,8         7,6         10,8           23.         11,8         4,9         11,3         89,0         25,9         7,3         11,9         706,9         13,0         6,3         8,7           24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7         8,9           25.         5,0         7,8         13,1 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>17,1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>12,2</th> <th>61,6</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |       |       |         | 17,1   |      |       |       |        |       | 12,2  | 61,6  |
| 19.         20.1         7,1         15,5         197,3         34,5         8,4         32,5         12,0         22,3         4,5         10           20.         17,8         6,8         14,2         137,4         182,2         13,0         33,1         23,6         21,5         3,5         8,1           21.         15,6         6,7         8,7         110,2         95,2         14,5         26,2         12,1         15,1         96         9,5           22.         8,1         19,4         10,7         99,6         49,5         9,3         23,8         19,6         15,8         7,6         10,8           23.         11,8         4,9         11,3         89,0         25,7,3         11,9         706,9         13,0         6,3         8,7           24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7           25.         5,0         7,8         13,1         57,3         41,6         10,9         16,9         25,6         7,6         18,4         18,9         1,4         10           26.         6,8         7,7         21,0 <th></th> <th>40,4</th> <th></th> <th>71,6</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 40,4   |       |       |         |        |      |       |       |        |       |       | 71,6  |
| 20.         17,8         6,8         14,2         137,4         182,2         13,0         33,1         23,6         21,5         3,5         8,1           21.         15,6         6,7         8,7         110,2         95,2         14,5         26,2         12,1         15,1         96         9,5           22.         8,1         19,4         10,7         99,6         49,5         9,3         23,8         19,6         15,8         7,6         10,8           23.         11,8         4,9         11,3         89,0         25,9         7,3         11,9         706,9         13,0         6,3         8,7           24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7         8,9           25.         5,0         7,8         13,1         57,3         41,6         10,9         16,9         25,6         7,6         17,4         10           26.         6,8         7,7         21,0         48,3         520,5         7,6         18,4         18,9         9,3         28,6         5,8           27.         6,3         7,1         21,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 29,8   |       |       |         | 110,0  |      |       |       |        |       | 8,4   | 53,2  |
| 21.         15.6         6,7         8,7         110.2         95.2         14.5         26.2         12.1         15.1         9.6         9.5           22.         8,1         19.4         10.7         99.6         49.5         9,3         23.8         19.6         15.8         7.6         10.8           23.         11,8         4,9         11,3         89.0         25.9         7.3         11,9         706.9         13.0         6.3         8,7           24.         6,8         6,1         4,9         73.0         49.4         10.4         10,7         20.1         11.0         8,7         8.9           25.         5.0         7,8         13.1         57.3         41.6         10.9         16.9         25.6         7.6         17.4         10           26.         6,8         7,7         21.0         48.3         520.5         7.6         18.4         18.9         9.3         28.6         5.8           27.         6,3         7,1         21.9         47.2         80.2         7,3         12.3         36.6         18.4         18.9         18           28.         10,2         5,8         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |       |       |         |        |      |       |       |        |       |       | 58, 3 |
| 22.         8,1         19,4         10,7         99,6         49,5         9,3         23,8         19,6         15,8         7,6         10,8           23.         11,8         4,9         11,3         89,0         25,9         7,3         11,9         706,9         13,0         6,3         8,7           24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7         8,9           25.         5,0         7,8         13,1         57,3         41,6         10,9         16,9         25,6         7,6         17,4         10           26.         6,8         7,7         21,0         48,3         520,5         7,6         18,4         18,9         9,3         28,6         5,8           27.         6,3         7,1         21,9         47,2         80,2         7,3         11,5,9         26,4         27,6         111,0         8,6           28.         10,2         5,8         18,6         38,1         65,1         28,1         15,9         26,4         27,6         111,0         8,6           29.         10,0         44,3         50,0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>38,9</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |       |       |         |        |      |       |       |        |       |       | 38,9  |
| 23.         11,8         4,9         11,3         89,0         25,9         7,3         11,9         706,9         13,0         6,3         8,7           24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7         8,9           25.         5,0         7,8         13,1         57,3         41,6         10,9         16,9         25,6         7,6         17,4         10           26.         6,8         7,7         21,0         48,3         520,5         7,6         18,4         18,9         9,3         28,6         5,8           27.         6,3         7,1         21,9         47,2         80,2         7,3         12,3         36,6         18,4         18,9         9,3         28,6         5,8           28.         10,2         5,8         18,6         38,1         65,1         28,1         15,9         26,4         27,6         111,0         8,6           29.         10,0         16,0         34,3         50,0         16,2         13,9         13,2         37,3         29,5         9,1           30.         2,8         16,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 15,6   |       |       |         | 95,2   |      |       |       |        |       |       | 52, 1 |
| 24.         6,8         6,1         4,9         73,0         49,4         10,4         10,7         20,1         11,0         8,7         8,9           25.         5,0         7,8         13,1         57,3         41,6         10,9         16,9         25,6         7,6         17,4         10           26.         6,8         7,7         21,0         48,3         520,5         7,6         18,4         18,9         9,3         28,6         5,8           27.         6,3         7,1         21,9         47,2         80,2         7,3         12,3         36,6         18,4         18,9         18           28.         10,2         5,8         18,6         38,1         65,1         28,1         15,9         26,4         27,6         111,0         8,6           29.         10,0         16,0         44,3         50,0         16,2         13,9         13,2         37,3         29,5         9,1           30.         2,8         16,5         31,6         49,6         21,0         15,5         18,8         21,6         150,9         6,8           31.         3,6         27,7         56,6         111,7         23,0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>62</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |       |       |         |        |      |       |       |        |       |       | 62    |
| 25. 5.0 7.8 13.1 57.3 41.6 10.9 16.9 25.6 7.6 17.4 10 26. 6.8 7.7 21.0 48.3 520.5 7.6 18.4 18.9 9.3 28.6 5.8 27. 6.3 7.1 21.9 47.2 80.2 7.3 12.3 36.6 18.4 18.9 18 28. 10.2 5.8 18.6 38.1 65.1 28.1 15.9 26.4 27.6 111.0 8.6 29. 10.0 16.0 44.3 50.0 16.2 13.9 13.2 37.3 29.5 9.1 30. 2.8 16.5 31.6 49.6 21.0 15.5 18.8 21.6 150.9 6.8 31. 3.6 27.7 56.6 111.7 23.0 74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |       |       |         | 25,9   | 7,3  |       |       |        |       |       | 47,3  |
| 26.         6,8         7,7         21,0         48,3         520,5         7,6         18,4         18,9         9,3         28,6         5,8           27.         6,3         7,1         21,9         47,2         80,2         7,3         12,3         36,6         18,4         18,9         18           28.         10,2         5,8         18,6         38,1         65,1         28,1         15,9         26,4         27,6         111,0         8,6           29.         10,0         16,0         44,3         50,0         16,2         13,9         13,2         37,3         29,5         9,1           30.         2,8         16,5         31,6         49,6         21,0         15,5         18,8         21,6         150,9         6,8           31.         3,6         27,7         56,6         11,7         23,0         74,2         74,2    sum  1134,3  234,9  442,1  5365,4  1799,2  727,6  639,1  2158,6  1015,6  845,7  377,3  12,6  377,3  12,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,6  1015,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |       |       |         |        |      |       |       |        |       | 8,9   | 46,7  |
| 27.         6,3         7,1         21,9         47,2         80,2         7,3         12,3         36,6         18,4         18,9         18           28.         10,2         5,8         18,6         38,1         65,1         28,1         15,9         26,4         27,6         111,0         8,6           29.         10,0         16,0         44,3         50,0         16,2         13,9         13,2         37,3         29,5         9,1           30.         2,8         16,5         31,6         49,6         21,0         15,5         18,8         21,6         150,9         6,8           31.         3,6         27,7         56,6         11,7         23,0         74,2         74,2           sum         1134,3         234,9         442,1         5365,4         1799,2         727,6         639,1         215,6         1015,6         845,7         377,3           mean         36,6         8,4         14,3         178,8         58,0         24,3         20,6         69,6         33,9         27,3         12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |       |       |         |        | 10,9 |       |       |        |       |       | 47, 1 |
| 28. 10,2 5,8 18,6 38,1 65,1 28,1 15,9 26,4 27,6 111,0 8,6 10,0 44,3 50,0 16,2 13,9 13,2 37,3 29,5 9,1 30. 2,8 16,5 31,6 49,6 21,0 15,5 18,8 21,6 150,9 6,8 27,7 56,6 111,7 23,0 74,2    sum 1134,3 234,9 442,1 5365,4 1799,2 727,6 639,1 2158,6 1015,6 845,7 377,3 mean 36,6 8,4 14,3 178,8 58,0 24,3 20,6 69,6 33,9 27,3 12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |       |       |         |        | 7,6  |       |       |        |       |       | 47, 9 |
| 29.     10,0     16,0     44,3     50,0     16,2     13,9     13,2     37,3     29,5     9,1       30.     2,8     16,5     31,6     49,6     21,0     15,5     18,8     21,6     150,9     6,8       31.     3,6     27,7     56,6     11,7     23,0     74,2       sum     1134,3     234,9     442,1     5365,4     1799,2     727,6     639,1     2158,6     1015,6     845,7     377,3       mean     36,6     8,4     14,3     178,8     58,0     24,3     20,6     69,6     33,9     27,3     12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |       |       |         |        | 7,3  |       |       |        |       |       | 50, 5 |
| 30.     2,8     16,5     31,6     49,6     21,0     15,5     18,8     21,6     150,9     6,8       31.     3,6     27,7     56,6     11,7     23,0     74,2     74,2       sum mean     1134,3     234,9     442,1     5365,4     1799,2     727,6     639,1     2158,6     1015,6     845,7     377,3       mean     36,6     8,4     14,3     178,8     58,0     24,3     20,6     69,6     33,9     27,3     12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        | 5,8   |       | 38,1    |        |      |       |       |        |       |       | 52, 8 |
| 31.     3,6     27,7     56,6     11,7     23,0     74,2       sum     1134,3     234,9     442,1     5365,4     1799,2     727,6     639,1     2158,6     1015,6     845,7     377,3       mean     36,6     8,4     14,3     178,8     58,0     24,3     20,6     69,6     33,9     27,3     12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |       |       |         |        | 16,2 |       |       |        |       |       | 37, 7 |
| sum     1134,3     234,9     442,1     5365,4     1799,2     727,6     639,1     2158,6     1015,6     845,7     377,3       mean     36,6     8,4     14,3     178,8     58,0     24,3     20,6     69,6     33,9     27,3     12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.   |        |       |       | 31,6    |        | 21,0 | 15,5  | 18,8  | 21,6   |       | 6,8   | 35, 8 |
| mean 36,6 8,4 14,3 178,8 58,0 24,3 20,6 69,6 33,9 27,3 12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.   | 3,6    |       | 27,7  |         | 56,6   |      | 11,7  | 23,0  |        | 74,2  |       | 55,8  |
| mean 36,6 8,4 14,3 178,8 58,0 24,3 20,6 69,6 33,9 27,3 12,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sum   | 1134.3 | 234 9 | 442 1 | 536.5.4 | 1799 2 | 7276 | 639 1 | 21586 | 1015.6 | 845.7 | 377 3 | 914,7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       |       |         |        |      |       |       |        | 27.3  |       | 29,5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       |       |         |        |      |       |       |        |       |       | 71,6  |
| II MIN II 281 - 191 - 201 - 871 - 601 - 731 - 1031 - 1071 - 761 - 351 - 581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN.  | 2,8    | 0,9   | 2,0   | 8,7     | 6.0    | 7,3  | 10,3  | 10,7  | 7,6    | 3.5   | 5.8   | 2,2   |

 
 year sum year mean
 15654,5 year max. 42,9 year min.
 5898,2 0,9
 DEÑ/MESIAC: 14/04 DEÑ/MESIAC: 01/02

 MSD YRDS
 kg/s t
 1,8 56121,9 30,7




#### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN [mg.l<sup>-1</sup>]

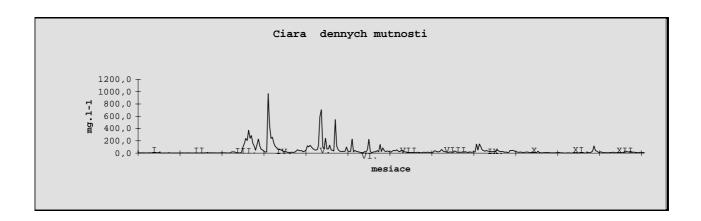
sediment 7820 LENARTOVCE 1,995 station : year SLANÁ PLOCHA POVODIA: 1829,65 km<sup>2</sup> river :

| m onth | I. I  | II.   | III.   | IV.    | V.     | VI.    | VII.  | VIII. | IX.   | X.    | XI.   | XII.  |
|--------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| day    |       |       |        |        |        |        |       |       |       |       |       |       |
| 1.     | 6,0   | 20,3  | 13,0   | 9,3    | 81,2   | 28,2   | 15,2  | 17,2  | 27,3  | 6,0   | 2,6   | 6,2   |
| 2.     | 5, 5  | 17,9  | 10,0   | 7,2    | 68,0   | 1077,9 | 20,0  | 23,0  | 21,4  | 7,2   | 2,3   | 3, 3  |
| 3.     | 11,0  | 11,9  | 16,4   | 9,7    | 73,4   | 98,7   | 17,9  | 16,0  | 25,0  | 6,3   | 2,9   | 14,8  |
| 4.     | 5, 0  | 7,0   | 94,8   | 10,5   | 33,5   | 115,1  | 16,8  | 15,2  | 21,6  | 11,8  | 2,9   | 4,0   |
| 5.     | 4,5   | 8,2   | 175,8  | 12,5   | 22,5   | 65,8   | 112,9 | 25,4  | 187,1 | 9,8   | 1,1   | 4,8   |
| 6.     | 6,0   | 11,2  | 166,6  | 20,4   | 28,5   | 52,7   | 52,4  | 20,5  | 45,6  | 5,8   | 2,6   | 8,3   |
| 7.     | 5, 0  | 7,5   | 122,6  | 17,0   | 86,9   | 53,0   | 40,4  | 32,5  | 27,8  | 5,6   | 0,5   | 6,7   |
| 8.     | 5, 5  | 6,1   | 73,9   | 13,0   | 20,6   | 313,6  | 27,1  | 18,2  | 23,9  | 14,5  | 2,6   | 6,4   |
| 9.     | 6,0   | 6,8   | 47,4   | 10,1   | 16,9   | 970,6  | 21,8  | 22,5  | 26,5  | 24,6  | 1,2   | 4,6   |
| 10.    | 6,0   | 6,1   | 43,0   | 10,7   | 20,5   | 195,7  | 24,4  | 20,4  | 18,7  | 14,0  | 11,9  | 7, 3  |
| 11.    | 5, 5  | 5,8   | 34,1   | 7,6    | 21,3   | 136,0  | 20,4  | 13,1  | 19,5  | 8,4   | 15,2  | 3, 9  |
| 12.    | 5, 0  | 7,9   | 25,7   | 6,5    | 19,1   | 1449,8 | 20,5  | 9,9   | 22,7  | 36,0  | 9,5   | 18,3  |
| 13.    | 5, 5  | 10,6  | 22,7   | 7,1    | 105,2  | 466,9  | 14,9  | 11,2  | 17,1  | 10,6  | 25,3  | 4,4   |
| 14.    | 4, 0  | 10,8  | 21,5   | 8, 1   | 306,7  | 140,4  | 12,9  | 8,8   | 27,7  | 10,0  | 4,9   | 3,6   |
| 15.    | 4,0   | 8,9   | 19,7   | 12,5   | 52,5   | 126,1  | 32,7  | 22,3  | 32,7  | 12,1  | 5,7   | 3, 5  |
| 16.    | 3, 5  | 6,6   | 16,6   | 10,8   | 36,5   | 95,6   | 27,0  | 9,6   | 14,7  | 8,4   | 6,9   | 5, 0  |
| 17.    | 3, 5  | 136,0 | 13,7   | 5,0    | 36,4   | 73,5   | 25,2  | 8,9   | 11,4  | 8,7   | 8,6   | 3, 5  |
| 18.    | 4,0   | 47,2  | 12,7   | 5,6    | 29,1   | 65,4   | 43,0  | 12,8  | 20,5  | 18,3  | 6,9   | 4,2   |
| 19.    | 3, 5  | 25,9  | 16,0   | 7,2    | 32,3   | 59,6   | 91,0  | 12,0  | 19,1  | 6,3   | 8,8   | 3,8   |
| 20.    | 4,7   | 14,5  | 14,1   | 1,5    | 70,3   | 47,7   | 53,1  | 12,5  | 7,2   | 4,7   | 5,0   | 5,6   |
| 21.    | 3, 3  | 8,3   | 12,7   | 5,2    | 84,3   | 47,2   | 26,4  | 19,9  | 31,6  | 5,1   | 5,2   | 6,2   |
| 22.    | 13,3  | 6,0   | 15,2   | 8,2    | 58,5   | 39,4   | 24,3  | 13,3  | 41,3  | 4,7   | 5,4   | 42,2  |
| 23.    | 0,8   | 9,7   | 12,0   | 6,4    | 53, 3  | 51,5   | 25,6  | 19,2  | 17,3  | 3,0   | 5,8   | 3,6   |
| 24.    | 1,5   | 4,9   | 18,3   | 8,1    | 46, 1  | 33,7   | 17,0  | 12,5  | 23,8  | 3,6   | 5,3   | 7, 7  |
| 25.    | 7, 3  | 21,7  | 10,0   | 11,6   | 35,7   | 22,9   | 18,5  | 12,7  | 15,0  | 3,4   | 4,3   | 4,4   |
| 26.    | 8, 7  | 16,4  | 1 0, 1 | 70,8   | 36,3   | 30,1   | 14,4  | 14,3  | 11,9  | 6,1   | 2,0   | 5,6   |
| 27.    | 8, 5  | 27,2  | 10,1   | 473,8  | 26,2   | 40,3   | 17,8  | 35, 3 | 12,5  | 1,5   | 1,9   | 12,9  |
| 28.    | 34,4  | 32,0  | 15,5   | 249,8  | 28,3   | 20,3   | 15,3  | 59,6  | 21,3  | 7,9   | 2,0   | 7, 1  |
| 29.    | 10,9  |       | 15,3   | 188,2  | 23,6   | 15,5   | 14,1  | 71,3  | 13,5  | 0,5   | 6,7   | 5,4   |
| 30.    | 7, 0  |       | 11,1   | 110,2  | 32,0   | 19,3   | 11,5  | 85,8  | 13,9  | 17,6  | 9,8   | 5,0   |
| 31.    | 10,2  |       | 9,0    |        | 26,8   |        | 12,5  | 34,7  |       | 2,9   |       | 5,2   |
| sum    | 209,6 | 503,4 | 1099,6 | 1324,6 | 1612,5 | 5952,5 | 887,0 | 710,6 | 819,6 | 285,4 | 175,8 | 227,5 |
| mean   | 6,8   | 18,0  | 35,5   | 44,2   | 52,0   | 198,4  | 28,6  | 22,9  | 27,3  | 9,2   | 5,9   | 7,3   |
| MAX.   | 34,4  | 136,0 | 175,8  | 473,8  | 306,7  | 1449,8 | 112,9 | 85, 8 | 187,1 | 36,0  | 25,3  | 42,2  |
| MIN.   | 0,8   | 4,9   | 9,0    | 1,5    | 16,9   | 15,5   | 11,5  | 8,8   | 7,2   | 0,5   | 0,5   | 3,3   |

DEN/MESIAC: DEN/MESIAC: 2472,0 0,5 12 / VI 29 / X year sum year average 13808,1 37,8 year max year min.

1,700 53381,4 29,2 MSD YRSD SYRSD kg/s t t/km2




## ROĆNÉ SPRACOVANIE PLAVENÍN [mg.l<sup>-1</sup>] sediment discharge

7820 LENARTOVCE ROK: 1996 station : year SLANÁ PLOCHA POVODIA: 1829,65 km<sup>2</sup> river :

| month | l.    | II.   | l III. | IV.     | V.     | VI.    | VII.  | VIII. | IX.     | Χ.    | XI.   | XII.  |
|-------|-------|-------|--------|---------|--------|--------|-------|-------|---------|-------|-------|-------|
| day   |       | •••   | """    |         | •.     |        |       | •     | <i></i> | ۸.    | 7     | ^     |
| 1.    | 5, 5  | 2,7   | 7,1    | 19,5    | 120,8  | 27,6   | 35,2  | 31,2  | 149,4   | 17,6  | 0,5   | 8,2   |
| 2.    | 5.0   | 4,1   | 4.4    | 20,1    | 101,6  | 229.0  | 43,9  | 19,7  | 108,5   | 10,8  | 3.0   | 4.5   |
| 3.    | 5,2   | 2,9   | 4,9    | 965,9   | 126,6  | 22,1   | 37,4  | 19,8  | 54,7    | 13,0  | 4,1   | 8,1   |
| 4.    | 5, 0  | 2,3   | 4,6    | 443,7   | 96,8   | 44,4   | 54,8  | 31,3  | 41,7    | 16,6  | 4,0   | 10,3  |
| 5.    | 4,9   | 6,3   | 3,1    | 238,3   | 72,4   | 27,6   | 33,6  | 60,4  | 31,6    | 19,1  | 1,6   | 14,1  |
| 6.    | 4,9   | 3,8   | 2.6    | 261,4   | 54,6   | 24.0   | 21,2  | 34.0  | 42.4    | 15,7  | 2,3   | 15,5  |
| 7.    | 2.0   | 4.3   | 5,1    | 165,4   | 48.3   | 18,1   | 41.8  | 24,5  | 33,4    | 9.8   | 2.2   | 8,2   |
| 8.    | 5,0   | 2,5   | 19,9   | 109,7   | 54,0   | 12,9   | 48,0  | 21,5  | 29,8    | 10,1  | 2,1   | 6,4   |
| 9.    | 5, 1  | 1,8   | 21,3   | 90,4    | 120,8  | 9,0    | 24,3  | 15,7  | 28,1    | 19,6  | 5,8   | 12,8  |
| 10.   | 5,2   | 2,4   | 19,4   | 65,8    | 591,1  | 8,9    | 18,6  | 12,7  | 22,0    | 11,0  | 0,5   | 7,7   |
| 11.   | 5, 3  | 2,2   | 9.7    | 56,8    | 706,6  | 25,5   | 17,6  | 21,6  | 25,5    | 11,1  | 3,0   | 10,8  |
| 12.   | 5,4   | 3.0   | 5.2    | 51,8    | 101,7  | 15,7   | 11,3  | 14,6  | 22,2    | 6.8   | 3,9   | 9.0   |
| 13.   | 6,9   | 3,5   | 5,0    | 39,3    | 70,9   | 58,8   | 9,9   | 14,3  | 32,2    | 31,8  | 3,3   | 9.0   |
| 14.   | 7,8   | 2,9   | 3,7    | 30, 8   | 242,5  | 224,3  | 12,5  | 35,7  | 51,8    | 5,4   | 10,5  | 30,0  |
| 1 5.  | 5, 5  | 3,0   | 15,0   | 23,7    | 67,3   | 23,3   | 10,3  | 27,4  | 32,0    | 4,8   | 3,6   | 35,0  |
| 16.   | 12,5  | 1,0   | 101,5  | 21,3    | 66,5   | 11,4   | 11,5  | 14,8  | 29.8    | 5,2   | 3,5   | 20,0  |
| 17.   | 2,4   | 3,7   | 160,8  | 13,8    | 129,3  | 16,6   | 9, 1  | 12,9  | 25,4    | 7, 1  | 4,6   | 19,0  |
| 18.   | 1,8   | 4,7   | 240,6  | 14,0    | 52,7   | 24,4   | 8,5   | 16,9  | 24,5    | 8,2   | 10,5  | 30,0  |
| 19.   | 1,6   | 5,4   | 206,2  | 13,4    | 47,4   | 20,6   | 16,0  | 12,1  | 16,4    | 13,9  | 5,6   | 18,0  |
| 20.   | 1,4   | 4,9   | 372,9  | 16,6    | 34,8   | 42,4   | 8,2   | 20,3  | 17,8    | 11,0  | 16,1  | 15,0  |
| 21.   | 3, 0  | 4,8   | 241,7  | 13,0    | 545,2  | 20,5   | 5, 8  | 18,5  | 12,1    | 7,6   | 32,7  | 16,0  |
| 22.   | 3,2   | 5,8   | 286,7  | 15,3    | 114,8  | 139,8  | 7, 9  | 24,4  | 11,2    | 6, 1  | 117,3 | 10,0  |
| 23.   | 8, 7  | 6,1   | 161,4  | 34, 9   | 58,1   | 26,8   | 15,5  | 16,0  | 45,3    | 5, 3  | 43,8  | 9,0   |
| 24.   | 3,4   | 5,9   | 113,3  | 54,7    | 34,5   | 85,9   | 14,3  | 11,5  | 39,6    | 5, 7  | 32,4  | 8,9   |
| 25.   | 3, 8  | 6,2   | 47,3   | 43,8    | 28,6   | 39,8   | 13,3  | 20,8  | 48,0    | 6, 1  | 16,6  | 15,0  |
| 26.   | 2,6   | 3,7   | 134,4  | 37, 0   | 25,7   | 25,6   | 16,8  | 16,0  | 32,9    | 7,4   | 11,2  | 10,0  |
| 27.   | 3, 1  | 5,0   | 229,9  | 42,4    | 30,3   | 33,4   | 13,5  | 16,9  | 25,4    | 8, 0  | 23,7  | 10,5  |
| 28.   | 3,7   | 3,7   | 116,5  | 20,8    | 28,3   | 32,3   | 12,2  | 23,8  | 17,9    | 11,8  | 10,7  | 11,0  |
| 29.   | 3,5   | 5,8   | 61,2   | 30, 5   | 99,6   | 22,0   | 12,8  | 18,0  | 15,8    | 5, 0  | 7,2   | 10,0  |
| 30.   | 3,6   |       | 52,9   | 47,0    | 34,5   | 17,6   | 12,5  | 146,1 | 14,8    | 4,2   | 7,9   | 11,0  |
| 31.   | 3, 0  |       | 25,2   |         | 27,5   |        | 38,6  | 49,4  |         | 4,4   |       | 11,0  |
| sum   | 140,0 | 114,4 | 2683,5 | 3001,1  | 3933,8 | 1330,3 | 636,9 | 822,8 | 1082,2  | 320,2 | 394,2 | 414,0 |
| mean  | 4,5   | 3,9   | 86,6   | 1 00, 0 | 126,9  | 44,3   | 20,5  | 26,5  | 36,1    | 10,3  | 13,1  | 13,4  |
| MAX.  | 12,5  | 6,3   | 372,9  | 965, 9  | 706,6  | 229,0  | 54,8  | 146,1 | 149,4   | 31,8  | 117,3 | 35,0  |
| MIN.  | 1,4   | 1,0   | 2,6    | 13,0    | 25,7   | 8,9    | 5, 8  | 11,5  | 11,2    | 4,2   | 0,5   | 4,5   |

DEN/MESIAC: 03/04 DEN/MESIAC: 01/11 14873,4 40,6 1 283,0 0,5 year sum year average year max. year min.

1,365 43169,4 23,6 MSD YRSD SYRSD kg/s t t/km2

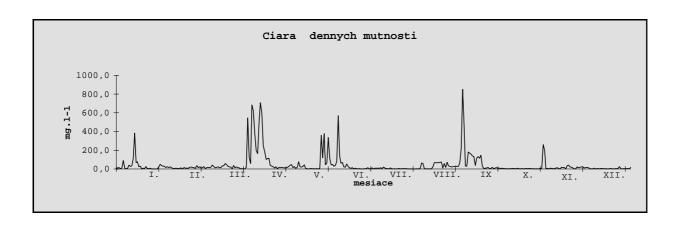


sediment discharge

#### ROČNÉ SPRACOVANIE PLAVENÍN [mg.I-1]

station:Zdana river:Hornad

year


ROK : PLOCHA POVODIA : 1994 4232,2 km2

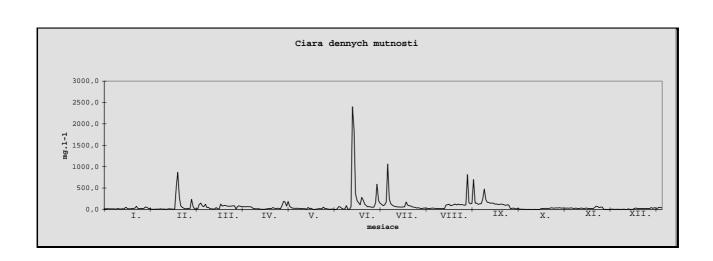
| month        | I.             | II.           | III.          | IV.             | V.             | VI.            | VII.           | VIII.         | IX.             | Χ.            | XI.           | XII.                            |
|--------------|----------------|---------------|---------------|-----------------|----------------|----------------|----------------|---------------|-----------------|---------------|---------------|---------------------------------|
| day          |                |               |               |                 |                |                |                |               |                 |               |               |                                 |
| 7            | 3,6            | 49,0          | 24, 1         | 1,6             | 12,3           | 114,9          | 11,3           | 1,6           | 63,2            | 7,8           | 2,0           | 14, 1                           |
| 2.           | 12,9           | 37,1          | 11,3          | 0,9             | 17,1           | 42,3           | 0,7            | 2,4           | 218,4           | 5,8           | 6,9           | 4,5                             |
| 3.           | 13,2           | 28,2          | 12,7          | 16,3            | 25,2           | 48,0           | 8,2            | 2,2           | 850,9           | 3,9           | 1,9           | 2,4                             |
| 4.           | 4, 1           | 31,0          | 25, 0         | 546,1           | 41,0           | 29,8           | 8,6            | 4,4           | 513,9           | 3,6           | 9,1           | 1,2                             |
| 5.           | 10, 5          | 14,7          | 4,7           | 125,0           | 45,4           | 37,1           | 8,6            | 65,6          | 32,4            | 1,5           | 6,0           | 7, 7                            |
| 6.           | 90, 3          | 23,6          | 13, 1         | 58,8            | 13,3           | 80,7           | 7,5            | 58,9          | 29,9            | 4,1           | 2,5           | 0, 8                            |
| 7.           | 9,2            | 16,1          | 17, 9         | 683,4           | 26,0           | 569,3          | 14,2           | 3,8           | 180,8           | 2,2           | 7,0           | 5,7                             |
| 8.           | 2,9            | 22,7          | 16,2          | 621,1           | 7,5            | 136,2          | 3,2            | 1,1           | 169,5           | 6,2           | 8,6           | 3,1                             |
| 9.           | 7,4            | 17,7          | 18,8          | 377,6           | 16,3           | 61,7           | 21,1           | 1,1           | 157,1           | 2,7           | 13,8          | 2,4                             |
| 10.          | 40,6           | 5,8           | 43,0          | 195,5           | 77,5           | 69,7           | 10,5           | 1,8           | 138,7           | 4,7           | 5,5           | 6,8                             |
| 11.          | 27, 0          | 3,6           | 25, 9         | 164,7           | 23,0           | 21,8           | 5,0            | 2,4           | 132,5           | 1,7           | 1,1           | 3,7                             |
| 12.          | 32, 8          | 9,3           | 11,9          | 506,5           | 21,0           | 19,2           | 3,7            | 1,9           | 38,4            | 9,4           | 19,0          | 3,6                             |
| 13.          | 1 09, 4        | 6,2           | 16, 7         | 707,7           | 25,7           | 53,6           | 1,7            | 20,3          | 116,7           | 1,4           | 15,2          | 3,7                             |
| 14.          | 383, 5         | 3,0           | 23, 1         | 598,3           | 44,4           | 25,7           | 12,8           | 67,3          | 132,3           | 2,5           | 14,9          | 1,3<br>1,3                      |
| 15.          | 69,0           | 7,8           | 14,0          | 247,6           | 4,3            | 13,9           | 1,2            | 65,9          | 115,1           | 4,9           | 2,0           | 1,3                             |
| 16.          | 77,6           | 10,7          | 13,5          | 184,0           | 3,7            | 6,6            | 1,8            | 66,2          | 146,2           | 1,3           | 36,3          | 3,5                             |
| 17.          | 23,2           | 3,0           | 33,4          | 103,2           | 0,6            | 13,8           | 1,4            | 66,6          | 29,2            | 3,7           | 41,6          | 5, 3                            |
| 18.          | 31,5           | 15,7          | 32,5          | 108,7           | 4,2            | 2,0            | 2,5            | 70,1          | 4,3             | 5,1           | 21,4          | 0, 9                            |
| 19.          | 2,3            | 7,1           | 58, 1         | 114,4           | 4.4            | 9,0            | 1,8            | 75,7          | 8,7             | 4,2           | 18,0          | 1,5                             |
| 20.          | 9,3            | 10,8          | 46,7          | 36,6            | 1,6            | 3,1            | 5, 1           | 10,7          | 11,0            | 4,4           | 11,2          | 3, 8                            |
| 21.          | 4,6            | 7,0           | 29,2          | 31,3            | 3,8            | 1,0            | 2,3            | 58,3          | 15,5            | 5,1           | 0,8           | 2,7                             |
| 22.          | 25,2           | 18,5          | 22,8          | 24,1            | 2,5            | 4,0            | 3,9            | 17,4          | 7,5             | 1,3           | 3,1           | 7,2<br>26,3                     |
| 23.          | 3,2            | 20,8          | 20,7          | 10,4            | 3,9            | 1,5            | 3,3            | 71,0          | 4,6             | 2,7           | 22,6          | 26,3                            |
| 24.          | 3, 7           | 15,6          | 1, 5          | 24,5            | 2,5            | 0,6            | 3,8            | 33,9          | 16,6            | 1,0           | 13,8          | 2,9                             |
| 25.          | 8,6            | 13,5          | 38,3          | 2,9             | 4,2            | 1,2            | 2,7            | 27,9          | 3,0             | 2,0           | 18,5          | 2,5                             |
| 26.          | 0, 9           | 7,4           | 13,3          | 15,4            | 359,7          | 3,1            | 2,0            | 22,3          | 10,0            | 1,9           | 20,9          | 2,9<br>2,5<br>2,6<br>2,6<br>3,0 |
| 27.          | 2,5            | 35,1          | 22, 3         | 18,2            | 120,5          | 4,7            | 2,1            | 23,1          | 13,4            | 1,9           | 24,0          | 2,6                             |
| 28.          | 0,6            | 13,2          | 13,6          | 15,8            | 378,1          | 14,0           | 0,7            | 27,9          | 9,8             | 6,0           | 9,7           |                                 |
| 29.          | 0, 7           |               | 11,7          | 13,7            | 44,6           | 0,2            | 1,5            | 30,5          | 7,9             | 4,8           | 15,4          | 4,4                             |
| 30.          | 1,0            |               | 2,2           | 11,3            | 65,6           | 6,0            | 0,5            | 27,2          | 5, 1            | 259,7         | 15,4          | 1, 3                            |
| 31.          | 19,9           |               | 3, 5          |                 | 337,1          |                | 0,4            | 27,7          |                 | 198,5         |               | 17, 7                           |
|              | 1,020,0        | 454.0         | C 4 4 . 7     | EEC E 7         | 1720 0         | 1204.0         | 154.0          | 0F.7.1        | 24.02.5         | ECE O         | 200.4         | 4 E O E                         |
| sum          | 1030,9<br>33,3 | 454,3<br>16.2 | 641,7<br>20,7 | 5565,7<br>185,5 | 1736,9<br>56,0 | 1394,6<br>46,5 | 1 54, 0<br>5.0 | 957,1<br>30,9 | 3182,5<br>106.1 | 565,9<br>18,3 | 388,1<br>12,9 | 150,5                           |
| mean<br>MAX  |                | 16,2<br>49,0  |               | 185,5<br>707,7  | 56,0<br>378,1  | 46,5<br>569,3  | 5,0<br>21,1    | 30,9<br>75,7  | 106,1<br>850,9  | 18,3<br>259,7 |               | 4,9                             |
| MAX.<br>MIN. | 383,5<br>0.6   | 49,0<br>3.0   | 58, 1<br>1, 5 | 707,7<br>0.9    | 378,1<br>0.6   | 569,3<br>0.2   | 21,1<br>0.4    | /5,/          | 850,9<br>3.0    | 259,7<br>1.0  | 41,6<br>0.8   | 26,3<br>0,8                     |
| IVITIN.      | 0,6            | 3,0           | 1,5           | 0,9             | 0,0            | 0,∠            | 0,4            | 1,1           | 3,0             | 1,0           | 0,0           | 0,0                             |

year sum year mean 16222,3 year max. 44,4 year min. 851,0 0,2

DEN/MESIAC: 3/9 DEN/MESIAC: 29/6

MSD YRSD SYRSD kg/s t t/km2 1,04 32671,0 7,72




### ROČNÉ SPRACOVANIE MÚTNOSTI PLAVENÍN $[mg.1]^4$ discharge

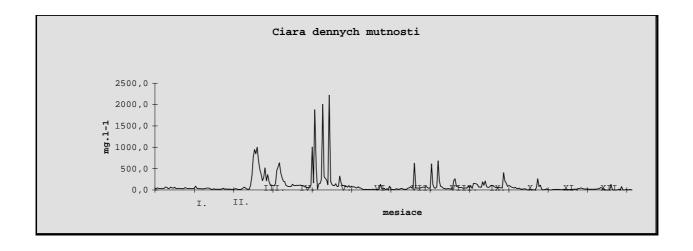
8930 ŽDAŇA HORNÁD 1995 4232,20 km² station : river : ROK : PLOCHA POVODIA : year

| month | I.     | II.    | III.    | IV.    | ٧.    | VI.     | VII.    | VIII.  | IX.    | Χ.    | XI.   | XII.  |
|-------|--------|--------|---------|--------|-------|---------|---------|--------|--------|-------|-------|-------|
| day   |        |        |         |        |       |         |         |        |        |       |       |       |
| 1.    | 16,0   | 3,6    | 3, 5    | 63,9   | 186,4 | 1,6     | 120,0   | 22,8   | 147,8  | 5,9   | 35, 3 | 4,4   |
| 2.    | 15,7   | 7,3    | 16,9    | 66,3   | 75,1  | 9,5     | 89, 1   | 27,9   | 119,2  | 4,5   | 35,6  | 5,7   |
| 3.    | 17,8   | 4,5    | 16,0    | 60,7   | 44,0  | 67,1    | 107,4   | 33,2   | 131,4  | 2,7   | 26,8  | 4,4   |
| 4.    | 16,1   | 12,9   | 118,5   | 66,8   | 30,6  | 55,0    | 174,2   | 29,1   | 133,0  | 5,3   | 24,7  | 4,7   |
| 5.    | 15,5   | 6,9    | 1 50, 1 | 62,0   | 28,3  | 25,8    | 1063, 9 | 24,5   | 235,7  | 3,6   | 33,8  | 2,9   |
| 6.    | 16,2   | 9,8    | 83, 9   | 65,2   | 27,8  | 6,8     | 241,7   | 25,3   | 480,0  | 2,0   | 20,3  | 6,2   |
| 7.    | 14,5   | 16,1   | 69, 1   | 58,2   | 28,3  | 10,2    | 136,4   | 22,2   | 226,7  | 1,4   | 20,7  | 3,0   |
| 8.    | 12,7   | 6,4    | 122,2   | 31,6   | 24,4  | 89,9    | 100,2   | 21,9   | 169,3  | 4,4   | 34,8  | 0,8   |
| 9.    | 12,8   | 10,7   | 43,9    | 18,5   | 27,8  | 9,3     | 80, 3   | 17,3   | 163,4  | 5,5   | 31,7  | 13,6  |
| 10.   | 20,6   | 3,9    | 49,3    | 15,4   | 19,9  | 1,8     | 70,2    | 20,9   | 147,2  | 0,9   | 21,3  | 4,6   |
| 11.   | 12,3   | 6,2    | 19,0    | 16,5   | 18,1  | 68,7    | 59, 3   | 15,9   | 148,3  | 3,2   | 29,2  | 3,1   |
| 12.   | 1 0, 1 | 1 5, 1 | 15,2    | 18,7   | 18,3  | 24 02,2 | 59, 5   | 106,3  | 150,0  | 0,4   | 32,0  | 2,6   |
| 13.   | 20,0   | 14,1   | 12, 9   | 4,7    | 4,4   | 1861,0  | 55, 3   | 107,4  | 124,4  | 17,1  | 18,0  | 26,3  |
| 14.   | 11,8   | 10,7   | 11,7    | 7,6    | 47,0  | 365,3   | 55, 7   | 121,6  | 129,4  | 21,7  | 26,4  | 33,5  |
| 15.   | 50,6   | 7,9    | 43,7    | 2,4    | 18,2  | 204,7   | 60,0    | 88,9   | 117,3  | 26,3  | 21,8  | 23,8  |
| 16.   | 25,6   | 8,6    | 13,9    | 8,3    | 29,2  | 160,1   | 60,3    | 98,3   | 121,3  | 26,1  | 20,0  | 22,3  |
| 17.   | 13,5   | 538,3  | 14, 1   | 13,5   | 7,1   | 1 08, 1 | 176,5   | 110,8  | 126,4  | 26,0  | 46,0  | 20,8  |
| 18.   | 15,0   | 873,1  | 128,6   | 18,4   | 1,6   | 283,7   | 101,5   | 127,1  | 120,7  | 26,2  | 77,4  | 22,5  |
| 19.   | 21,6   | 289,8  | 77, 7   | 22,1   | 7,5   | 218,1   | 86,9    | 106,2  | 109,6  | 30,7  | 68,9  | 21,7  |
| 20.   | 27,6   | 84,1   | 90,4    | 19,2   | 9,6   | 124,7   | 81,3    | 126,2  | 98,4   | 42,0  | 44,7  | 20,4  |
| 21.   | 29,5   | 47,4   | 95, 0   | 45,1   | 17,9  | 90,3    | 61,2    | 109,1  | 106,7  | 30,7  | 55,6  | 27,1  |
| 22.   | 73,4   | 24,6   | 82,3    | 30,9   | 18,5  | 60,7    | 56,7    | 114,9  | 106,5  | 32,3  | 55,2  | 23,7  |
| 23.   | 20,2   | 16,3   | 76, 1   | 21,6   | 14,4  | 67,6    | 50, 3   | 108,9  | 21,5   | 35,6  | 4,3   | 23,7  |
| 24.   | 19,5   | 19,0   | 77,6    | 28,8   | 55,4  | 57,4    | 32, 1   | 100,3  | 24,5   | 34,3  | 2,5   | 44,3  |
| 25.   | 24,6   | 25,4   | 78, 0   | 25,9   | 20,7  | 51,5    | 41,5    | 105,1  | 32,8   | 40,0  | 1,7   | 26,7  |
| 26.   | 17,6   | 24,9   | 86,2    | 15,2   | 19,6  | 54,5    | 30,4    | 814,8  | 23,6   | 33,0  | 2,5   | 39,6  |
| 27.   | 28,9   | 241,1  | 86, 1   | 90,1   | 10,7  | 149,2   | 20,0    | 159,9  | 13,0   | 32,6  | 3,1   | 31,9  |
| 28.   | 61,4   | 68,4   | 11,9    | 190,5  | 2,0   | 590,6   | 29,9    | 130,9  | 29,4   | 33,3  | 5,8   | 27,0  |
| 29.   | 44,0   |        | 68, 5   | 172,9  | 5,8   | 204,9   | 32,2    | 143,0  | 7,6    | 31,7  | 6,2   | 51,7  |
| 30.   | 22,9   |        | 87,6    | 79,5   | 9,7   | 148,9   | 34,7    | 698,0  | 7,4    | 32,3  | 3, 7  | 45,1  |
| 31.   | 20,7   |        | 70, 5   |        | 4,5   |         | 25,5    | 149,3  |        | 29,4  |       | 37,0  |
| sum   | 728,4  | 2397,1 | 1920, 5 | 1340,6 | 832,6 | 7549,0  | 3394,2  | 3887,9 | 3572,3 | 621,1 | 809,4 | 625,1 |
| mean  | 23,5   | 85,6   | 62,0    | 44,7   | 26,9  | 251,6   | 1 09, 5 | 125,4  | 119,1  | 20,0  | 27,0  | 20,2  |
| MAX.  | 73,4   | 873,1  | 1 50, 1 | 190,5  | 186,4 | 24 02,2 | 1063,9  | 814,8  | 480,0  | 42,0  | 77,4  | 51,7  |
| MIN.  | 1 0, 1 | 3,6    | 3, 5    | 2,4    | 1.6   | 1,6     | 20,0    | 15,9   | 7.4    | 0.4   | 1.7   | 0.8   |

DEŇ/MES./HOD.: DEŇ/MESIAC: 12 / VI 12 / X 27678 year max 2402,17 year sum year average 75,8 year min. 0,44

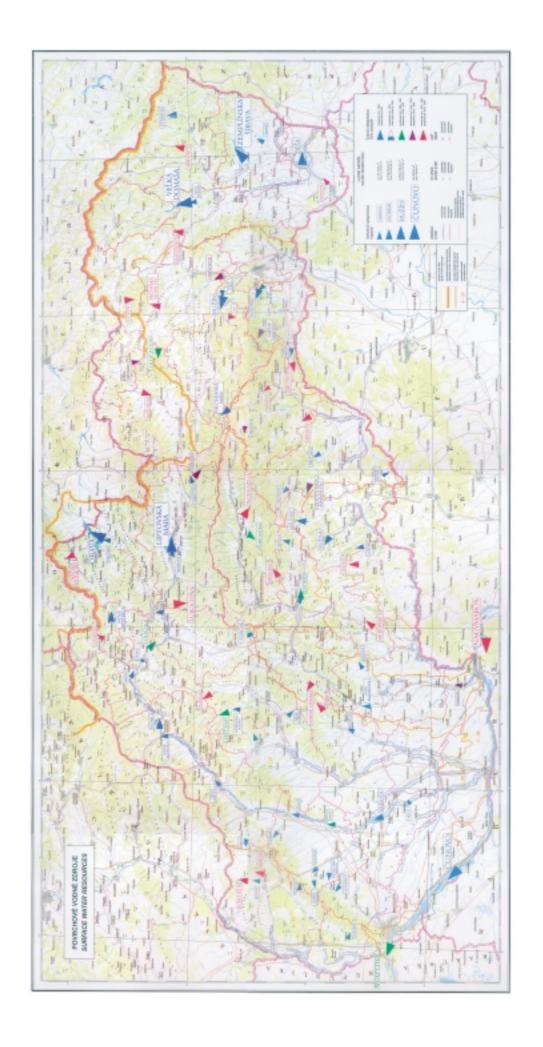
1,990 62756,6 14,8 MSD kg/s YRSD SYRSD t t/km2



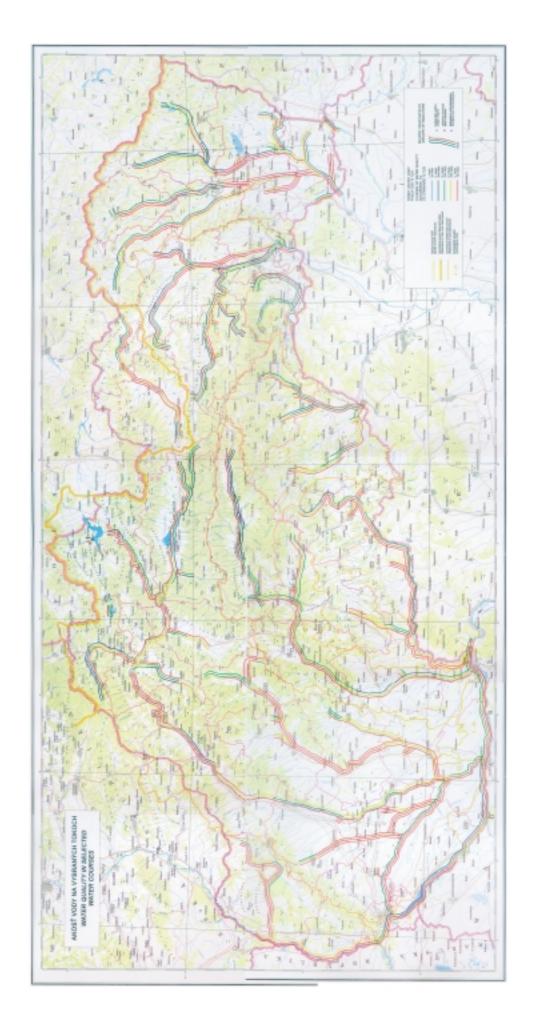

### ROČNÉ SPRACOVANIE PLAVENÍN [mg. l ·1] sediment discharge

8930 ŽDAŇA HORNÁD ROK: PLOCHA POVODIA : 1996 4232,2 # km² station : river : year

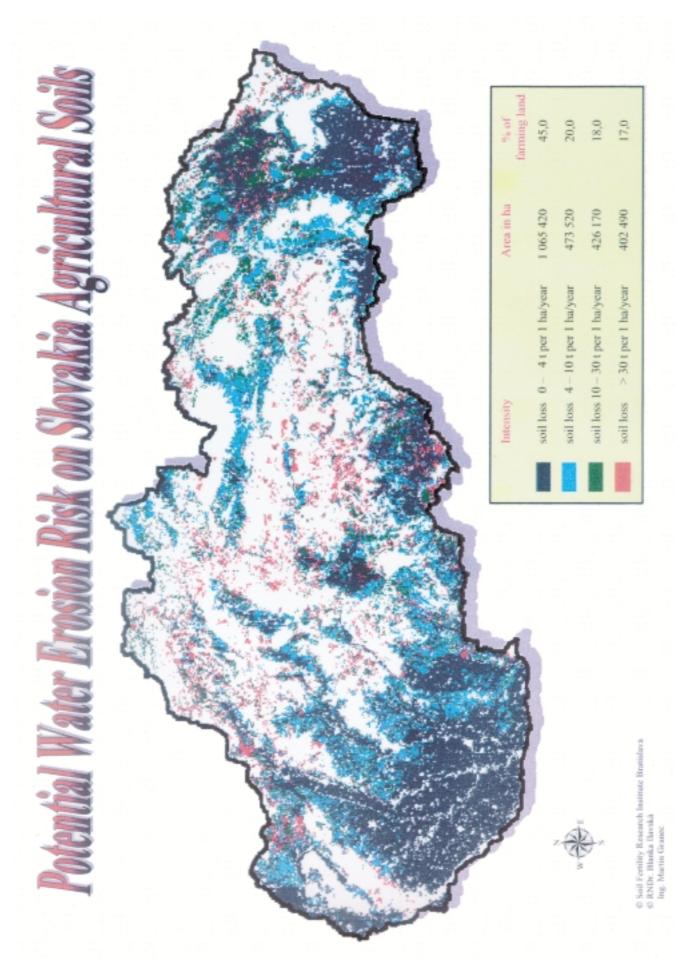
| month | 1.     | II.   | III.    | IV.    | V.      | VI.   | VII.   | VIII.  | IX.    | X.     | XI.   | XII.  |
|-------|--------|-------|---------|--------|---------|-------|--------|--------|--------|--------|-------|-------|
| day   |        |       |         |        |         |       |        |        |        |        |       |       |
| 1.    | 38,7   | 88,6  | 13,7    | 99,6   | 1004,0  | 66,3  | 11,1   | 135,8  | 152,9  | 59,6   | 13,2  | 15,4  |
| 2.    | 35,0   | 36,1  | 11,2    | 92,0   | 163,1   | 75,1  | 10,6   | 53,7   | 153,7  | 44,9   | 11,9  | 19,0  |
| 3.    | 47,5   | 31,9  | 25,9    | 156,3  | 1876,5  | 55,1  | 5,2    | 36,0   | 144,0  | 60,0   | 13,9  | 20, 1 |
| 4.    | 34,7   | 31,0  | 28,7    | 460,4  | 509,8   | 43,3  | 29,6   | 73,1   | 129,7  | 34,9   | 12,1  | 17, 1 |
| 5.    | 39,3   | 28,8  | 14,0    | 539,2  | 18,3    | 73,7  | 21,4   | 682,4  | 68,8   | 28,3   | 15,0  | 28,5  |
| 6.    | 34.8   | 25,0  | 13,0    | 636,8  | 143,2   | 47,1  | 13,7   | 201,9  | 70,8   | 44.7   | 11,5  | 27,6  |
| 7.    | 36,5   | 28.0  | 16,6    | 394.8  | 149.8   | 46.3  | 20.8   | 81,7   | 59.2   | 18,3   | 3.4   | 57,0  |
| 8.    | 37,2   | 32,3  | 17,4    | 286.2  | 243,1   | 26,2  | 36,9   | 71,6   | 190,9  | 18,6   | 9.9   | 45,5  |
| 9.    | 66,0   | 42,1  | 36,0    | 204,7  | 2004,2  | 6,4   | 26,5   | 40,9   | 107.2  | 24,1   | 13,7  | 17,7  |
| 10.   | 63,5   | 46,2  | 69,3    | 196,1  | 309,3   | 9,4   | 14,0   | 34,2   | 208,8  | 26,0   | 14,0  | 16,0  |
| 11.   | 31,5   | 45,7  | 44.0    | 105,0  | 275,3   | 14,6  | 15,1   | 24,2   | 77,0   | 20,7   | 9.0   | 1,0   |
| 12.   | 37,9   | 29,0  | 21,8    | 89.5   | 233,1   | 10.4  | 16,2   | 30,6   | 58.6   | 4.0    | 9.6   | 1,3   |
| 13.   | 66,4   | 14,5  | 20.3    | 77,5   | 118,5   | 10,9  | 44,0   | 30,2   | 62.3   | 0.3    | 9.2   | 0,6   |
| 14.   | 49.6   | 14.7  | 17.8    | 80.4   | 2217,8  | 13,4  | 48.4   | 27,0   | 91,9   | 11,8   | 13.3  | 2.4   |
| 15.   | 39,7   | 31,8  | 109,9   | 83,7   | 204,8   | 2,9   | 77,5   | 24,1   | 108,2  | 5,0    | 11,0  | 130,1 |
| 16.   | 62,1   | 15,0  | 348,6   | 136,6  | 126,0   | 20,3  | 46,3   | 36,9   | 96,4   | 5,7    | 13,9  | 6,6   |
| 17.   | 33,4   | 18.5  | 776,0   | 101,2  | 99.7    | 14,6  | 41,5   | 220,7  | 70,6   | 1,1    | 18,6  | 1,7   |
| 18.   | 33,3   | 13,5  | 948.2   | 99.5   | 101,6   | 2.5   | 627,3  | 262,6  | 57.3   | 3.7    | 17.8  | 1,0   |
| 19.   | 41,8   | 17,4  | 846,1   | 114,1  | 144,9   | 17,6  | 43.2   | 87.4   | 58,1   | 52.0   | 17,8  | 0,8   |
| 20.   | 33,2   | 16,1  | 1 001,5 | 103,0  | 78,7    | 4,5   | 44,0   | 71,6   | 60,4   | 263,8  | 32,4  | 3, 1  |
| 21.   | 31,4   | 21.7  | 676,1   | 111,2  | 87,1    | 9.8   | 43,1   | 61,2   | 53,1   | 79.6   | 35,2  | 20,1  |
| 22.   | 31,8   | 41.2  | 479.0   | 111,1  | 327,8   | 130,5 | 42,2   | 55,4   | 54,1   | 113,5  | 49,9  | 2,9   |
| 23.   | 30,2   | 18,3  | 370,7   | 105,6  | 163,7   | 34,5  | 52,3   | 55,4   | 45.5   | 25,1   | 37,8  | 80,6  |
| 24.   | 57.0   | 24,9  | 218,8   | 98.0   | 102,4   | 21,3  | 64.9   | 43.0   | 404.7  | 1,0    | 24,6  | 1,2   |
| 25.   | 42,9   | 18,2  | 287,4   | 79,9   | 104,4   | 39,2  | 66,6   | 44,6   | 211,1  | 6,9    | 21,3  | 0,6   |
| 26.   | 33,5   | 17,9  | 517,4   | 67,0   | 78,9    | 8,1   | 59.0   | 48,6   | 161,9  | 10,8   | 21,7  | 2,3   |
| 27.   | 37,4   | 22,7  | 212,7   | 56,0   | 81,2    | 30,5  | 79,0   | 42,6   | 83.4   | 28,6   | 22,3  | 14,8  |
| 28.   | 33,7   | 16,2  | 359.9   | 53,9   | 64,9    | 10,5  | 55.4   | 88.8   | 105,9  | 3,9    | 18,8  | 0,9   |
| 29.   | 31,0   | 15,6  | 200,6   | 48,9   | 105,3   | 91,5  | 37,8   | 53,1   | 88,5   | 4,1    | 15,7  | 11,5  |
| 30.   | 34.9   | ,-    | 118,7   | 111,4  | 61,1    | 22.6  | 54.0   | 88,6   | 68,7   | 0,1    | 16,9  | 7,5   |
| 31.   | 39,8   |       | 113,6   |        | 90,3    |       | 612,4  | 38,8   |        | 4.0    |       | 1,7   |
| sum   | 1265,4 | 802,8 | 7934.9  | 4899,4 | 11288,7 | 958,7 | 2359.8 | 2846,8 | 3303,2 | 1005,0 | 535,2 | 556.3 |
| mean  | 40.8   | 27,7  | 256,0   | 163,3  | 364,2   | 32,0  | 76,1   | 91,8   | 110,1  | 32,4   | 17,8  | 17,9  |
| MAX.  | 66,4   | 88,6  | 1001,5  | 636,8  | 2217,8  | 130,5 | 627,3  | 682,4  | 404.7  | 263,8  | 49,9  | 130,1 |
| MIN.  | 30.2   | 13,5  | 11.2    | 48.9   | 18,3    | 2.5   | 5,2    | 24,1   | 45,5   | 0.1    | 3.4   | 0,6   |

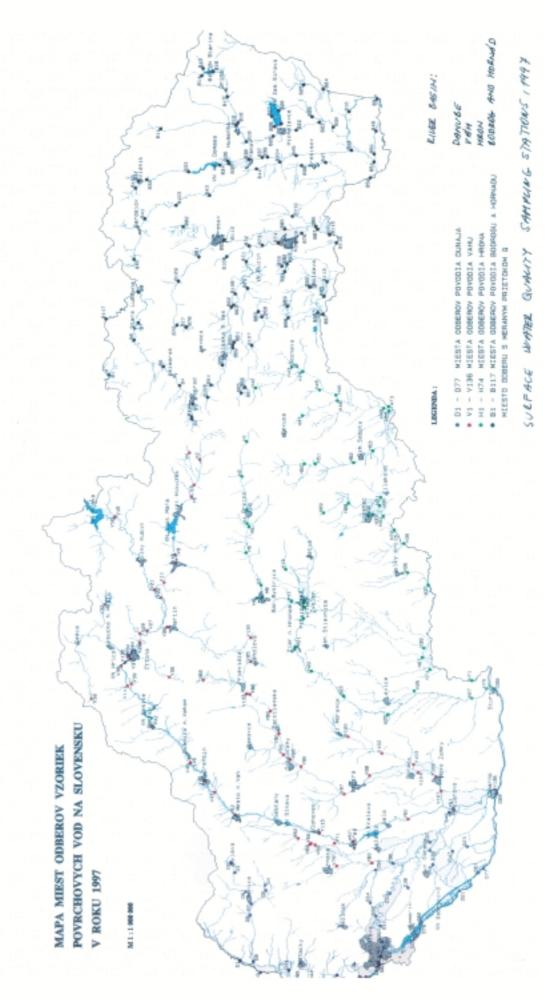

year max year min. DEŇ/MESIAC: 14/05 DEŇ/MESIAC: 30/10 year sum 37756 2217,8 year average 103,2 0,1

MSD 5,330 kg/s YRSD SYRSD 168445,0 39,8 t t/km2

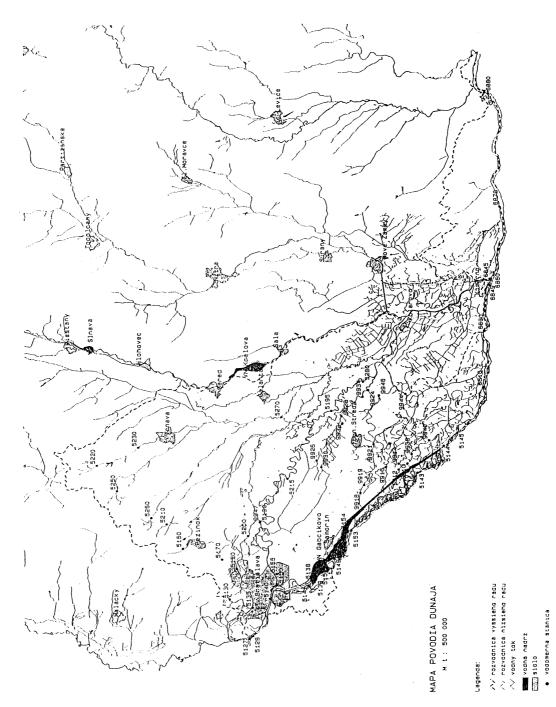



# Maps

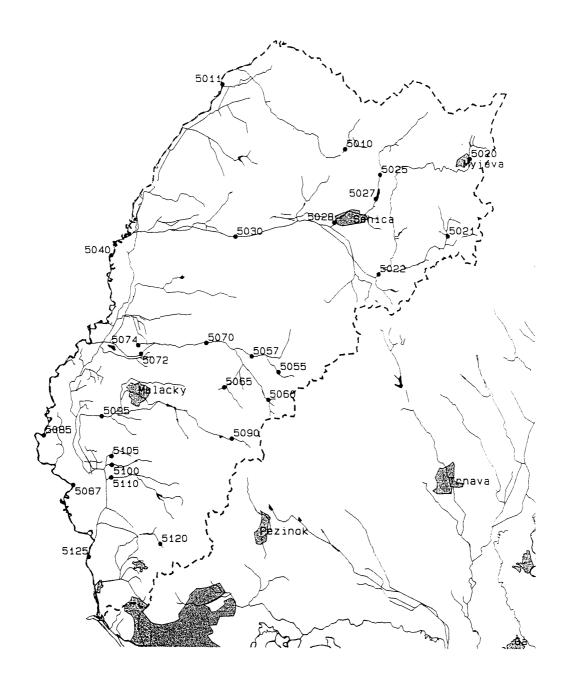

Surface water resources




Significant pollution sources and main profiles of the State Water Management Balance




Surface water quality sampling stations in year 1997



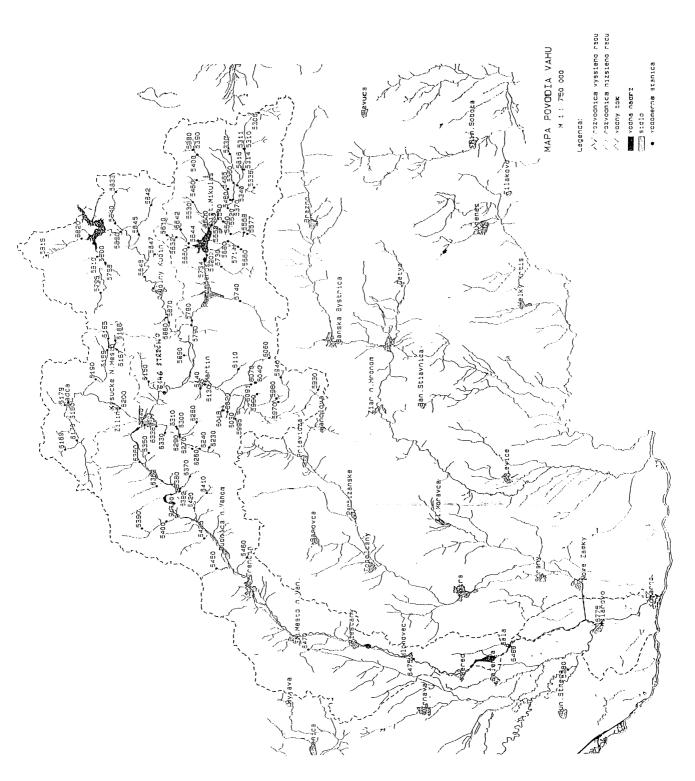



Gauging stations in Slovak part of Danube River basin (1997)

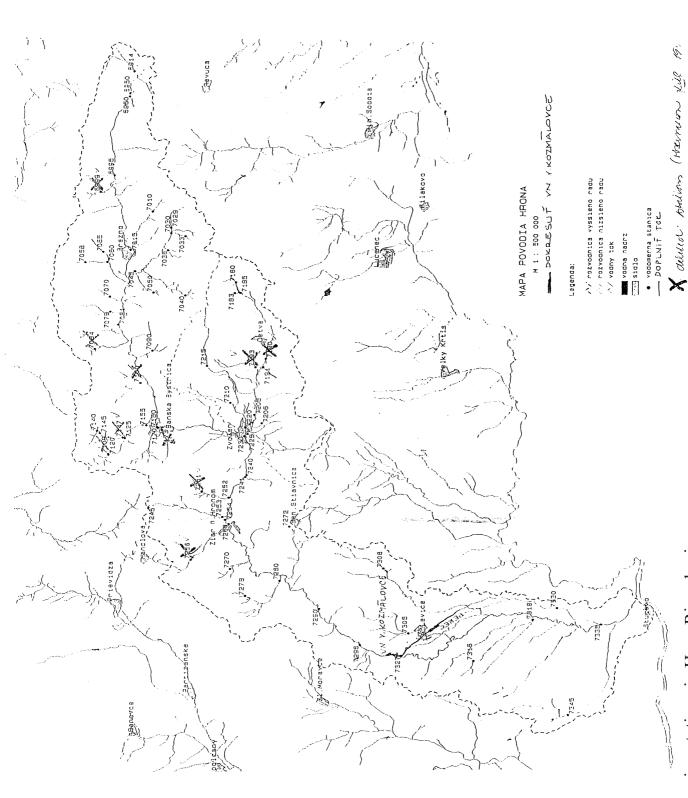


Gauging Stations in Slovak part of Danube River basin

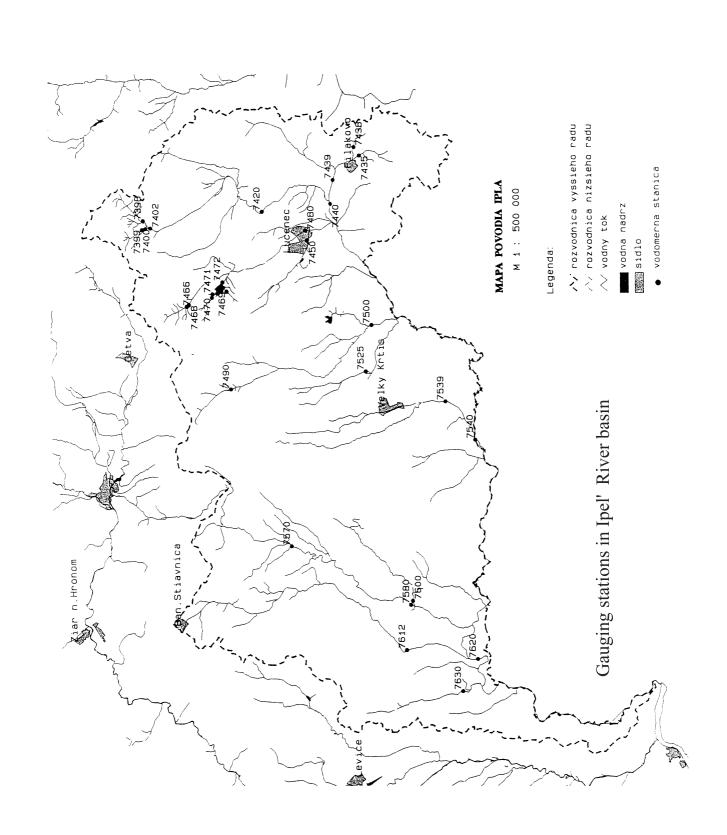


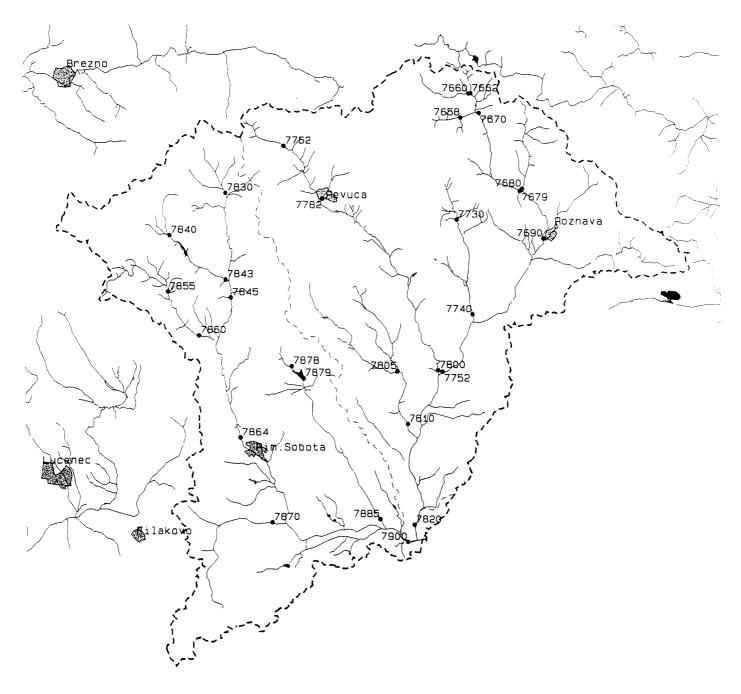

### MAPA POVODIA MORAVY

M 1 : 500 000


### Legenda:

- // rozvodnica vyssieho radu
- 🚈 rozvodnica nizsieho radu
- imes vodny tak
- vodna nadrz
- sidlo
  - vodomerna stanica


Gauging stations in Morava River basin




Gauging stations in Vah River basin

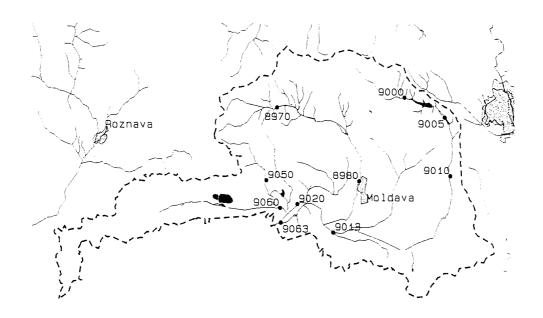


Gauging stations in Hron River basin





### MAPA POVODIA SLANEJ


M 1 : 500 000

### Legenda:

- 깠 rozvodnica vyssieho radu
- 🗥 rozvodnica nizsieho radu
- ✓ vodny tok
- vodna nadrz

### sidlo

• vodomerna stanica

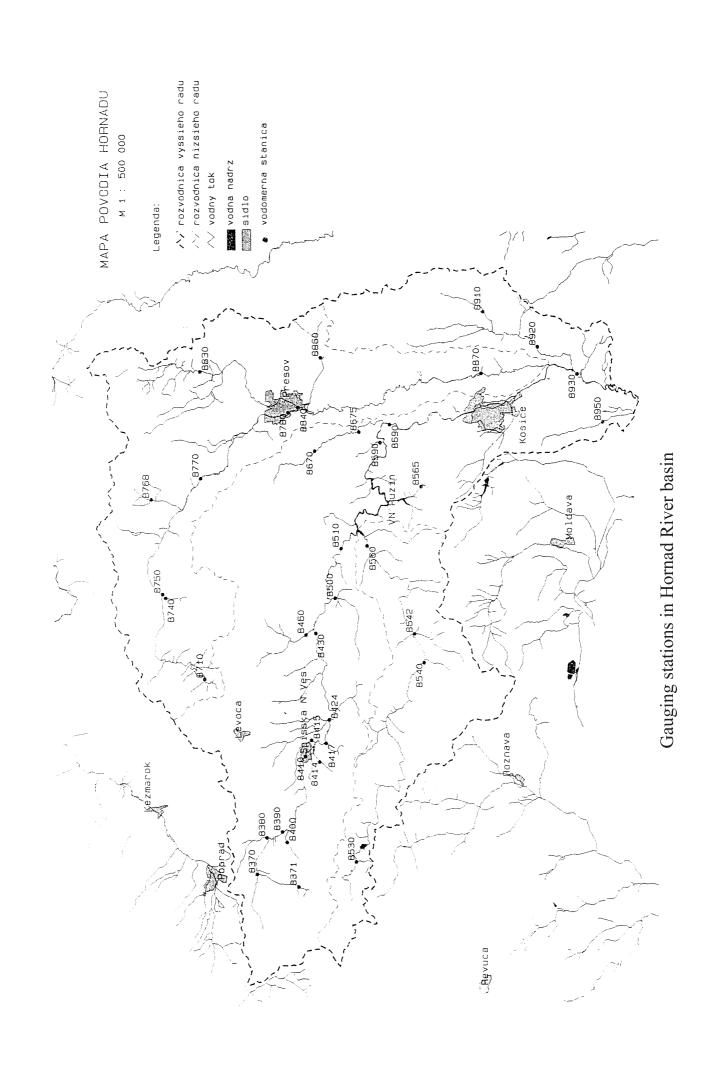


### MAPA POVODIA BODVY

M 1 : 500 000

### Legenda:

/\/ rozvodnica vyssieho radu


/// rozvodnica nizsieho radu ∨ vodny tak

vodna nadrz

sidlo

• vodomerna stanica

Gauging stations in Bodva River basin



#### **Bibliography**

- Annual Reports for Hydrology Slovak Hydrometeorological Institute, Bratislava, yearly
- Danube Regional Pesticide Study
   First Danube Applied Research Conference of the EPDRB, Sinaia, Sept. 1997
- 3. Hydro-Ecological Plans Slovak Hydrometeorological Institute, Bratislava issued in different time for individual river basins
- Master Plans
   Ministry of Environment of the SR and Ministry of Soil Management, of the SR, Bratislava, 1995
- Nutrient Balances for Danube Countries
   First Danube Applied Research Conference of the EPDRB, Sinaia, Sept. 1997
- National Action Plan for Danube River Basin Ministry of Environment of the SR, Bratislava, 1997
- National Review of Slovakia
   Ministry of Environment of the SR, Bratislava, 1994
- 8. Strategic Action Plan for the Danube River Basin Danube PCU, Vienna, 1994
- 9. Strategic Action Plan Implementation Ministry of Environment of the SR, Bratislava, 1996
- 10. Study of Removal of Phosphate from Detergents in Countries in the Danube Basin First Danube Applied Research conference of the EPDRB, Sinaia, Sept. 1996
- 11. Surface Water Quality in the Slovak Republic Slovak Hydrometeorological Institute, Bratislava, yearly

# Part D

**Water Environmental Engineering** 

### **Table of Contents**

| 1. | Summ | ary     | •••••••••••••••••••••••••••••••••••••••                                           | 223 |
|----|------|---------|-----------------------------------------------------------------------------------|-----|
|    | 1.1. |         | al Targets and Instruments for Water Pollution                                    | 223 |
|    | 1.2. | Measur  | res for Reduction of Water Pollution                                              | 224 |
|    | 1.3. |         | ed Regional and Transboundary Effects of Actual nnned Measures                    | 225 |
| 2. |      | _       | ets and Instruments for Reduction of Water                                        | 227 |
|    | 2.1. |         | State of Foreseeable Trends in Water Management espect to Water Pollution Control | 227 |
|    | 2.2. | Nationa | al Targets for Water Pollution Reduction                                          | 239 |
|    | 2.3. | Technic | cal Regulations and Guidelines                                                    | 243 |
|    | 2.4. | _       | ed Impacts of EU-Directives to Water Pollution  l                                 | 252 |
|    | 2.5. | Law an  | d Practice on Water Pollution Control                                             | 254 |
| 3. |      |         | anned Projects and Policy Measures for<br>Water Pollution                         | 255 |
|    | 3.1. | Reduct  | ion of Water Pollution from Municipalities                                        | 255 |
|    | 3.2. | Reduct  | ion of Water Pollution from Agriculture                                           | 263 |
|    |      | 3.2.1.  | Prevention of Pollution from Agricultural Point<br>Sources                        | 264 |
|    |      | 3.2.2.  | Prevention of Pollution from Agricultural<br>Non-point Sources                    | 265 |
|    |      | 3.2.3.  | Reduction of Water Pollution through Improved Land Management                     | 269 |
|    | 3.3. | Reduct  | ion of Water Pollution from Industries                                            | 275 |
|    | 3.4. | Reduct  | ion of Water Pollution from Dump Sited                                            | 283 |
|    | 3.5. | Special | Policy Measures                                                                   | 288 |

| 4. | -      | ted Effects of Current and Planned Projects and Policy res | 291 |
|----|--------|------------------------------------------------------------|-----|
|    | 4.1.   | Reduction of Nutrient Emissions                            | 291 |
|    | 4.2.   | Hazardous Substances                                       | 293 |
|    | 4.3.   | Microbiological Contamination                              | 294 |
|    | 4.4.   | Adverse Environmental Effects                              | 294 |
| 5. | Cost E | stimation of Programmes and Projects                       | 297 |
| 6. | Planni | ng and Implementing Capacities                             | 305 |
|    | 6.1.   | Planning Capacities                                        | 305 |
|    | 6.2.   | Implementing Capacities                                    | 305 |
|    |        | 6.2.1. Implementing Capacities for Structural Projects     | 305 |
|    |        | 6.2.2. Implementing Capacities for Non-structural Projects | 306 |

Annexes

### **List of Tables**

| Table 2.1.         | Development of wastewater discharges and WWTPs running by water and sewage works                                                                          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.2.         | Number of municipalities applied for privatization of waterworks                                                                                          |
| Table 2.3.         | Effluent Standards in Gov. Decree No.242/93                                                                                                               |
| Table 2.4.         | Selected ambient water quality standards in Gov. Decree No.242/1993 for municipal effluents                                                               |
| Table 2.5.         | List of Slovak Technical Standards (STN) in water management                                                                                              |
| Table 2.6.         | Limits for heavy metals                                                                                                                                   |
| Table 2.7.         | Max. limits of contaminants in sewage sludge applied as fertilizers [kg/ha]                                                                               |
| Table 3.1.         | Selected municipal hot-spots                                                                                                                              |
| Table 3.2.         | The planned WWTP upgrading, expansion or construction of new ones (National Action Plan, 1997)                                                            |
| Table 3.3.         | Summary of recommended projects for municipal hot spots                                                                                                   |
| Table 3.4.         | The basic agricultural characteristics of the river basin                                                                                                 |
| Table 3.5.         | Average yield of selected agricultural products within period 1990 to 1996                                                                                |
| Table 3.6.         | The development of fortress consumption in Slovakia                                                                                                       |
| Table 3.7.         | Estimated nutrient inputs from agriculture in Slovakia, 1992                                                                                              |
| Table 3.8.         | Water erosion risk of agricultural soils in Slovakia                                                                                                      |
| Table 3.9.         | Input and output nutrients into surface waters in Slovakia, in 1992 (adopted according to the Final Report Nutrient Balances for Danube Countries (1997)) |
| <b>Table 3.10.</b> | Nutrient emission into surface water from Slovak part of Danube River Basin                                                                               |
| <b>Table 3.11.</b> | Measures of the Ministry of Economy of SR in water pollution control field                                                                                |
| <b>Table 3.12.</b> | Selected industrial hot-spots                                                                                                                             |
| <b>Table 3.13.</b> | Summary of recommended projects for industrial hot spots                                                                                                  |
| <b>Table 3.14.</b> | Selected landfills with the possible impact on groundwater or surface water                                                                               |
| <b>Table 3.15.</b> | Selected hot spots of landfills and dumps                                                                                                                 |
| <b>Table 3.16.</b> | Summary of recommended projects for landfill hot spots                                                                                                    |
| Table 4.1.         | Estimated emission factors for particular treatment lines                                                                                                 |
| <b>Table 4.2.</b>  | Summary of the reduction of nutrient emissions if the projects defined in Project Files would implement                                                   |
| Table 5.1.         | Summary of the cost estimation of the proposed programmes and projects in municipal sector                                                                |

- **Table 5.2.** Summary of the cost estimation of the proposed programmes and projects in industrial sector
- **Table 5.3.** Summary of the cost estimation of the proposed programmes and projects for landfills
- **Table 5.4.** Summary of the cost estimation of the proposed programmes for non-structural projects
- **Table 5.5.** Summary of the cost estimation of the proposed programmes and projects with the significant impact on transboundary pollution

### **List of Figures**

Figure 2.1. Distribution of population and communities in Slovakia and their effect on sewerage
 Figure 2.2. Proportion of inhabitants connected to public sewerage in 1996 (Green Report, 1997)
 Figure 2.3. The present and expected production of sludge, discharge of treated wastewater and number of wastewater treatment plants
 Figure 2.4. Present situation in sludge dewatering for treatment plants with P.E. 30 000 and more (75 % of total sludge production in municipal WWTPs in Slovakia)
 Figure 2.5. Present situation in sludge disposal in Slovakia

## List of Abbreviations on Water Environmental Engineering

**AOX** halogens compounds

BOD<sub>5</sub> biochemical oxygen demand (5 days)CEN European Commission for Standardization

**COD** chemical oxygen demand

**DO** dissolved oxygen

**DS** dry solids

**ECU** European Currency Unit; 1 ECU = 38,3 Sk

ES European Standards
EU European Union

GDP Gross Domestic Product
GNP Gross National Product

**GIS** geographic information systems

**ISO** international standardization organization

**kg/kg/d** kilograms per kilograms per day

l/cap/d liters per capita per day

l/s liters per second

m³/s cubic meters per second mg/l milligrams per liter

MNC millions in national currency

**MUS**\$ millions in US\$

**NAP** Slovak National Action Plan for the Danube River Basin

**ORP** oxidation-reduction potential

P.E. population equivalent  $Q_{24}$  average flow rate  $Q_{24}$  1 US\$ = 34,5 Sk

SAP Strategic Action Plan for the Danube River Basin Sk Slovak crown: 34,5 Sk = 1 US\$, 38,3 Sk = 1 ECU

**SS** suspended solids

STN Slovak Technical Standards

t/year tons per year

**TIN** total inorganic nitrogen

TN total nitrogen
TP total phosphorus
UN United Nations

**WWTP** wastewater treatment plant

## **Glossary** on Water Environmental Engineering

**Activated sludge** apart of the living biomass, the suspended solids contain inorganic

as well as organic particles. Some of the organic particles can be degraded by subjecting them to hydrolysis whereas others are inert

Activated sludge process a process if the mass of activated sludge is kept moving in water by

stirring or aeration. The amount of sludge is regulated through recycle of the suspended solids and by removing so called excess

sludge.

**Agrochemical** all chemicals used in agriculture (pesticides, herbicides, fertilizers,

etc.)

**Anaerobic process** processes where neither oxygen nor nitrate is present

**Anoxic** lacking oxygen. A part of reactor usually uses for denitrification.

**Best Available Techniques** 

(BAT) latest stage of development of processes emphasizing the use of

non-waste technology, of facilities or the methods of operation, which indicate the practical suitability of a particular measure for

limiting discharges, emissions and waste.

**Best Environmental Practice** 

(BEP) application of the most appropriate combination of sectoral

environmental control strategies and measures. It is applied to non-

point sources of pollution.

**Biodiversity** the sum total of different species of flora and fauna in a given

region, area or habitat

**Biochemical Oxygen Demand** 

(**BOD**) a measure of the quantity of oxygen used in the biochemical

oxidation of carbonaceous and nitrogenous compounds a specified time, at a specified temperature and under specified conditions.

The standard measurement is made for five days at 20°C and is termed

BOD<sub>5</sub>.

**Danube Environmental** 

**Program** a programme of co-operation established by Danubian countries,

bilateral and multilateral donors, international organizations and

NGOs.

**Denitrification** the process whereby nitrate is successively reduced to nitrogen,

facilitated by bacteria in the presence of a carbon source and other

nutrients

**Discharge** the flow rate of a fluid at a given instant expressed as volume per

unit of time

**Ecological Agriculture** see Organic Farming

**Ecosystem** a natural unit consisting of living and non-living parts interacting

with each other, formed by the organisms of a natural community

and their environment

**Effluent standard** see emission limit

**Emission** release of substances from a source

**Emission limit** a numerical limit set on the emission of a substance from a source

of pollution

**End of pipe limit** see emission limit

**Environmental Water** 

Quality Standard (ambient) the requirements, which must be fulfilled by a given environment

or part thereof (e.g. ground water, surface water, etc.)

**Eutrophication** the process of over-fertilization of a body of water by nutrients

producing more organic matter than the self-purification processes

can overcome

**GDP** Gross Domestic Product - a measure of the total flow of goods and

services produced by the residents within the country over a

specified period, normally a year

**GNP** Gross National Product - GDP + the income accruing to domestic

residents from investment abroad less income earned in the

domestic market accruing to foreigners abroad

**Groundwater** all subsurface water

**Hazardous Substances** substances which have adverse impacts on living organisms, e.g.

toxic, carcinogenic, mutagenic, teratogenic, harmful for the

environment.

**Hot spot** a local land area, stretch of surface water or specific aquifer, which

is subject to excessive pollution and which requires specific action

to prevent or reduce the degradation caused

**Hydrocarbons** petroleum products

**Chemical Oxygen Demand** 

(**COD**) a measure of the quantity of oxygen used in the chemical oxidation

of compounds in a specified time, at a specified temperature and

under specified conditions

**Immission** the concentration of pollutants in a surface water (see

environmental quality standards)

**Integrated water** 

**management** a participatory planning, decision making and implementation

process that takes into account the specific water quality and

quantity requirements of all users and uses

**Karstic water** groundwater found in the heavily fissured exposed limestone rock

formation very common in the Danube River basin

**Landfill** disposal of solid waste materials at land based sites

**Leachate** liquid which has percolated through a substrate (e.g. soil, ore,

waste dump, etc.)

**Load** the quantity of a substance or material carried or transported by a

river (and its associated hydrological processes)

Microbiological

**contamination** pollution with microorganisms - such as viruses, bacteria,

protozoa, etc. - that might cause diseases in humans or animals

**Micro-pollutants** organic or inorganic substances such as PCB, dioxin, cadmium,

mercury, etc. that will create negative health impacts or adverse ecological changes even when present in low concentrations

Nitrate NO<sub>3</sub>

**Nutrient** a substance, element or compound necessary for the growth and

development of plants and animals

**Organic farming** agriculture production system where each farm is considered as a

whole where all components - soil minerals, organic matter, microorganisms, insects, plants, animals and human - interact without

the use of synthetic fertilizers

Point Source, non-point

source a localized discharge of pollutants (e.g. from an industrial plant);

diffuse pollution in a catchment area (agricultural run-off)

**Polluter Pays Principle** principle that the polluter should carry the costs of the measures

required to diminish or clean up pollution

**Pollution** the discharge, directly or indirectly, of compounds from sources

into the environment in such quantity as to pose risk to human health, living resources or to aquatic ecosystems, damage to amenities or interference with other legitimate uses of water

Population Equivalent (P.E.) used as a measure of water pollution load based on figures of an

average 'pollution production' of one person in one day. In Slovakia used figure is  $BOD_5 = 60$  g per capita per day.

**Primary treatment** a one-step treatment process of urban wastewater by a physical or

chemical process involving settlement of suspended solids

**Project File** a questionnaire about the ongoing, planned programme or project

expected to reduce the Danube River pollution

**Rehabilitation** improvement of a visual nature to a natural resource or, putting

back infrastructure into good condition or working order

**Restoration** return of an ecosystem to a close approximation of its condition

prior to disturbance

**Secondary treatment** treatment of wastewater by a process generally involving

biological treatment with the secondary settlement or other process

**Sludge age** the mean cell residence time of sludge (biomass) in the WWTP

**Stakeholder** a person who holds a sum of money deposited by the buyer in a

transfer of ownership of land or a building; the deposit will be paid to the seller only if the buyer agrees, and vice versa. Or, a person, organization or subgroup of an organization that have a common

interest in a project or activity

**Sustainable development** the use of resources in such a way that the possible needs of future

generations are not seriously affected

**Tributary** a river which ultimately flows into the river

Water Quality criteria a scientific requirement on which a decision or judgement may be

based concerning the suitability of water quality to support a

designated use

Water Quality Standard see Environmental quality standard

### 1. Summary

#### 1.1. National Targets and Instruments for Water Pollution Reduction

Since 1990, political, economic and social changes in Slovakia have influenced almost every element of socio-economic life, including water management. The ongoing economic transition has also affected the generation and quality of wastewater as well as the receiving water.

The sewerage is constantly behind the development of water supply systems in Slovakia. Only 12,96 % of settlements have complete sewer systems, which is about 53,03 % or 2.850.000 inhabitants of the total Slovak population. Since the majority of settlements in Slovakia are smaller towns or villages, the typical sewer system is the separate, only larger towns are served by combined sewer systems.

The level of wastewater treatment also lags behind western standards. Only about 90% of all collected wastewater is treated in 363 municipal wastewater treatment plants (WWTPs). The most WWTPs consist of mechanical and biological treatment. It is known that an amount of conveyed wastewater to WWTPs is bypassed to reduce their overloading especially during wet period. In Slovakia the smaller plants prevail. Due to the demographic situation of Slovak population and due to the more realistic local investment possibilities it is expected, that the small plants will be those most frequently designed and constructed also in the near future. Upgrading and expansion of existing WWTPs is typical for towns and cities beyond 20.000 inhabitants.

Sludge treatment and disposal is tremendous problem in Slovakia. In 1997 municipal wastewater treatment plants produced 89,8.10<sup>3</sup> tons of dry solids (DS) of sewage sludge for disposal per year. The current complex situation and the future production of sludge are affected by two dominant factors: the changes in effluent standards and newer tighter sludge disposal regulations. The actual quality of the sludge as well as sewage sludge disposal regulations have resulted in a significant reduction of its agricultural utilization.

The transformation of the water industry is based on Government Resolution N°. 621/1995 and Acts of the National Council SR N°s. 481/1992 Dig. and 192/1995 Dig., and to accelerate this process the Slovak Government approved Resolution No.657/1996. Resolution No.6327/1997 set the timetable of the transformation. In 1998 607 municipalities applied for the transfer of waterworks assets. Water and sewage works have already prepared five privatized projects and a few of them are under implementation process, now.

The national targets for Water Pollution Reduction for the Danube River Basin have already been set up in the Slovak National Action Plan (NAP). NAP focuses on these three problems, which are: high load of N and P nutrients and eutrophication; changes in the regimes of the sediments flow and transport; contamination with harmful substances, including the oil substances. According to NAP the following measures will be necessary to provide in Slovakia: revitalization of the streams and wetlands; management of their development, to maximize their accumulation effects for the N and P nutrients, and at the same time to maintain their natural health state and biodiversity.

In Slovakia the priority of present goals is to reduce municipal emissions, which often contributes dominantly on the total load of the catchment. The point sources are relatively easier to reduce because of easy defined and known polluter subject. On the other hand, the reduction of diffuse pollution needs comprehensive measures in legislation, cross-sectional co-ordination, in the setting of priorities of national economy and environmental policy, etc. In addition it is very complex to introduce all of these extensive measures during socio-economic transformation of post-communist country. Due to these mentioned problems as well as the temporally sharp industrial fertilizers decreasing consumption in agriculture (only about 49 kg/hec of agriculture soil/year in 1996) the technical measures leading to the reduction of diffuse pollution are difficult to accelerate.

Water quality management in Slovakia is based on the Water Act and government directives, further supported by technical standards. The present Water Act is based on the former Czechoslovak Water Act No.138 from 1973 and is currently being revised. The Government Decree No.242/1993 is a legislative norm for the effluent standards. It was prepared with the aim to correspond with European legislation, especially with Directive 91/271/EEC. It represents a fusion of ambient water quality standards and (end-of-pipe) effluent standards common in European countries. An important feature of this Decree is the step-wise approach of setting effluent standards: till December 31, 2004 and more stringent after January 1, 2005. In Slovakia the majority of watercourses are very sensitive due to their low dilution rate.

In spite of this fact that the SR is only affiliated member of the European Commission for Standardization (CEN) there is a tendency to take over the European Standards (ES) and incorporate them into Slovak Technical Standards (STN) in the field of water and wastewater management. The most important Standard will be the STN 73 6707 Municipal Wastewater Treatment Plants from 1983 in the field of water pollution control.

It is expected that the significant cost implications on water management in SR will have the implementation of the EU Urban Wastewater Directive 91/271/EEC. The big cost implications of the Directive concerns with the requirements to ensure the construction of sewerage for the settlements with and more than 15.000 inhabitants till 31.12.2000 and after 31.12.2005 also for the settlements from 2.000 to 15.000 inhabitants. The most treatment plants, due to the fact that the Slovak territory is predominately sensitive, will have to be designed with nitrogen removal and larger ones with biological or even biological-chemical nutrient removal. All these treatment lines require the higher volumes of tanks, the higher level of automation and control and more sophisticate trained operators therefore not only the investment costs, but also operation and maintenance costs will dramatically increase.

#### 1.2. Measures for Reduction of Water Pollution

The list of hot-spots have been prepared with the close co-operation with the *Water Quality National Expert* taking into consideration the list of hot-spots presented in Strategic Action Plan and National Action Plan for the Danube Basin of Slovak Republic. The projects and programmes identified actions for monitoring water pollution and water quality, wastewater treatment, protecting water resources, preventing environmental degradation, etc. The prepared list of hot spots supported by *Project Files* indicates the actual problems in the fields of municipal wastewater and industrial wastewater including partially the problems of waste disposal (landfills and lagoons).

The list of municipal hot spots using multi-criteria analysis are as follows: high priority: WWTP Košice, WWTP Nitra, medium priority: WWTP Malacky, WWTP Banská Bystrica, WWTP Michalovce, WWTP Svidník, Sewerage Trenčín right side, WWTP Humenné, low priority: WWTP Ružomberok, WWTP Topolčany, WWTP Liptovský Mikuláš, WWTP Ilava, WWTP Rožňava. All these projects are structural. WWTP Košice and WWTP Malacky have been identified as the most important municipal sources of transboundary pollution.

The group is presented mainly from the existing WWTP or WWTP under construction, upgrading and/or expansion. Their construction is often postponed for several years already, due to the lack of financial funds. Most of these plants are serving for larger towns and cities. The efficiency of the plants is designed according to Gov. Decree 242/93. This fact has the great impact on the of treatment line applied and thus on the reduction of point sources of nutrient discharges. Therefore most of them will be operated with nitrification and denitrification and the limited number with biological phosphorus removal. The small treatment plants are usually design as an extended aeration.

In the same way the list of the following industrial hot spots have been again prepared: high priority - NCHZ Nováky, Bukocel Hencovce; medium priority - PCHZ Žilina, Istrochem Bratislava, SH Senica nad Myjavou, Chemko Strážske; low priority - AssiDomän Štúrovo, Bučina Zvolen, Biotika Slovenská Lupča, Koželužne Bošany.

The project files document that there are two types of structural projects: the aims of the first group projects plan to implement the measures in the processes of industrial production of company (e.g. the reduction of water consumption, energy or chemicals savings, etc.), the second ones set the measures reducing the discharge pollution to surface receiving water or groundwater. This group contains the upgrading of existing treatment plant (a new aeration systems, expansion of biological treatment step, re-arrange of activation tanks to nitrification-denitrification, etc.), improving the state of existing sewer systems, connecting sewer systems to treatment plants or construction of basins to control the spills of chemicals to groundwater, etc.

The obtained results and the summary of recommended projects for landfill hot-spots are presented as follows: Krompachy - municipal and industrial landfill, Power plant Nováky-Kostoľany - final lagoon Chalmová, VSŽ Košice - reconstruction of wet waste tip, VSŽ Košice - reconstruction of dry waste tip and waste liquidation, Bukocel Hencovce - reconstruction of industrial landfill, Chemko Strážske - industrial landfill.

Most of these projects cover the protection of groundwater against the contamination with heavy metals and/or micro pollutants extracted from the site of landfill. The reconstruction of the landfills and/or their rehabilitation are also the typical measures included in the *Project Files*.

Only a small number of non-structural Project Files were obtained. Most of them are based on research and institutional programmes.

Generally more than 40 Project Files were gained and the most of them were analyzed and utilized for the Project Files report.

## 1.3. Expected Regional and Transboundary Effects of Actual and Planned Measures

According to the effluent standards introduced by Gov. Decree N<sup>o</sup>.242/1993 in many cases "hitech" treatment systems will have to become a standard technology in Slovakia. Because of the high loading of the biological step in majority of the larger treatment plants nutrient removal processes are ineffective at present.

The most of the existing municipal wastewater treatment plant are mechanical-biological. They are able to remove only easily biodegradable substrates (carbon substances). The present efficiency of nutrient removal in term of TN is about 25 % and TP about 35 %.

This fact reflects the designed treatment line in the most of Project Files obtained. Practically all the projects assume the treatment line with pre-denitrification and nitrification and a part of them includes also the biological phosphorus removal. The upgrading of the existing treatment plants has to consider with the nutrient removal to be able to reach the requirements of Gov. Decree 242/93. It was estimated, if the projects would be implemented, that the reduction of BOD<sub>5</sub> could be improved up to 35 % more, SS to 30 % and N-NH<sub>4</sub><sup>+</sup> about 10-15 % more. The reduction of TN and TP is very difficult to estimate, but if we assume that nowadays the efficiency of TN removal is about 25 % and TP is about 37 % we may assume that after pre-denitrification and nitrification the removal rate of treatment plant will be 60 - 70 % and in case of biological phosphorus removal (luxury-uptake) the concentration of TP could reduce to 20 - 25 % of total. If we assume that the total emission in terms of TN and TP discharged from the Slovakia territory drained to the Danube River Basin is about 59 KtN/year and 5 KtP/year, respectively, one may assume that after the implementation of the projects (including the municipal, industrial point sources and wetland

project) the total impact of nutrients will be reduced to 55.374 tN/year and 4755 tP/year. The more significant impact on the reduction of nutrients can be pointed out if we only look at the reduction of point-source load in Slovakia. In this case the nutrient load would reduce from 20 ktN/year to 16.374 tN/year (reduction about 20 %) and 3 ktP/year to 2755 tP/year (reduction about 10 %). It is clear that the more significant reduction of nutrient pollution could be obtained if the problem of diffuse pollution was solved in Slovakia. Due to the fact that practically the total mass of pollution discharge to receiving water is flowing to Hungary the indicated reduction of nutrients will have the significant impact on transboundary effect, as well.

As far as the industrial pollution is concerned the reduction of nutrients could be similarly estimated as for municipal. However the significant impact on the aquatic environment would have the reduction of micro-pollutants, and hazardous substances such as caprolactam, methymethaclylate, hydroxylamin, ammonium, phenols, oil material, etc. From this point of view the important project (NCHZ Nováky) is the advanced treatment of the discharged wastewater contaminated by chlorinated hydrocarbons. The expected reduction is from 300 to 500 t/year. The present situation of many industrial sewer systems could be improved by their reconstruction as they are often defective and not only infiltration but also exfiltration should be considered.

The five industrial plants have the significant impacts on the transboundary pollution. There are Istrochem Bratislava, Slovhodváb Senica, Chemko Strážske (chemical factories), AssiDomän Packaging Štúrovo (paper industry), Bukocel Hencovce (wood company). All these plants (except Slovhodváb Senica) are covered by the projects defined in *Project Files*.

The theoretical estimation of discharged pollution and its reduction could be likely higher if the bypass of many plants, even during dry period, would be excluded. The increasing of the treatment plant capacities, especially biological treatment step, could increase the portion of total treated wastewater collected in public or industrial sewer network.

The necessary measures in agriculture can reduce the transport of ammonium and phosphorus from manure and slurry to surface water. Over fertilization is a smaller problem in Slovakia.

The compilation of investment costs of the projects estimated in *Project Files* has revealed the huge requirements for investment costs in millions, as follows: municipal sector (10 projects)-105.512 US\$, non-secured 53.278 US\$, industrial sector (15 projects) - 101.662 US\$, non-secured 85.461 US\$, landfills (6 projects) - 43.501 US\$, non-secured the same, non-structural (3) projects - 1.176 US\$, non secured 1.102 US\$.

It is expected that the privatization of water management, especially the transformation of water and sewage works, will also have the significant impact on the pollution discharge to surface water. The second expected influence on water quality will have the implementation of more stringent effluent standards set by Gov. Decree 242/93 after January 1, 2005, but the most important issues would be the approving of the new Water Act No.138, which is currently being revised.

# 2. National Targets and Instruments for Reduction of Water Pollution

## 2.1. Actual State of and Foreseeable Trends in Water Management with Respect to Water Pollution Control

Since 1990, political, economic and social changes in Slovakia have influenced almost every element of socio-economic life, including water management. The ongoing economic transition has also affected the generation and quality of wastewater. Increasing water prices have reduced and may continue to influence the decline of production of wastewater. Auspicious, these changes have positively improved the quality of particular parts of heavily polluted rivers in Slovakia by one or two water quality classes. However, it is expected that domestic wastewater discharges will not change significantly in spite of the liberalization of water price. Presently, state ownership is dominant in all sectors of water management; both the river basin authorities and the water boards are state owned enterprises. It is planned, however, that in the future only the strategically most important fields will remain in the hands of the state (e.g. most functions of the river basin authorities), utilities of both water and sewage works and river basin authorities will be privatized.

The territory of Slovakia is drained by ten major rivers, out of which nine belong to the Danube River basin. River Poprad (about 5 % of Slovakia) flows to the Baltic Sea. Nine basins (Lower Morava and Danube, Váh, Nitra, Hron, Ipel', Slaná, Hornád, Bodrog, Bodva) are fully described in *National Review*. 1994.

The most serious problem of the present is the water quality. The recent water quality does not satisfy all the requirements of users and the ambient water quality criteria.

The total river network in Slovakia covers 49.775 km of which 28.932,3 km are in the administration of river basin authorities. The systematic water quality monitoring has been performed on significant watercourses on a length of 3973 km i.e. 9 % of the total length of them. From 1994 Slovak Hydrometeorological Institute is a representative of regular monitoring of watercourses in 232 basic sample profiles and 7 particular ones. Number of monitored parameters varied form 70 to 30.

The most polluted watercourses in Slovakia are the Nitra River, the Trnávka, the Dolný Dudváh and the Čierna Voda.

Several years lasted the negative tendency of decreasing groundwater table level as an impact of long term deficiency of precipitation. Since 1982 the monitoring of groundwater quality is ensured by the Slovak Hydrometeorological Institute. Results of present water quality analysis indicate that there is a problem with the manganese and iron, nitrate, oil materials, phenols, trace substances and in some regions specific organic contaminants. In some Slovakian regions these substances have an impact on groundwater quality as a source for drinking water.

The population is **supplied** mainly by porous and fissure-karst **water**. From the 2.871 settlements in Slovakia, 1.820 have public water supply systems; expressed in percentage it is about 79,84% of the population (*Green Report, 1997*). Comparison with Western European values shows a significant lag in public water supply. The level of public water supply is different in particulate regions. Two districts have only 50 % of water supply and 5 have not reached 60 %. Per capita water consumption have decreased during the past six years from 433 l/cap.d (1990) including industry, to 301,5 l/cap.d (1996) in average. Water consumption in households decreased from 195,5 l/cap/day to the value of 134,6 l/cap/day, however in municipalities the specific household consumption was 83,3 l/cap/day in 1996, compared with the level of specific consumption in EU this value is seriously below the average and is close to the hygienic minimum (80 l/cap/day). The

long-term trend of decreasing of drinking water was influenced also by price regulation for households (August 8, 1996 - 5 Sk/m<sup>3</sup>). The major problem in water supply is losses from water mains, which could reach even 25% (22,2 % in 1996).

The situation is even worse in **sewerage**. It is constantly behind the development of water supply systems, which is typical for the most of CEE countries (*Somlyódy*, 1993). Only 12,96 % of settlements have complete sewer systems (372 communities from 2871 of total number of settlements and cities in Slovakia), which is about 53,03 % or 2.850.000 inhabitants of the total Slovak population (Green Report, 1997). The best situation is in the capital, Bratislava (96,34 %), in other regions/districts it varies from 27 % to 75 %. The lowest level of wastewater collection is in some northern and south-eastern regions with less then 30% of population served by sewerage, particularly the most negative situation is in districts Malacky, Komárno, Zlaté Moravce, Krupina, Poltár, Bytča, Námestovo, Turčianske Teplice, Košice-suburbia, Sobrance, Trebišov and Sabinov.

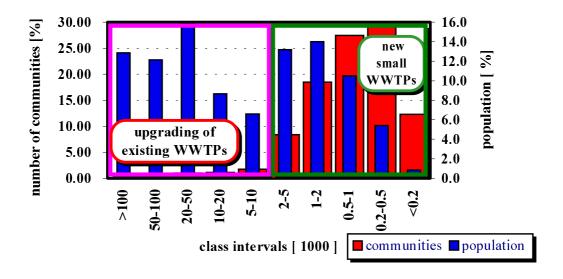



Figure 2.1. Distribution of population and communities in Slovakia and their effect on sewerage

In 1996 the length of sewer networks was more than 5.000 km long. Since the majority of settlements in Slovakia are smaller towns or villages (there are only 27 towns with a population equal to or higher than 25.000 - see Figure 2.1.) the typical sewer system is the separate, sanitary sewer system, only larger towns are served by combined sewer systems. Separate drainage of storm water by storm sewer systems is an exception. Mainly gravitational systems have been built, only a few villages in Southern Slovakia, due to a very high groundwater table (many times 0,5 m below the surface) and sandy soils, are planned to be served by pressure or vacuum systems. In general, urban drainage systems are defective, infiltration of groundwater causes problems in almost every settlement. Infiltration discharges are estimated about 10 to 30% of dry weather flow on average, but higher values are reported as well. Exfiltration of conveyed wastewater by sewer system is not an exception in Slovakia and it is dangerous problem especially in regions with high groundwater table and intense level of industrial development (contamination of groundwater by industrial wastewater, oil material, etc.).

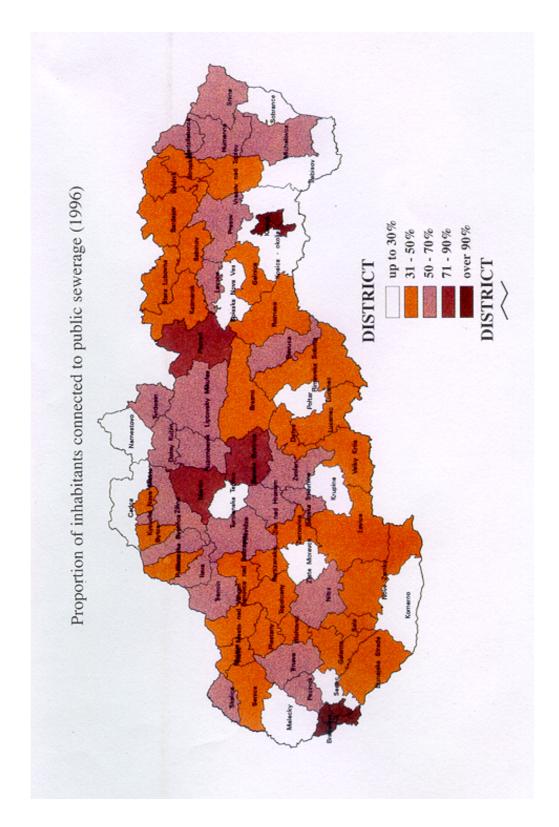



Figure 2.2. Proportion of inhabitants connected to public sewerage in 1996 (Green Report, 1997)

The majority of industrial wastewater is collected together with municipal wastewater and consequently it is treated at municipal treatment plants. Industrial wastewater influence was characterized by the following values:

- ratio of industrial and municipal flow rates  $Q_{ind}$ :  $Q_{mun}$  is higher than 1 in 45% of cities with more than 25.000 inhabitants
- ratio of industrial and municipal BOD<sub>5</sub> (BOD<sub>ind</sub> : BOD<sub>mun</sub>) is higher than 1 in 51% of municipal treatment plants,
- ratio BOD<sub>5</sub>: COD in raw wastewater is lower than 0,4 at 12 % treatment plants.

Recently these ratios have been dramatically changed due to the decline of the production of industrial wastewater (shutdown of many plants). The development of the sewered and treated municipal and industrial wastewater is described in Table 2.1. for the period of seven years (*Green Report, 1997*) and aerial distribution of the proportion of inhabitants connected to sewer systems is presented in Figure 2.2. Bodik, 1998 presented the higher number of sewered settlements as follows: number of settlements with sewerage 467, number of settlements with sewer system and wastewater treatment plants 363 (52,20 % in terms of population).

The level of wastewater treatment also lags behind western standards. Only about 90% of all collected wastewater is treated in 204 municipal wastewater treatment plants (WWTPs) running by waterworks and 77 by municipalities, however, only less than 50 % of all WWTPs meet recent environmental standards. The number of treatment plants with mechanical-biological treatment line is 89,22 %, with mechanical treatment 10,78 %. The sum total of treatment plants is probably higher because Bodik, 1998 obtained the different number 363.

The total capacity of wastewater treatment plants was 1917,6 10<sup>3</sup> m<sup>3</sup>/day in 1996 (only mechanical treatment 17.049 m<sup>3</sup>/day, mechanical-biological treatment 1.900.547 m<sup>3</sup>/day, *Green Report, 1997*). *Rajczykova et al., 1997* presented the different number of treatment plants below 5000 P.E., as follows:

- ➤ 93 wastewater treatment plants running by waterworks,
- ➤ 175 wastewater treatment plants running by municipalities.

Most of these treatment plants are designed as the compact plants with the extended low loaded activated sludge system.

The main reason of insufficient treatment is hydraulic and mass overloading, the next problem being the quality of wastewater (impact of industry connected to public sewer systems). High portion of groundwater infiltration causes dilution of wastewater and decrease of its temperature, which causes problems at the treatment works.

| To diameter.                                    | T.T.::4               | Year  |       |       |       |       |       |       |
|-------------------------------------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
| Indicator                                       | Unit                  | 1989  | 1990  | 1993  | 1995  | 1996  | 1997* | 1998* |
| population connected to public sewers           | $10^3$                | 2565  | 2622  | 2684  | 2740  | 2756  | 2780  | 2822  |
| population connected to public sewers with WWTP | $10^3$                | 2203  | 2284  | 2497  | 2592  | 2610  | 2630  | 2660  |
| length of sewer systems                         | km                    | 4824  | 4942  | 5107  | 5200  | 5345  | 5400  | 5500  |
| waste water discharged to surface waters        | $10^6 \mathrm{m}^3$   | 490,4 | 491,0 | 397,1 | 343,5 | 330,5 | 321,4 | 315,3 |
| Sewage                                          | $10^{6} \text{m}^{3}$ | 220,4 | 225,5 | 214,9 | 166,2 | 160,3 | 158,5 | 156,8 |
| Industrial and other waste water                | $10^6 \mathrm{m}^3$   | 270,0 | 265,0 | 182,2 | 177,3 | 169,5 | 162,9 | 158,5 |
| treated wastewater **                           | $10^{6} \text{m}^{3}$ | 495,8 | 514,0 | 459,4 | 501,1 | 504,6 | 507,0 | 510,0 |

Table 2.1. Development of wastewater discharges and WWTPs running by water and sewage works

Note: \* - estimated/expected, \*\* - including stormwater and infiltration.

The age of the most of larger existing wastewater treatment plants varies from 15 to 20 years. Since now the quality of influent and flow rate has significantly been changed, however the treatment line and capacity of majority plants have not been adjusted. In Slovakia most WWTPs consist of mechanical and biological treatment (only about 90 % of collected wastewater is treated biologically) though it is known that an amount of conveyed wastewater to WWTPs is bypassed to reduce their overloading especially during wet period. There are four typical groups of WWTPs:

- primary treatment without biological one (less than 11 %);
- mechanical treatment in primary settling tanks or Imhoff tanks followed by biofilters (16%):
- mechanical treatment in primary settling tanks followed by high or medium loaded activated sludge process (48 %);
- low loaded activated sludge process with extended aeration (aerobic stabilization) (25 %).

The percentage of particular treatment technology was valid for the years from 1991 to 1993 (1994). At present the portion of treatment plants with extended aeration (typical treatment line of small treatment plants) has been dramatically increased.

Infiltration/inflow to sewer system has a significant impact on the quality of influent and simultaneously, the influence of industrial wastewater (very often connected to sewer systems without any pre-treatment) assists to increase hydraulic and mass loading in many WWTPs. The effluent quality achieves 15 mg BOD $_5$ /l and less very rarely ( $\sim 10$  % of total WWTP) in spite of the fact that BOD $_5$  < 100 mg/l of influent is often a characteristic value (influence of infiltration). The abundance of WWTPs discharge the effluents to receiving waters with BOD $_5$  around 40 mg/l which represents about 50 % of total sewered inhabitants in Slovakia. The typical sludge loading rate for small WWTP varies about 0,15 kg/kg/day, but a quite number of plants treat wastewater with a value of 0,5 – 1,0 kg/kg/d. In addition, significant portion of WWTPs provide activation with sludge age bellow 5 days. Sludge volume index (SVI) is usually below 150 ml/g therefore recently the serious problem of MLSS separation is not typical in most of the WWTP. However it is anticipated that SVI may increase due to the necessity to ensure nutrient removal.

In Slovakia the smaller plants prevail. Due to the demographic situation of Slovak population (see Figure 2.1.) and due to the more realistic local investment possibilities it is expected, that the small plants will be those most frequently designed and constructed also in the near future. Upgrading and extension of existing WWTPs is typical for towns and cities beyond 20.000 inhabitants.

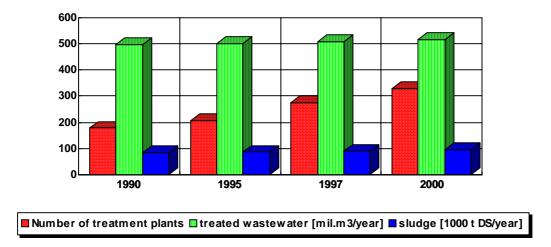



Figure 2.3. The present and expected production of sludge, discharge of treated wastewater and number of wastewater treatment plants

The serious problem concerns the monitoring of wastewater treatment plants and the regulation/optimization of the treatment process. At present, only fundamental wastewater characteristics are measured (BOD<sub>5</sub>, COD, suspended solids, volatile solids, pH). Measurement of nitrogen and phosphorus forms in raw waste and treated water was rare and the basic information about these important compounds is still missing in particular WWTPs, however recently this situation have already been significantly improved. Upgrading of the monitoring, especially of activated sludge process, is predominantly solved by measurement of dissolved oxygen, which has been already applied at many plants. ORP is the next parameter, which should be applied in the near future very often in case of biological phosphorus removal. However, there is a lack of operational experience with these sensors.

**Sludge treatment and disposal** is tremendous problem in Slovakia. In 1997 municipal wastewater treatment plants produced 89,8.10<sup>3</sup> tons of dry solids (DS) of sewage sludge for disposal per year (in 1996 92.090 t DS/year). The current complex situation and the future production of sludge are affected by two dominant factors: the changes in effluent standards and newer tighter sludge disposal regulations.

The reduction of organic pollution and nutrients discharged to receivers requires upgrading the existing treatment plants and building new ones for both phosphorus and nitrogen removal. This assumes a gradual increase of sewage sludge production. The Figure 2.3. presents expected trends in sludge production for particular time levels in Slovakia.

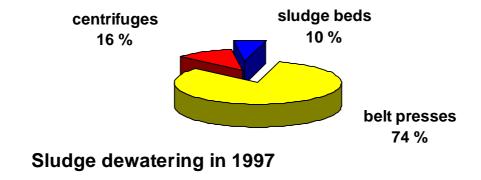



Figure 2.4. Present situation in sludge dewatering for treatment plants with P.E 30.000 and more (75 % of total sludge production in municipal WWTPs in Slovakia)

Anaerobic stabilization of sewage sludges prevails (68%), aerobic stabilization is applied at smaller treatment works (29%), 3% of sludge is not stabilized at all.

Figure 2.4. shows the various ways, in which sewage sludge is generally dewatered. The ratio of conventional methods (sludge beds and lagoons) is still relatively high as the climate conditions in many regions of Slovak Republic favor these processes, however their capacity is not sufficient. Mechanical dewatering is significantly increasing in the last years. Almost all new treatment plants are constructed with mechanical dewatering process. Most of these plants have belt filter presses made by Czech or Slovak firms. Filter presses are used less frequently. Centrifuges have to be purchased from foreign firms, therefore the price of them is much higher than the price of beltpresses. Dry solids content in filter cake usually varies from 20 to 25% or more.

Sludge disposal (see Figure 2.5.) is the main contemporary problem of sludge management. The actual quality of the sludge as well as sewage sludge disposal regulations have resulted in a significant reduction of its agricultural utilization. In 1997 20 % of total sludge production did not meet the requirements of Slovak Technical Standard (STN 46 5735 Industrial composts) for composting and according to the Guideline for agricultural use of sewage sludge and sediments all tested sludges did not fulfil its requirements in particular analyzed parameters (Šumná, 1998).

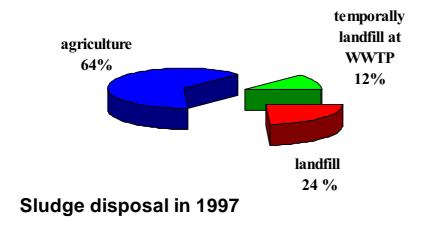



Figure 2.5. Present situation in sludge disposal in Slovakia

The main problem is contamination of sludge by heavy metals diffidence and unwillingness, which prevents sludge disposal to agricultural land, therefore landfilling has become the most frequent method of sludge disposal in Slovakia. This situation is not expected to change in future due to stringent sludge disposal regulations (unfortunately, present legislation practically has changed sludge from a fertilizer to a waste product even in the cases, where it is not necessary).

In many parts of the Slovak Republic, especially in the northern regions, there are possibilities of sludge disposal in forestry. Application of alternative disposal methods, like incineration, regulated co-landfilling with separated municipal solids waste, source of building material etc. is minimum.

**Design, operational problems and upgrading of treatment plants.** From the past until recently, comprehensive and sufficiently accurate data have frequently not been available on the design of sewerage and wastewater treatment plants. Thus, a number of treatment plants have been under or over designed. Specific problems are involved with the construction of treatment plants. They can be summarized as follows: a high level of groundwater, very flat (in southern Slovakia) or very sharp ground slopes (in northern of Slovakia) and complicated geology and hydrogeology conditions (mainly in southern and western Slovakia).

To reduce operational difficulties in treatment plants, several urgent problems need to be solved, but many of them are closely related to upgrading plants. However, since the total overloading of plants will be partially reduced due to the recent collapse of industry and the increase in the prices of public water and sewerage services, the pretentious investment costs will probably inhibit the reduction of infiltration or rehabilitation of sewer systems. Most of the upgrading concerns the modification of existing treatment processes. These main approaches should be considered: upgrading solid/liquid separation processes, modifying the activated sludge process with the aim of reducing the washout of sludge flocs from tanks to effluent (bulking sludge) and removing nutrients, and finally, upgrading sludge treatment with respect to anaerobic stabilization (digestion) and mechanical dewatering process.

Treatment processes, or modifications, with reasonable efficiency and low construction and operation costs are preferred. Upgrading existing primary treatment plants to chemically or precipitation plants seems to be one of the possible alternatives, serving as temporally enhanced step allowing for the later implementation of biological treatment methods for the removal of organics and nitrogen or phosphorus however in Slovakia this alternative is not preferred due to the higher production of sludge as well as the difficulties with sludge dewatering.

#### Perspectives of wastewater and sludge treatment in Slovakia

Uniform effluent standards generally lead to uniform technologies. However, this is not the case in Slovakia because the upgrading of existing facilities, often overloaded and performed with historically different developed treatment lines, requires viable alternative strategies resulting in technologies, which may vary from plant to plant. The priority of present goals is to reduce municipal emissions, e.g. in the most polluted parts of river basins. The diffuse pollution is more difficult to reduce because it needs not only financial investments, but also changes in legislation, cross-sectional coordination, improvement of environmental awareness of population, etc. Control and treatment of urban stormwater, upgrading the existing combined systems in this sense and consideration of the impact of combined sewer overflows on the water body in the context of catchment-wide integrated pollution control are on the edge of present focus in Slovakia from the point of view affordability. As stated before the most of the municipal treatment plants contain mechanical-biological processes. Application of physical-chemical methods is exceptional in municipal WWTPs. The range of applied technologies is relatively low and this fact will be a serious problem according to the new legislation demands on nitrogen and phosphorus removal (see chap.3.2.).

Because of the high loading of the biological step in majority of the larger treatment plants nutrient removal processes are ineffective. Only the recently finished treatment plants are applying nitrification - denitrification or biological phosphorus removal. The largest treatment plant (capacity more than 100.000 population equivalents) with controlled biological nitrogen and phosphorus removal was upgraded in Rimavská Sobota. Because of the lack of investments, probably future upgrading of existing treatment plants will be oriented on modification of treatment processes (upgrading of biofilters and activated sludge reactors, application of new aeration systems, combination of fixed-film and suspended biomass processes, improvement of final clarifiers etc.). In any case, according to the effluent standards introduced by Decree N°.242/1993 in many cases "hi-tech" nutrient removal systems will have to become a standard technology in Slovakia (in contrary to "low-tech and low-cost" systems very often recommended for Central and Eastern European countries).

An interesting fact is connected with the application of non-conventional technologies. In spite of a significant production of high-loaded wastewater, e.g. high ratio of wastewater from agriculture, food processing and chemical industry etc., application of anaerobic treatment technologies is minimal (less than 10 plants in Slovak Republic).

The effluent quality required by the legislation (Decree 242/93 - see the next chapter) affects the selection of adequate treatment lines. As the required effluent quality depends on the size of a pollution source, each particular category will demand specific treatment. In Slovak condition one may expect the following trends in wastewater treatment:

- <50 to 500 P.E.: Within this range of WWTP capacities it is assumed to apply mostly extended aeration package treatment plants with thickener/holding tank for aerobic digestion and sand drying beds or for smaller sources (50 P.E.) rotating biological contactors. Sequencing batch reactor or oxidation ditch may be considered as feasible treatment technology, too. Natural treatment systems, such typical for this range of sewered areas, are designed very rarely due to the complex geological conditions, the higher requirements on area and often extreme climate conditions in Slovakia.</p>
- < 5000 P.E.: The treatment line has to ensure relatively low concentration of BOD, COD and SS therefore the attention should be devoted to properly designed and/or operated clarifier otherwise the achievement of effluent standards may be indecisive. The level of N-NH<sub>4</sub><sup>+</sup> will depend on the quality of influent. It is assumed that low loaded activated sludge process with nitrification would be applied if the concentration of N-NH<sub>4</sub><sup>+</sup> overtop 30 mg/l. Biofilters (trickling filters) should be ignored in this case.

Essentially for smaller plants (< 5000 population equivalents) fixed-biomass reactors (trickling filters, rotating bio-contactors etc.), low-loaded activated sludge reactors with aerobic stabilization (oxidation ditches or Carousel plants, SBR system, activation with separate stabilization etc.) are recommended.

- < 25.000 P.E.: It is assumed that the classical low rate activated sludge process with nitrification will be able to fulfil the requirements of the Decree N°. 242/1993. The requisite value for TP will be probably achievable without biological or chemical phosphorus removal.</p>
- < 100.000 P.E.: This category requires to consider complete nitrification and denitrification. To accomplish the required effluent value of TP, biological phosphorus removal would be adequate. Activated sludge systems with simultaneous nitrification-denitrification may be applied for this range of WWTP capacity.
  </p>
  - Generally for medium size plants (25.000 100.000 population equivalents) except of organic pollution removal systems also nutrient removal processes are topical. For this purpose simultaneous (Carousel, oxidation ditch) and pre-denitrification processes are preferred. Application of alternative denitrification or SBR denitrification is exceptional. Sludge is stabilized in separate aeration tanks or by means of psychrofilic or mezophilic methanization.
- > 100.000 P.E.: These effluent standards could be achieved only by treatment lines with nitrification, denitrification and phosphorus removal (with preceded anaerobic zone, often compartmentalized to control the growth of filamentous microorganisms). It seems that chemical precipitation of phosphorus removal will have to be considered together with biological removal. Sludge is stabilized mostly by mezophilic mechanization and mechanically dewatered. This type of treatment plant requires a higher level of monitoring and automation to ensure stable operation.

#### Perspectives in sludge treatment and disposal

Sludge disposal is the main problem of sludge management. The agricultural use of sludge in Slovakia is subjected to relatively strict standards, guidelines and laws, which set limits on the heavy-metal content of sludge and on the maximum quantity, which may be applied per hectare per year.

*Šumná*,1998 analyzed the selected sludges (this experiment represents 70 % of total production of sludges in Slovakia per year) and revealed that Cr, Cd, and Pb, Zn are the most common heavy metals accumulated in sludge. Mercury is usually a limit in case of implementation the Guideline as well as the specific pollutant (PAU) may cause the problems (less than 80 % of the total sludge production is contaminated by it). The actual quality of the sludge and sewage sludge disposal regulations have resulted in a significant reduction of its utilization in agriculture. The same situation has occurred with the reuse of sludge in preparation of compost. In many cases, providing a sludge landfill may be the only possible solution.

Minimization of the volume of sewage sludge is becoming increasingly important. Thus, improvement of the mechanical dewatering of sludge and reduction in the quantity of sludge cake solids by composting, drying or incineration are anticipated. The optimal integration of sludge management processes may help solve this serious problem in particular cases. The major strategic question of sludge treatment and disposal is to reduce the heavy metal content of it, therefore it is necessary to remove the absence of proper pre-treatment of industrial wastewater connected to public sewer system. This is a precondition for using sludge in agriculture as a most cost-effective solution.

It is known that the European Union has created several regulations concerning the treatment sewage sludge (e.g. 91/689/EEC, 86/278/EEC). In the framework of European environmental policy also Slovakia laid down the new regulations: Waste Law and List of Wastes. These legislative materials together with Decree 242/1993 have caused more sludge by requiring more extensive sewage treatment and simultaneously they have made sludge disposal more difficult.

According to the general European philosophy Slovakia classifies sludge as a waste from origin, but it can be changed into products having different characteristics (List of Wastes defines raw sludge as *dangerous waste* however digested sludge is *particular waste*). To solve the serious and very complex situation in sludge treatment and disposal Slovakian sludge disposal policy set the following priorities in order of preference:

- prevention or reduction of production and its harmfulness,
- > uses/utilization (agricultural, horticultural, forestry, woodland use, land reclamation or treatment, etc.),
- > incineration,
- landfill.

Agricultural use is accepted as the best way of disposing sludge. Incineration must not be seen as a final disposal step. Three main different options of incineration may be considered: sludge incineration, co-incineration with municipal waste incineration and co-incineration in industrial furnaces with energetic or material uses Landfill has to assume as the lowest step in priorities of disposal alternatives.

#### Transitions problems of water and sewage works

With the progress of market economy in Slovakia, reform of the water and sanitation sector is being considered as a way to improve sectional performance. The role of government in the implementation and operation of services is intended to be changed, and the direction of the reforms is toward decentralization and privatization of all utilities with an ultimate goal of introduction of a competitive market in the field of water services. These fundamental changes of the water sector are suggested with the aim to improve quality of services to the customers and financial performance of utilities, and to reduce negative environmental impacts of utility operations. Transformation of utilities will also include a financial reform, the emphasis where is shifting towards an approach, in which drinking water is treated not only as a basic need but also as an economic good. In practical terms this means that water utilities need to be reoriented to perform as semi-commercial and financially autonomous enterprises with primary focus on the consumer and his requirements.

The transformation of the water industry is based on Government Resolution  $N^{\circ}$ . 621/1995 and Acts of the National Council SR  $N^{\circ}$ s. 481/1992 Dig. and 192/1995 Dig., which state that:

- municipalities shall gain responsibility for water supply services, wastewater collection and treatment services,
- it is expected therefore, that municipalities will group into associations and will hire water management enterprises in order to achieve sustainable services in water supply and sanitation,
- the superior water mains shall remain in state ownership to ensure sustainable services in water supply of regions with no or scarce water resources in accordance with Act No. 192:1995 (Coll.).

According to the conditions stated in the Acts, the newly created organizations should function on a non-profit principle, as well as on a principle of re-investments of profits and assurance of sustainable services both for the public sector and industry. It is assumed that the associations of municipalities will also be responsible for water prices.

As was stated before the assets of superior water supply systems remain in the ownership to ensure strategic state interests. As the final solution it is assumed the incorporation of the assets of superior water supply systems into stock companies, and the state will join them as stock holder. Remaining material and immaterial investment assets used for operation, maintenance of waterworks, which are not transferred to municipalities, are an exception. They remain in the administration of state waterworks for providing operation of their facilities till the date of approving a new act on water and sewage works. At the end of this process the property will be sold to the respective company running the water supply and sewerage.

To accelerate this process the Slovak Government approved Resolution No.657/1996. Resolution No.6327/1997 set the timetable of the transformation of this industry.

In 1998 607 municipalities applied for the transfer of waterworks assets. The following table summarized these municipalities for particular regional water and sewage works.

Table 2.2. Number of municipalities applied for privatization of waterworks

| Water and Sewage Works | Sewered municipalities | No. of municipalities apply for privatization |
|------------------------|------------------------|-----------------------------------------------|
| Bratislava             | 2                      | 0                                             |
| Central                | 311                    | 88                                            |
| Western                | 453                    | 152                                           |
| Northern               | 277                    | 218                                           |
| Eastern                | 506                    | 149                                           |
| Total                  | 1549                   | 607                                           |

Water and sewage works have already prepared five privatized projects. Among these privatization projects was as the first pilot project implemented in Trenčín water and sewage works with the association of 41 municipalities with property of 610 mil. Sk.

The total assets of waterworks are 27.807 billion Sk. The assets of superior water supply systems represent 7,6 billion Sk. The assets with the value 19,1 billion Sk should obtain the municipalities and the rest of total is operational assets with the value 1,1 billion Sk.

#### 2.2. National Targets for Water Pollution Reduction

Slovak National Environmental Policy has been established during the years 1992 and 1993. The national environmental policy is based on the 1st September 1992 Constitution of the Slovak Republic. The principles, priorities and strategies of the national environmental policy are based predominantly on the following documents:

- the UN Conference on the Environment and Development (Rio de Janeiro, 1992), the World Strategy for Sustainable Life,
- > the Environmental Action Programme for Central and Eastern Europe,
- > multilateral international environmental conventions and bilateral treaties on environmental co-operation,
- the Maastricht Convention on European Union.

In 1993 The Ministry of the Environment prepared the document National Environmental Policy and it was approved by the Resolution of the Government and lately by the Parliament in the same year. This document set the strategy, orientation, principles and priorities of national environmental policy. There are defined long-term, medium and short-term objectives and financial aspects of national environmental policies.

In 1996 National Environmental Action Plan was approved by the Slovak Government.

In 1997 the implementation of Strategic Action Plan of the Danube River Basin 1995 - 2005 was finished and submitted to the Slovak Government as National Action Plan for the Danube River Basin. This document was prepared with respect the objectives of approved Slovak National Environmental Policy and National Environmental Action Plan. The Slovak Government approved this document where the strategies, priorities and objectives of national environmental policy with respect to water pollution reduction are concerned.

Implementation of targets and strategies of the water management policy set by the *Ministry of Soil Management* is based on fundamental documents as follows:

- > Programmatic Declaration of the SR Government,
- Principles of the Water Management Policy of the SR Government,
- > Strategy of the Water Management Policy of the SR Government,
- General Water Management Plan,
- General Schedule of Protection and Rational Water Utilization in SR,
- Water Management Master Plans.

As it is stated before the national targets for Water Pollution Reduction for the Danube River Basin have already been set up in the Slovak National Action Plan. The Strategic Action Plan, which determines common goals, policies, and strategies in solving main environmental problems in the Danube Basin, its delta and the Black Sea, was the base for elaboration of the Slovak National Action Plan (NAP). In NAP key subjects involved in the environmental protection are:

- > state central bodies (ministries);
- > state administration in field of the environment;
- > municipal authorities of towns and villages, companies and entrepreneurial subjects;
- non-governmental organizations and public.

After the thorough analyze of the state of natural environment in the Slovak Republic, the problems, which relate to its influencing by the human activity, and which create an important part of the NAP, have been defined. The following environmental problems belong to them:

- acidification of the natural environment (soils, surface and ground water);
- > eutrophication of surface water;
- > geo-factors of the environment;
- > point and diffuse pollution of the environment;
- handling the waste;
- decrease of ground water level by dewatering.

Every of the mentioned problems of the natural environment runs at all levels, starting from local up to the national one. The following levels are actual for the National Action Plan of the Slovak Republic, relating to the problems of water in the Danube Basin:

- local level (mainly local pollution of the air and water, smog accidents, odor and noise in urban areas of towns),
- regional level (treatment and disposal the waste, eutrophication of surface water, fluctuation and decrease of ground water level, accumulation of stable organic substances in natural environment, and degradation of relatively untouched areas),
- level of the main river basins (the problems of acidification, eutrophication, soil erosion, and the pollution of flows and basins of the Morava, Váh, Nitra, Hron, Hornád, Bodrog and Ondava, resistant chemical substances with the high degree of malignancy, including the radioactive pollution, important is also the risk of pollution, which may come from accidents).

The present state of the river ecosystems and of the Black Sea, as a recipient of polluted water, is logical result of the pollution, produced in the Danube Basin. Therefore also in the NAP, the attention focuses on these three problems, which are:

- high load of N and P nutrients and eutrophication;
- changes in the regimes of the sediments flow and transport;
- > contamination with harmful substances, including the oil substances.

According to NAP the following measures will be necessary to provide in Slovakia:

- revitalization of the streams and wetlands;
- management of their development, to maximize their accumulation effects for the N and P nutrients, and at the same time to maintain their natural health state and biodiversity.

**Strategy, principles and priorities of state environmental policy** have been approved by the Resolution of the Slovak National Council, from 18<sup>th</sup> November 1993, N°. 339, and by the Resolution of the Government of the Slovak Republic, from 7<sup>th</sup> September 1993, N°. 619. Long-term goals of the state environmental policy should became real after 2010, medium-term by 2010, and short-term ones by 2000. Taking into consideration, that the priorities and principles in the document Strategy, principles and priorities of state environmental policy, are quantified according to the actual situation in 1993, it is necessary to update the quantification of the goals, based on new knowledge.

#### Orientation of the state environmental policy

In the framework of the protection of the quantity and the quality of water and its rational exploitation, the environmental policy is focused on:

- increase the proportion of polluters and disturbers of environment at improvement of its state;
- thrifty exploitation of natural sources;
- Final formation of the system of economical tools.

### Priorities of state environmental policy:

- ensure sufficiency of drinking water and reduction of pollution of other waters under the acceptable limit;
- rational exploitation of natural sources.

#### Principles of state environmental policy:

- prefer preventive actions than remedy ones;
- consider the solution of the environmental problems as a solutions of the economical problems of society.

#### Long-term goals of state environmental policy:

- Formation of economical barriers and systems, which will have preventive impact, and will not allow activities, which endanger and damage the environment, over the acceptable limits;
- applying the increased protection and rational exploitation of natural sources, evaluated also in accordance with their environmental value and public-beneficial function;
- harmonization of economical, environmental and social interests:
- > applying the prohibition of ground water use for other than drinking purposes, where the abstractions of ground water may be replaced with the withdrawals of surface water;
- ensure the treatment of 80 90 % of discharged wastewater, and reducing the difference between the water supply and sewerage to minimum;
- reduction of pollution from watercourses with IV. V. class of water quality consequently to the liquidation of the pollution sources, implementation of the system of measures for their revitalization, and total decrease of pollution of water streams also with II. III. class of water quality by one class.

Particular goals of the state environmental policy with respect to water quality pollution control are summarized in the three time terms, as follows.

#### **Short-term goals:**

- reduction of the quantity of pollution in discharged wastewater by 25 %, especially in the districts with water deficit, and in the areas with its highest rate of pollution;
- minimizing the exploitation of ground water for industrial purposes to 5 10 % of current state, where ground water abstractions may be replaced by the withdrawals of surface water, except the food and medicine production and exploitation of geo-thermal energy;
- implementation of the measures (for example afforestation and other suitable land regulations, building reservoirs etc.) to support the accumulation of water, mainly in the districts of Veľký Krtíš, Lučenec, Rimavská Sobota, and to solve completely the water deficit in this region of southern Slovakia;

- implementation of measures for measuring the water consumption and its reduction, reduction of the water losses in public water supply network, and average number of cases of accidental pollution of water streams with IV. V. class of water quality by 10%;
- > support the building of wastewater treatment plants, sewerage, and facilities to accumulate the water by municipalities, as well as by other legal subjects;
- realization of Environmental Program in the Danube Basin;
- preparation, acceptance and implementation of the new Law on Water and related executive provisions, mainly the Government Decrees, which establish the effluent standards and ambient water quality criteria.

#### **Medium-term goals:**

- reduction of the quantity of pollution in discharged wastewater by 50 %;
- halting the increase of the difference between the water consumption and the quantity of discharged treated water at the sites, where the abstractions of ground water may be replaced by surface water withdrawals;
- reducing the exploitation of ground water for other than drinking purposes to 3 5 %, with the exemption of food-processing and pharmaceutical industries, feeding the live stock, and exploitation of geo-thermal water;
- increasing the proportion of high-effective methods of treatment (biological, chemical and small wastewater treatment plants) at total quantity of treated waste water by 20 %;
- reduction of drinking water consumption by 30 %, mainly by implementing its measuring to 10 15 % and by more rational management of consumers;
- prefer the completing of wastewater treatment plants under construction and the construction of wastewater treatment plants at the places, where it is not possible to reduce water pollution at its place of generation (e.g. in municipal sphere);
- > increasing the quantity of treated wastewater to 60 %;
- solving of the problems of drinking water deficit in 16 districts, mainly in the districts of Veľký Krtíš, Lučenec, Rimavská Sobota, Prievidza, Spišská Nová Ves, Rožňava and Košice-vidiek;
- implementation of the measures (afforesting and other land regulations, reservoirs, ponds, etc.) to support the natural, as well as artificial retaining of water at the area of the Slovak Republic, and total retention of the water run-off mainly from the basins of deficit areas;
- reduction of pollution of watercourses with IV. V. class of water quality by one third;
- reating of the conditions for revitalization of dead water streams and lakes, where the sources of their pollution have been eliminated;
- reduction of the number of cases of accidental pollution through more strict prevention control of potential pollution sources and through other preventive measures;
- constructing the sewer network, so that 60 % of inhabitants is connected to it;
- specification and elimination of the causes of impairment of the ground water quality, monitoring the development of its quality at more important sources of ground water with building indication systems;
- more efficient exploitation of mutual influencing of the ground water sources in the framework of broader water management complexes, mainly if there are the conditions (Eastern Slovakian, Rožňava, Spišskopopradská, Mid-Slovakian, Northern Slovakian water management complexes);
- > completing the modern system of legal instruments on the protection and sustainable use of water, comparable and harmonized with the jurisdiction of EU countries, and its implementation into the practice.

#### Long-term goals:

- applying the prohibition of ground water use for other than drinking purposes, where the abstractions of ground water may be replaced with the withdrawals of surface water;
- ➤ ensure the treatment of 80 90 % of discharged wastewater, and reducing the difference between the quantity of water supply and sewerage to minimum;
- reduction the pollution of watercourses with IV. V. class of water quality consequently to the elimination of the pollution sources, implementation of the system of measures for their revitalization, and total reduction of pollution of water streams also in II. III. class of water quality by one class.
- reduction of water pollution to acceptable determined rate;
- applying the increased protection and sustainable use of water sources, evaluated also according to their environmental value and public-beneficial function;
- reduction of water consumption to the average level of EU countries;
- reduction of the quantity and types of carcinogen, teratogen, mutagen and other harmful substances (polychlorinated biphenyl, nitrites, nitrates, heavy metals, poly-aromatic hydrocarbons, etc.) in water, in the contact with human and other organisms with special attention to their removal, respectively for reducing of some of them to previously determined acceptable rate;
- completing the Complex monitoring and information system of environment of the Slovak Republic;
- Formation of legal, economical, ethical and managing barriers and systems, which will have prevention impact, and will not allow for activities endangering and harming the environment and water, over the acceptable limits, and their irrational exploitation.

The NAP has set also the list of particular measures for the sectors of nature, water, soil, air, solid waste as well as defined the utilization of legislative and economic tools to achieve these measures.

# 2.3. Technical Regulations and Guidelines

Water quality management in Slovakia is based on the Water Act and government directives, further supported by technical standards.

The present Water Act is based on the former Czechoslovak Water Act No.138 from 1973 and is currently being revised. The Act is still being considered to be progressive, since it satisfies even the existing needs of water pollution control in the country, except the articles concerning the state ownership in water management. Regarding wastewater treatment, the most important requirement is that all subjects discharging wastewater or special water into surface or ground water must ensure treatment in a manner corresponding with the contemporary state of technical development to ensure the quality of receiver (Article 23, par. 1). The Water Act (same article, par. 2) also authorized the Government to specify the *present level* of the technical development as well as effluent standards according to the level of knowledge and technical possibilities by means of Government Decrees. However, the former Water Act did not deal with the question of urban storm runoff.

#### Technical regulations for water quality standards.

The first Slovak Government Decree concerning water quality came into force in 1975 (No. 30/1975). It was based on ambient (environmental) water quality standards, which defined the quality of receiving water after mixing with the discharged effluent. The following equation had to be applied to determine the required effluent quality:

$$c_{\text{effl}} = ((Q_{355} + Q_{\text{effl}}) \cdot c_{\text{es}} - Q_{355} \cdot c_{\text{riv}}) / Q_{\text{effl}}$$
 (2.1.)

where  $Q_{355}$  is the 355 days discharge in the receiving water,  $Q_{effl.}$  is the discharged effluent flow estimated as follows:  $Q_{effl.}$  = (total flow rate of discharged wastewater per year)/(number of days per year of discharged wastewater to the receiving water),  $c_{effl.}$  is the required effluent concentration,  $c_{riv}$  is the concentration of a given parameter in the receiving stream (corresponding to  $Q_{355}$ ) before mixing with the discharged effluent and  $c_{es}$  is permitted concentration of a given parameter in the receiver after mixing with discharged effluent (ambient water quality standard).

Effluent quality standards were set up for most parameters describing the quality of surface waters such as pH, DO, BOD<sub>5</sub>, COD<sub>Mn</sub>, inorganic forms of nitrogen, organic nitrogen, the most important heavy metals, organic compounds, bacterial indicators, etc.

The main drawback of the list from Gov. Decree No. 30/1975 was that it defined no ambient water quality standard for any of the forms of phosphorus.

Soon after the introduction of this Gov. Decree, everyday practice has shown, that the approach and also the numeric values of individual ambient water quality standards were not realistic according to the existing possibilities, especially to the lack of investments. The government "solved" this problem by a system of "exceptions" (consents for effluent discharges differing from the Water Act) based on the article 23, par. 3 of Water Act No. 138/1973. After 1989, the new Slovak Government decided to cancel the validity of exception consents. Therefore it was necessary to prepare a new legislative norm, which would follow more realistically the financial possibilities of polluters and the necessary requirements of the water environment.

The latest Slovak legislative norm for effluent standards was issued in November 1993. The Government Decree No.242/1993 was prepared with the aim to correspond with European legislation, especially with Directive 91/271/EEC. It represents a fusion of ambient water quality standards and (end-of-pipe) effluent standards common in European countries and it contains two kinds of standards:

- end-of-pipe limits (maximum acceptable level of pollution in the discharged effluent), which are defined both for municipal (see Table 2.3.) and selected industrial wastewater,
- ambient (environmental) water quality standards, which are defined again for the receiving water using eq. (2.1.). Watercourses utilized for water supply and watercourses used for other purposes have similar water quality standards like in Gov. Decree No. 30/1975. However, total phosphorus and a complete list of nitrogen compounds have been added to this list.

The local water authorities, which in the Slovak Republic are the Environmental Bureau of particular District Councils, are authorized to issue stringent (but not weaker!) consent contracts for individual effluent limits (e.g. if it is necessary to improve the present quality of water body). Effluent standards are set up for 8 hours composite samples collected with a maximum interval of 1 hour between individual spot samples or by automatic samplers, with an absolute maximum, which may not be exceeded.

The effluent standards presented in Table 2.3. were set up for typical domestic and municipal wastewater. Their numerical values are based on the capacity of the treatment plant expressed in population equivalents (1 P.E. =  $60 \text{ g BOD}_5$  per day).

An important feature of this Decree is the step-wise approach of setting effluent standards: till December 31, 2004 and more stringent after January 1, 2005. This realistic way has left necessary time to polluters to get prepared to fulfil the more stringent effluent requirements without *exceptions*.

Table 2.3. Effluent Standards in Gov. Decree No.242/93

| D 11                          |         | Effluent sta | andard [mg/l] |                                 |        |
|-------------------------------|---------|--------------|---------------|---------------------------------|--------|
| Pollution source size in P.E. | $BOD_5$ | COD          | SS            | NH <sub>4</sub> <sup>+</sup> -N | TP     |
| SIZE III I .L.                | */**    | */**         | */**          | */**                            | */**   |
| <50                           | 80/60   | -            | 65/50         |                                 | -      |
| < 500                         | 60/50   | -            | 55/40         |                                 | -      |
| <5 000                        | 50/40   | 170/140      | 45/35         | -/20                            | -      |
| <25 000                       | 45/35   | 150/120      | 35/30         | 25/15                           | -/5    |
| <100 000                      | 35/30   | 125/100      | 30/25         | 15/10                           | 5/3    |
| >100 000                      | 30/20   | 110/90       | 25/20         | 10/5                            | 3 /1,5 |

Note: At treatment plants with more than 25 000 P.E. even partial nitrogen and phosphorus removal is expected; (\*) - valid till 2005, (\*\*) - valid after 2005; parameter  $BOD_5$  with suppressed nitrification by ATU.

In Slovakia the majority of watercourses are very sensitive (according to the classification of sensitive areas in the sense of ANNEX II of Directive 91/271/EEC) due to their low dilution rate. Therefore the Gov. Decree No.242/93 also set up new ambient water quality standards to give the water authorities a tool for protection of these sensitive receiving bodies. Selected ambient water quality standards valid for municipal wastewater are given in Table 2.4. Water authorities have the right to enforce effluent standards calculated from eq. (2.1.) based on the ambient standards if it is *«the interest in water pollution control and is required by local water management conditions»*.

It is evident that the new Government Decree No.242/1993 has given great power to water authorities, particularly to the Bureau of Environmental. Nowadays each polluter has to apply at a local Bureau of Environment for a consent contract for effluent discharges.

Table 2.4. Selected ambient water quality standards in Gov. Decree No.242/1993 for municipal effluents

| Domomoton                        | Unit | Permitted concentration of ambient water quality standards |                        |  |
|----------------------------------|------|------------------------------------------------------------|------------------------|--|
| Parameter                        | Unit | Receivers used for drinking water supply                   | other receiving waters |  |
| pН                               | -    | 6,0 - 8,5                                                  | 6,0 - 8,5              |  |
| DO                               | mg/l | min, 6                                                     | min, 5                 |  |
| BOD <sub>5</sub>                 | mg/l | ≥ 4                                                        | ≥ 8                    |  |
| $COD_{Cr}$                       | mg/l | 25                                                         | 35                     |  |
| NH <sub>4</sub> <sup>+</sup> - N | mg/l | 0,5                                                        | 1,5                    |  |
| $NO_2^ N$                        | mg/l | 0,05                                                       | 0,02                   |  |
| $NO_3$ - N                       | mg/l | 3,4                                                        | 7,0                    |  |
| Norg.                            | mg/l | 1,0                                                        | 2,5                    |  |
| Ptot.                            | mg/l | 0,05                                                       | 0,4                    |  |
| NPES*                            | mg/l | 0,01                                                       | 0,1                    |  |

<sup>\*</sup> non-polar extractable substances

According to the Manual No. 796/1993 OOV issued by the Ministry of Environment to Government Decree No.242/1993 the water authority has to specify in the consent contract the following issues:

- maximum permitted flow of discharged effluent expressed in [1/s] and [m<sup>3</sup>/year],
- maximum pollution flux for given effluent parameters in [kg/d] and [t/year],
- maximum concentration limits for individual effluent parameters in [mg/l] or in the other units (these limits will be controlled by 8 hours composite samples),
- determination of the range of sampling and choice of sampling sites.

Failure to comply with the consent contract is considered to be an offence, which may results in a fine. According to the Slovak Government Decree No. 31/1975 about the penalties in water management two authorities have the right to penalize the polluter: local bureau of Water Pollution Control Inspectorates of the Slovak Inspection of the Environment and the Bureau of Environment of the particular District Council.

It is known that the finances accumulated from the fines create a basic income of the State Fund of Environment. In addition, the polluter must pay for the discharged effluent pollution to the river basin authorities. The payment is based on article 8 of Government Decree No.2/1989, which is a practical expression of the Polluter Pays Principle within the Slovak Water Act. At present the polluters are penalized in case of exceedance of the following effluent quality standards: BOD<sub>5</sub>, suspended solids, acidity/alkalinity, salinity and non-polar extractable substances.

The last two legislative norms are old fashioned and they do not reflect the new economic situation such as inflation, changes from planned to market economy, etc. Especially the Slovak Government Decree No. 31/1975 does not fulfil the expected effect and is together with Government Decree No.2/1989 in the process of amendment. The system of estimation of fines as well as the Polluter Pays Principle would be included directly in the newly prepared Water Act. It is expected that in the future the fines will be collected by the local Environmental Bureau and not by river basin authorities as in the past.

Nowadays the Gov. Decree No.242/1993 seems to be the most important legislative norm and it will hopefully influence the perspectives of wastewater treatment in the Slovak Republic for a long time. However, it contains many problematic parts and therefore at present is under preparation the amendment of this Decree. The new Decree has evaluated the experience of water authorities with this legislative norm, the comments of plant owners and operators as well as design engineers, the changes in water management (privatization of water industry) and water pollution control in Slovakia and to approach as closely as possible the requirements of Directive 91/217/EEC. (e.g. missing the effluent standard for the form of nitrite nitrogen; system of sampling, etc.). Experience from the Czech Republic with very similar conditions described by Wanner *et al.* (1995) has been utilized in the concept of amendment and thus a new parameter to the table of effluent standards, the so-called Total Inorganic Nitrogen (TIN - a sum of ammoniac, nitrite and nitrate nitrogen), is assuming to be added.

## Technical Standards Related to Water Management.

In spite of this fact that the SR is only affiliated member of the European Commission for Standardization (CEN) there is a tendency to take over the European Standards (ES) and incorporate them into Slovak Technical Standards (STN) in the field of water and wastewater management. Except of the discussed Gov. Decree new technical Standards corresponding with the contemporary state of knowledge and technical development are being prepared. The most important Standard will be the STN 73 6707 Municipal Wastewater Treatment Plants from 1983, especially with regard to the problem of nitrogen and phosphorus removal processes and improving the clarifier design.

Although, wastewater treatment probably represents the most important part of urban water management, attention is also being focused on urban drainage. Basically, the technical questions of sewerage have been successfully answered in the past, recently a philosophical question of storm water management is in the focus of attention of most professionals dealing with sewerage and urban hydrology (STN 73 6701 Sewer systems). The list of technical standards related to water management is summarized in Table 2.5.

#### Technical regulations for drinking water, irrigation, surface water, etc.

The quality of receiving waters is evaluated according to the following documents: STN 75 7221 and Gov. Directive No.242/1993. STN 75 7221 Water Quality. Classification of Surface Water Quality classifies the quality of surface waters into 5 classes, the Directive into two classes. Both of them have their own criteria for water pollution control (according to the Directive classification e.g. water supply watercourses should have BOD5 less than 8 mg/l - compare with *Table 2.4.*). Wastewater effluent data can be relatively easily obtained, however, one of the greatest problems is a total lack of real world data on storm runoff quantity and quality. The drinking water quality is controlled regularly by the laboratories of water waterworks in order to ensure the requirements STN 75 7111 Water Quality. Drinking Water. Recently this standard is revised and amendment of this one is under preparation. The same situation is with the standards determining the quality of water for irrigation (STN 75 7143 Water Quality. Water Quality for Irrigation) and surface water (STN 75 7221). STN 83 0615 Requirements for Water Quality Transported in Pipes defines the water quality in networks.

# Legislation regarding sewage sludge disposal.

In Slovakia municipal treatment plants currently produce about 84,4 thousands tons of dry sewage sludge solids per year (Šumná, 1997).

Table 2.5. List of Slovak Technical Standards (STN) in water management

| N°.      | Set of Standards                                  | Number of issued STN |
|----------|---------------------------------------------------|----------------------|
| 750      | Water Management                                  | 13                   |
| 751      | Hydrology                                         | 4                    |
| 752      | Hydraulic Structures                              | 4                    |
| 753      | Water Pollution Control                           | 4                    |
| 754      | Melioration                                       | 4                    |
| 755      | Water Supply                                      | 12                   |
| 756      | Sewerage                                          | 9                    |
| 757      | Water Quality                                     | 61                   |
| 83       | Environment Protection                            |                      |
| 83 0520  | Physic-chemical Analysis of Drinking Water        | 40                   |
| 83 0521  | Microbiological Analysis of Drinking Water        | 5                    |
| 83 0530  | Chemical and physical Analysis of Surface Water   | 44                   |
| 83 0531  | Microbiological Analysis of Surface Water         | 4                    |
| 83 0532  | Biological analysis of surface water              | 8                    |
| 83 0540  | Chemical and Physical Analysis of Wastewater      | 29                   |
| 83 0550  | Physico-chemical Analysis of Sludges              | 5                    |
| 83 06/07 | Water Quality                                     | 2                    |
| 83 09    | Water Resources Protection                        | 4                    |
| 83 71    | Protection of Nature. Hydrosphere                 | 1                    |
| 73       | Design and Erection of Structures                 | 3                    |
| 73 65    | Structures for Water Management, Generally        | 11                   |
| 73 66    | Water Supply                                      | 6                    |
| 73 67    | Sewerage                                          | 8                    |
| 73 68    | Water Courses and Dams                            | 10                   |
| 73 69    | Ponds, irrigation, melioration                    | 2                    |
| 36       | Electronic ( level measurement instruments )      | 2                    |
| 25       | Instruments for Measurement and Control           |                      |
| 25 77    | Gas and Fluid Flow Measurement in Closed Profiles | 6                    |
| 25 93    | Fluid Flow Measurement in Open Channels           | 4                    |

Future production and disposal of sludge will be affected by two dominant factors: the changes of effluent standards and new, tighter sludge disposal regulations. In any case, a gradual increase in sewage sludge production is expected.

The EU directive 86/278/EEC established the basic legislation on agricultural use of sludge in EU. In addition to this, other guidelines have invoked the handling of sewage sludge if agricultural use is not possible. They are as follows: Hazardous waste No. 91/689/EEC, Landfills No. 5953/91 ENV 136; KOM (91) 102, Incineration of hazardous waste No. 5761/92 ENV 88 KOM (92) 9.

The directive on agricultural use of sludge represents minimum requirements and allows each country to set up a more stringent legislation. At present only allowable concentrations of heavy metals in composted sludge are issued.

In Slovakia the rules for sludge disposal and utilization are predetermined in the following legislative documents:

Solid Waste Law 238/91, Categorization and catalogue of solid wastes, STN 46 5735 Industrial composts and Guidelines for agricultural use of sewage sludge and sediments, 1997.

| 1 able 2.0. | mines for neavy metals in | mg.Do ng    |           |
|-------------|---------------------------|-------------|-----------|
| Contaminant | EU 86/278/EEC             | STN 46 5735 | Guideline |
| Pb          | 750-1200                  | 500         | 1000      |
| Cd          | 20-40                     | 13          | 10        |
| Cr          | 1000-1500                 | 1000        | 1000      |
| Cu          | 1000-1750                 | 1200        | 800       |
| Ni          | 300-400                   | 200         | 400       |
| Hg          | 16-25                     | 10          | 2         |
| Zn          | 2500-4000                 | 3000        | 2000      |
| Se          |                           |             | 10        |
| As          |                           | 50          | 20        |
| Mo          |                           | 25          |           |
| PCB         |                           |             | 0,2       |
| PAU         |                           |             | 1         |
| NPES        |                           |             | 2000      |
| Tenzides    |                           |             | 20        |

Table 2.6. Limits for heavy metals in mg.DS kg<sup>-1</sup>

The above guidelines (similarly to Germany) set the restrictions in relation to the heavy metals concentrations in sludge, concentrations of harmful organic components which are usually difficult to degrade in the soil (PCB, halogens compounds (AOX), dioxin/furane) and nutrient consumption of the crops. The basic information is summarized in Table 2.6. Comparison of Slovakian limits with limits applied in EU countries is provided in Table 2.7.

Direct application of sewage sludge on arable soil is only possible if the concentration of harmful compounds contained in it is below the maximum limits listed in Table 2.6. and, simultaneously, the dosage of sludge must be estimated on the basis of limits listed in Table 2.7.

This guidelines has solved the problems of heavy metals content in sewage sludge and its impact on the quality of soils as well as the maximum permitted amount of sludge applied on farmland during one year. Almost all countries in EU have recently changed their own legislation on sludge disposal and handling. In Slovakia, there is a tendency to utilize sludge in agriculture more intensively in the future. Incineration and landfill disposal of sludge are only alternative solutions.

Table 2.7. Max. limits of contaminants in sewage sludge applied as fertilizers [kg/ha]

| Contaminant        | Guideline | STN 465735 |
|--------------------|-----------|------------|
| Pb                 | 50        |            |
| Cd                 | 0,5       |            |
| Cr                 | 50        |            |
| Cu                 | 30        |            |
| Ni                 | 15        | 20 t DS/ha |
| Hg                 | 0,1       |            |
| Zn                 | 100       |            |
| Se                 | 0,5       |            |
| Zn <sub>eq</sub> . | 100       |            |

 $Zn_{eq} = (Zn) + 2(Cu) + 8(Ni)$ 

Emission limits: 30 - 60 t/ha

#### Legal instruments on national level for monitoring, control, remediation.

The Government of the Slovak Republic stated in its resolution No. 623/1990 the need for integrated monitoring of environment in the Slovak Republic. The fundamental activities for monitoring of environment are an observation and a subsequent evaluation of the environmental state. Monitoring of environment consists of three basic and related levels with considerable overlapping of spatial, temporal and other aspects, as follows:

- aerial monitoring,
- regional monitoring,
- purposeful monitoring.

Aerial monitoring has a character of a complete monitoring system organized by Ministry of Environment. Regional monitoring is spatially limited but a permanent system. It is organized by regional institutions in close co-operation with the Ministry of Environment. The purposeful monitoring is a tailor-made monitoring usually a time limited monitoring, as well. This is organized by scientific research institutions and/or experts.

The concept of environmental information system for the Slovak Republic, approved by the Slovak Government in 1992, defined the system of collection, processing, storing and dissemination of environmental information. This system is based on two principles: it is a distributed information system and GIS oriented.

The Ministry of Environment directs the district authorities for environment and **the Slovak Inspectorate of Environment.** The following institutions are also directly managed and financed by the Ministry:

- Slovak Agency for Environment, Banská Bystrica
- > Slovak Hydrometeorological institute, Bratislava,
- National Parks of Administration of the Nízke Tatry, the Slovenský Raj and Malá Fatra.

The Slovak Inspectorate for Environment performs the state supervision of environmental protection. It was established by the Act No.595/1990 Coll. It is divided on:

- > section of water management inspection,
- > section of air protection,
- section of waste management inspection.

Inspections of water and waste management are situated in Bratislava, Nitra, Žilina, Banská Bystrica a Košice. Inspectorates exert supervision in extent and under conditions given by autonomous regulations. The inspectorate imposes penalties for break down of juridical duties. The penalties present the incomes of the State Fund of Environment.

The Slovak Hydrometerological Institute is organization directed and financed by the Ministry of Environment of the Slovak Republic. The activity of Institute is mainly to obtain data about the state and regime of water and air, to process them, analyze, interpret and store them. On this basis institute provides especially:

- provides regime and real-time information about surface and ground water, about their quantity and quality, provides information and forecasts of water levels and discharges,
- > provides meteorological and climatological information, predictions,
- be observes and evaluates the level of pollution and radiation of air, cooperates on the conception preparation and measures of air protection, provides professional activities and operational activities in hydrology, climatology, meteorology, water and air protection,
- > systematically acquires, records and stores the documentation in the above mentioned fields.

In the domain of construction and operation of environmental information system on the territory of the Slovak Republic it fulfils the function of the Center of Environmental Information of the Slovak Republic. It processes the water quality information as one of the most important basis for the management and water resources protection, and its rational exploitation.

Water Research Institute in Bratislava is directed by the Slovak Ministry of Soil Management. The Institute deals with the problems related to water quality monitoring and wastewater treatment. It also provides hydrological characteristics for water management planning and hydraulic parameters of different water structures. It is also responsible for the preparation of the technical standards, legislative norms in the field of water pollution control and exploitation. The Institute solves the research tasks dealing with the surface and ground water assessment and control, their exploitation for the drinking purposes, navigation and hydropower production.

The Decree of the Slovak Republic No. 638/1996 appointed the Institute National Reference Laboratory, i.e. function of the highest methodological center for executing analytical water examination, determination of sediments, sludge, various matters and chemicals, being in contact with water. The laboratory has competence within the scope of all sections of the Ministry of Soil Management SR, of the Ministry of Environment SR and the Ministry of Health SR.

The state authorities for administration of significant basin are the state enterprises established according to the Water Act No. 38/1973 Coll. Four **river basin authorities** have been established:

- The Danube River Basin Authority,
- > The Váh River Basin Authority,
- The Hron River Basin Authority,
- The Bodrog and Hornád River Basin Authority.

The duties of river basin authorities are to:

- administration, operation and maintenance of watercourses, water engineering works and facilities constructed on them,
- supply of surface water to all sectors of management, including new water resources development
- fulfil the duties given by the flood operational plan,
- > maintain the water ways,
- monitoring surface and irrigation water quality and measures focused on water pollution control.
- reation of conditions for utilization of the hydropower potential of water streams and conditions for navigation,
- administration, operation, maintenance, upgrading, modernization and new construction of stated owned hydromelioration systems.

The river basin authorities are obliged pursuant § 33 of the Water Act No. 138/1973 Dig. in wording of later provisions to carry out following :

- monitoring and evaluation of water quality, as well as withdrawals, discharging of wastewaters and other activities on water courses,
- co-operation in improving emergency surface water quality deterioration and elimination of its consequences,
- drawing up a plan of complex care concerning water quality, propose measures for water quality improvement in watercourses,
- carry out systematic control of water quality in specified cross-sections.

The Ministry of Soil Management SR decided with efficiency from 1<sup>st</sup> July 1997, pursuant respective regulations of the Act No. 111/1990 Dig. on the state enterprise, including its later provisions, to established from the river basin authorities the Slovak Management Enterprise. It is state enterprise for meeting public-benefit interests placed in Banská Štiavnica. It should ensure profitability of all enterprises within the water management with the trend of decreasing the claims and state subsidies coming from the state budget and state funds, and a uniform standard of attendance for watercourses and water engineering works, as well as water resources development.

State enterprises Water Supply and Sewerage Works (waterworks) are responsible for the following:

- > supply for drinking water to the population and other consumers,
- > public sewerage and wastewater treatment.
- providing development of water resources, technical and investment development in sanitary engineering,
- administration, operation and maintenance of waterworks, water supply networks, sewerage systems and wastewater treatment plants,
- administration, operation, admittance, repair, upgrading and modernization of facilities.

In addition, waterworks are engaged in a multitude of secondary and auxiliary activities, e.g. erection of structures and installation services. Waterworks posses their own laboratories serving for the analysis of supplied water quality and for the control of wastewater treatment plants.

# 2.4. Expected Impacts of EU-Directives to Water Pollution Control

The Ministry of Soil Management together with the Ministry of Environment SR in water management and water pollution control field support the preparation of legislative measures, focused on completing the formation of total modern system of legal provisions on protection and rational use of water, comparable and harmonized with the legislation of EU countries, and their implementation into the practice. The most important of those are (NAP, 1997):

- issuing of a new Water Act, which will be harmonized with EU legislation, and relevant directives and decrees or guidelines as follows:
- Decree of the Government of the Slovak Republic, which establishes the effluent standards and ambient water quality criteria,
- Decree, which regulates the details on water plans and state water balance,
- Decree, which regulates the details on the content of water book and the method of making the records into it,
- Decree, which determines the list of substances, harmful for water and their categorization into basic groups and details on measures for water protection, when used for mining, production, processing, storage and transportation of substances, harmful to water.
- ➤ Decree, which regulates the details and tasks of water manager and proving the professional ability for their performing,
- Decree, which regulates the details on procedures for inspection, during identification and evaluation of the water pollution, and during elimination of accidental endangering of water.
- Decree, which regulates the details on organization and tasks of water guard, on its appointing and on assumptions of the execution of its activities,
- issuing of the Parliamentary Law on Fees and Charges for Water Exploitation;
- > arranging the tasks, following from interstate agreements on water management issues;
- > standardization activity in the field of water quality protection, creation of new Slovak technical standards.

The water management department of the Ministry of Soil Management SR has been providing in the course of 1997 incorporation of five guidelines of the Council of EU, specifying rules in the field of aquaculture, into the prepared Act of Fishery and other legal rules. Other material being in preparation at present are (Green Report, 1997):

- Water Management policy of the European Community (information of the European Commission of the Council, and for the European Parliament of February, 1996),
- Action Programme for Integrated Protection and Management of Groundwater (Draft of the European Commission for the Council and for the European Parliament of July 10, 1996).
- Principles of the water management policy of the European Union (Draft of the guideline of the Council submitted by the European Commission).

To study the expected impacts of EU directives to water pollution control in Slovakia the following ones have to be taken into account:

- ➤ 1<sup>st</sup> group of priorities:
  - Draft of Water Framework Directive.
  - Urban Wastewater Directive 91/271EEC,
  - Nitrate Directive 91/676,
  - Dangerous Substances Directive 76/464,
  - Integrated Prevention and Pollution Control (IPPC)
- $\triangleright$  2<sup>nd</sup> group of priorities:
  - Drinking Water 80/788
  - Bathing Directive (Recreational)

However the draft of Water Framework Directive is still under negotiation by EU members, in our opinion, it is valuable to compare its requirements with Slovak water management policy. In general, this Directive requires to identify river basin on national level and to apply integrated river basin approach in water management (river basin plan). In SR we had identified the river basins in 18<sup>th</sup> century and in 1966 the river basin authorities was established (description of their competencies are described in chapter 2.3.). Similarly the identification, registration and monitoring of surface and groundwaters suitable for drinking water purposes and the legal instruments for the water pollution control of them have already been set in SR. SR established and registered the protected areas for the drinking water purposes, too. The drawback of these activities is that the list of all these protected areas is not in one common file.

According to the draft of Directive it is necessary to established the river basin plans based on assessment of water needs, impact of human activities and objectives for water quality and quantity. In SR we have elaborated Hydroecological plans, Water Management plans and Master plans with the similar specifications of contents. In this case the problem is that EU Directive requires one river basin plan for one river basin to ensure clear co-ordination of goals or objectives which are set in plan. The second problem is concerning with the time period of plan binding: in SR we have 5 years cycle, in EU 6 years cycle. The different approach in the preparation of river basin plans, from the point of view of EU water management policy, can be summarized for the Slovak conditions in the following items:

- carry out economic analysis to established charging levels, at which full cost recovery is achieved,
- establish and implement a legally binding programme of measures to achieve the objectives agreed in the river basin plans,
- involve stakeholders in approval of river basin plans (plans to be published in draft at least 12 months before taking effect).

It is expected that the significant cost implications on water management in SR will have the implementation of the EU Urban Wastewater Directive 91/271/EEC. From the point of water pollution control view in this Directive we can recognize two areas: sensitive and less sensitive in the sense of ANNEX II of Directive 91/271/EEC. In Slovakia we already have identified these types of areas and they are also legally treated, but practically it is possible to state that the most of Slovak territory belongs to the sensitive area.

The big cost implications of the Directive concerns with the requirements to ensure the construction of sewerage (art. 3) for the settlements with and more than 15.000 inhabitants till 31.12.2000 and after 31.12.2005 also for the settlements from 2000 to 15.000 inhabitants. This problem is dramatically accelerated with the requirement of Directive (art. 4) for the treatment of

collected wastewater by public sewer systems. Again, there is set-wise approach of setting effluent standards for treated wastewater: till December 31, 2000 and more stringent after December 31, 2005. The most treatment plants, due to the fact that the Slovak territory is predominately sensitive, will have to be designed with nitrification and larger ones with biological or even biological-chemical nutrient removal. All these treatment lines require the higher volumes of tanks, the higher level of automation and control and more sophisticated trained operators, therefore not only the investment costs, but also operation and maintenance costs will dramatically increase in this sector.

There are several studies, which have tried to estimate the expected cost implications of the Directive requirements in Slovakia. These estimations significantly varied, but the amount from 25 to 35 milliard Sk seems to be more or less realistic. It should be stressed that there is not included the inflation rate, therefore this estimation may be very different for particular year.

Note: The above mentioned cost estimations are based on actual level of sewerage, level of wastewater treatment, etc. (for more information see chapter 2.1.).

#### 2.5. Law and Practice on Water Pollution Control

The Ministry of Soil management requests restriction on the issue of licenses to operate water mains and sewers to juridical persons. Such issue would established the legal framework for the operation of water supply and sewerage systems by other subjects and thus conditions for competition in the relevant field. Assessment of applications and issues of licenses would remain in the competence of the Ministry of Soil Management Adjustment of mutual relations in respect to supplying drinking water and sewerage is no longer included in the Water Act No. 369:1990 (Digest) on municipalities, as amended and supplemented by later legislation. Competence in the filed of public-benefit activities will be transferred to municipalities. The prepared transformation of the existing water supply and sewage works would create conditions for enterprising, showing specific characteristics.

The Ministry of Soil Management has prepared the draft of the regulation on Competence's of the National Reference Laboratory. This regulation follows from the Act No. 272/1994 Dig. on public health and from the Act No. 238/1991 Dec. on wastes, in wording of later practices. On the basis of the Decree No.638 of September 24,1996 SR the National Reference laboratory in the Slovak Republic was established at the Water Research Institute Bratislava (see chapter 2.3.). The laboratory is the superior methodological center for providing the quality of water analyses, tests of sediments, sludge, materials and chemicals, occurring in water medium. It belongs to the system Analytical Quality Assurance (AQA), to the subsystem Water, developed according to internationally valid standards ISO 9000 and European Standard 45000.

# 3. Actual and Planned Projects and Policy Measures for Reduction of Water Pollution

This chapter summarizes the list of hot spots and projects or programmes in the Slovak Republic. Using the *Project Files* questionnaire we addressed the selected institutions to get a comprehensive picture about the ongoing as well as planned programmes and projects concerning the reduction of water pollution. The list of hot spots have been prepared with the close co-operation with the *Water Quality National Expert* taking into consideration the list of hot-spots presented in Strategic Action Plan and National Action Plan for the Danube Basin of Slovak Republic. The projects and programmes identified actions for monitoring water pollution and water quality, wastewater treatment, protecting water resources, preventing environmental degradation, etc. The prepared list of hot spots covered by *Project Files* indicates the actual problems in the fields of municipal wastewater and industrial wastewater including partially the problems of waste disposal (landfills). The agriculture problems are described in general, but they are not covered by any *Project Files*.

The National Action Plan for the Danube Basin of SR has prepared the list of measures focused on the reduction of pollution of discharged wastewater treated in WWTPs including small WWTPs. The principle aim of these measures is to improve effluent quality of the treated wastewater.

Based on the requirement from the Ministry of Environment of the Slovak Republic, the study, which contains the order of pollution sources, which significantly cause impairment of the surface water quality in the Slovak Republic, and hence from the point of view of urgency to solve suitable treatment method, has been elaborated. The study was completed in the beginning of 1998 and the results were utilized in this Report and especially in selection of hot spots ranking.

# 3.1. Reduction of Water Pollution from Municipalities

The list of municipal hot spots has been prepared with co-operation of Water Quality National Expert using multi-criteria analysis of ranking the assumed problems. The results of this approach are presented in the following Table 3.1.

Table 3.1. Selected municipal hot spots

| No.                                                                                    | Locality                           | Project file | Water and Sewage Works            |
|----------------------------------------------------------------------------------------|------------------------------------|--------------|-----------------------------------|
| HIGH P                                                                                 | RIORITY                            |              | ·                                 |
| 1.                                                                                     | WWTP Košice                        | yes          | VVaK                              |
| 2.                                                                                     | WWTP Nitra                         | yes          | ZsVaK                             |
| MEDIU                                                                                  | M PRIORITY                         |              | ·                                 |
| 3.                                                                                     | WWTP Malacky ***                   | no           | ZsVaK and municipality of Malacky |
| 4.                                                                                     | WWTP Banská Bystrica               | yes          | StVaK                             |
| 5.                                                                                     | WWTP Michalovce                    | yes          | VVaK                              |
| 6.                                                                                     | WWTP Svidník                       | yes          | VVaK                              |
| 7.                                                                                     | Sewerage Trenčín right side        | yes          | ZsVaK                             |
| 8.                                                                                     | WWTP Humenné                       | yes          | VVaK                              |
| LOW PF                                                                                 | RIORITY                            | •            |                                   |
| 9.                                                                                     | WWTP Ružomberok ****               | no           | SeVaK                             |
| 10.                                                                                    | WWTP Topolčany                     | yes          | ZsVaK                             |
| 11.                                                                                    | Švábovce **                        | no           | Municipality Švábovce             |
| 12.                                                                                    | Kišovce-Hôrka **                   | no           | Municipality Kišovce-Hôrka        |
| 13.                                                                                    | WWTP Rožňava                       | yes          | VVaK                              |
| 14.                                                                                    | WWTP Liptovský Mikuláš             | yes          | SeVaK                             |
| Project obtained, partially analyzed, but not included in list of municipal hot-spots: |                                    |              | nicipal hot-spots :               |
| 15.                                                                                    | WWTP Banská Štiavnica <sup>@</sup> | yes          | StVaK                             |
| 16.                                                                                    | WWTP Krompachy                     | yes          | VVaK                              |
| 17.                                                                                    | WWTP Ilava                         | yes          | SeVaK                             |
| 18.                                                                                    | WWTP Hlohovec *                    | no           | ZsVaK, municipality Hlohovec      |
| 19.                                                                                    | WWTP Zvolen @@                     | yes          | StVaK                             |
| 20.                                                                                    | WWTP Lučenec &                     | yes          | StVaK                             |
| 21.                                                                                    | WWTP Nové Zámky                    | yes          | ZsVaK                             |
| 22.                                                                                    | WWTP Čadca                         | yes          | SeVaK                             |
| 23.                                                                                    | WWTP Kysucké Nové Mesto            | yes          | SeVaK                             |
| 24.                                                                                    | WWTP Turzovka                      | yes          | SeVaK                             |

Note:

- @ WWTP is under construction and the necessary investment costs are only partially secured.
- @ @ upgrading of aeration system was completed in 1997, at present the project of WWTP is under preparation,
- & the project of expansion and upgrading of WWTP was completed this year, the construction of WWTP is prepared.

The most numerous group is created from the existing WWTP under construction, which are upgraded and/or expanded. Their construction is often postponed for several years already, due to the lack of financial funds such as with WWTP Košice, WWTP Humenné, WWTP Svidník, WWTP Michalovce, WWTP Krompachy, WWTP Banská Štiavnica, WWTP Banská Bystrica, WWTP Nitra. Most of these plants are serving for larger towns and cities. The efficiency of the plants is design according to Slovak effluent standards. That means that the design of treatment line

<sup>\* -</sup> WWTP is under construction and during this year will be in test operation,

<sup>\*\*</sup> - sensitive area, but they are small settlements. There is necessary to build only small wastewater treatment plants,

<sup>\*\*\* -</sup> WWTP is under construction, the civil structures are financed by the Programme Phare, the investment costs for the technology is covered by the municipality of Malacky. This year the 1<sup>st</sup> stage of the upgrading and expansion of treatment plant will finish. The 2<sup>nd</sup> stage of construction is not covered by investment costs, yet.

<sup>\*\*\*\* -</sup> WWTP completed upgrading of treatment processes - replacement of existing aeration system to fine bubble one. The project of raw sludge treatment and its hygienization has already completed. At present the WWTP is under privatization project and the relationship between owners is not clear therefore this project is not included in Project Files.

depends on the requirements set by Governmental Decree 242/93. This fact has the great impact on the technology applied and thus on the reduction of point sources of nutrient discharges. Therefore most of them will be operated with nitrification and denitrification and only the limited number with biological phosphorus removal. The small treatment plants are usually design as an extended aeration.

Table 3.2. The planned WWTP upgrading, expansion or construction of new ones (*National Action Plan*, 1997)

| Name of construction                                     | Expected years of | /           | mil. Sk /          |
|----------------------------------------------------------|-------------------|-------------|--------------------|
| ivalue of collstruction                                  | of construction   | Total costs | Volume 1997 - 1999 |
| Košice, 2 <sup>nd</sup> WWTP construction                | 1988-99           | 873,5       | 318,1              |
| Prešov - Sekčov, sewerage (4 <sup>th</sup> construction) | 1989-98           | 444,0       | 106,6              |
| Krompachy, sewerage and WWTP                             | 1990-98           | 246,0       | 153,5              |
| Svidník, sewerage and WWTP                               | 1989-98           | 304,0       | 121,6              |
| Upgrading of WWTP Michalovce                             | 1993-99           | 104,0       | 83,9               |
| Humenné, expansion of WWTP                               | 1989-99           | 524,0       | 310,8              |
| Čadca, reconstruction of sewerage and WWTP               | 1991-98           | 179,0       | 92,8               |
| Banská Štiavnica, sewerage and WWTP                      | 1990-99           | 339,2       | 196,1              |
| Šafárikovo, sewerage and WWTP;                           | 1990-98           | 72,0        | 50,7               |
| Nitra, WWTP                                              | 1991-2001         | 548,0       | 168,0 <sup>1</sup> |
| Banská Bystrica, reconstruction and expansion of WWTP    | 1988-98           | 593,0       | 243,4              |
| Banská Bystrica, sewerage collector<br>"A«               | 1998-2002         | 940,0       | 370,0 <sup>2</sup> |
| Zvolen, expansion of WWTP                                | 1998-2000         | 300,0       | $230,0^3$          |
| Kováčová, sewerage collector                             | 1996-97           | 9,3         | 4,1                |

Note:

The volume of investment after 1999 for individual constructions presents:

Totally, there is almost 300 actions by the end of 2000, 16 actions by the end of 2005, 19 actions after 2005. The realization will be undertaken dependently on financial sources of polluting subjects, and in accordance with valid legal provisions. Many of mentioned WWTPs should be finished by the end of 2000, taking into consideration the importance of influencing the water quality from national, as well as transboundary point of view. Based on the need of construction of selected WWTP, as well as from possibilities and status of preparation of the constructions, the Ministry of Soil Management of the Slovak Republic, in order to reduce the amounts of polluting substances in the field of municipal wastewater, has proposed to include the new, or ongoing constructions in years 1997 - 1999 (*National Action Plan, 1997*). They are summarized in Table 3.2. Realization of listed investment is conditioned by the subvention from the state budget, because these funds create the biggest part. Another part of the costs will be covered from state funds, and part from own financial funds of the enterprises.

It is transparent that the list of hot-spots (see Table 3.1.) is generally covered by the proposal of the planned constructions (see Table 3.2.) approved by the Ministry of Soil Management. The list of completed *Project Files* for municipal point sources is enclosed in Annexes. The obtained results and the summary of recommended projects for municipal hot spots are presented in Table 3.3.

<sup>&</sup>lt;sup>1</sup> - 207,7 mill. Sk; <sup>2</sup> - 570,0 mill. Sk; <sup>3</sup> - 70,0 mill. Sk

Table 3.3. Summary of recommended projects for municipal hot spots

| Hot Spot Name &<br>River & Location | Parameters & Values which<br>Define the Problems                                                                                                                                                     | Ranking of<br>the<br>Problem | Name & Type of<br>Project                                                                                            | Project Strategy &<br>Targets                                                                                                                                                                                                                                                                                                 | Parameters & Values which Define<br>Project Benefits                                                                                                                                                                                                                                                                                                                                                | Project<br>Beneficiaries                                                              |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                                                      |                              | HIGH PRIORITY                                                                                                        | ORITY                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |
| WWTP Košice & Hornád & Košice       | The expansion of the capacity of biological treatment step & to reach the effluent standards according to Gov.Decree 242/93                                                                          | High                         | Košice-<br>expansion of<br>wastewater<br>treatment plant<br>2 <sup>nd</sup> stage of<br>construction &<br>structural | The construction and expansion of the existing treatment plant, 90 % of civil structures are completed, the aeration system of activated sludge system will have to be installed, the implementation of nitrification - denitrification is considered.                                                                        | The implementation of the project would reduce the pollution of the Hornád river and thus it would have positively effect on transboundary pollution transported to Hungary. The upgrading of treatment line to biological nutrient removal will have reduce the discharge of the mass loading of TN to surface water and partially also TP.                                                        | East Slovakian<br>Water and<br>Sewage<br>Works, the<br>municipality<br>of Košice city |
| WWTP Nitra<br>& Nitra               | To complete the construction of a new treatment plant, to treat the total amount of discharged municipal wastewater during dry period, the project can not be completed due to the lack of finances. | High                         | Nitra- wastewater treatment plant & structural                                                                       | The construction of the new treatment plant, about 40 % of civil structures are completed, the project of biological treatment step has been re-designed with possible utilization of the structures of the old existing plant. The treatment line consist of nitrification-denitrification and biological phosphorus removal | The main benefit of the project would be the reduction of pollution discharged to highly polluted the Nitra river. The absence of treatment of the large portion of discharged wastewater is the limit of the development of the Nitra city. The new treatment line would reduce the total mass loading of the Nitra river not only in terms of carboneus pollution but also in terms of nutrients. | Municipality of Nitra city, West Slovakian Water and Sewage Works                     |

Table 3.3. continued

| Hot Spot Name &<br>River & Location                 | Parameters & Values which<br>Define the Problems                                                                                                                                                                                                              | Ranking of<br>the<br>Problem | Name & Type of<br>Project                                            | Project Strategy &<br>Targets                                                                                                                                                                                                                                                   | Parameters & Values which Define<br>Project Benefits                                                                                                                                                                                                                                                                                                                         | Project<br>Beneficiaries                                                          |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                     |                                                                                                                                                                                                                                                               |                              | MEDIUM PRIORITY                                                      | NORITY                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |
| WWTP Banská<br>Bystrica & Hron &<br>Banská Bystrica | The expansion of existing treatment plant with the capacity able to cover the wastewater conveyed by main sewer «A». The existing treatment plant is mass and hydraulic overloaded ,therefore the effluent standards set for the plant are not fully reached. | Medium                       | Expansion of wastewater treatment plant Banská Bystrica & structural | Expansion of existing treatment plant with the capacity of 1500 l/s. The treatment line will be with capacity for 110 000 P.E. The treatment line will change to the predenitrification - nitrification and biological phosphorus removal with possible chemical precipitation. | The implementation of the project will improve the total efficiency of treatment line on 30 % more and it will remove also the nutrients ( TP 90- 95 %, N-NH <sub>4</sub> <sup>+</sup> 90 - 95 % ).  The chemical precipitation of phosphorus is considered, as well.                                                                                                        | The Central Slovakian Water and Sewage Works, the municipality of Banská Bystrica |
| WWTP Michalovce & Michalovce                        | The existing treatment plant is mass and hydraulic overloaded, therefore a part of discharged municipal wastewater cannot be treated. The upgrading started in 1993, but the lack of finance is the limit of completing the ongoing project.                  | Medium                       | Upgrading of wastewater treatment plant Michalovce & structural      | The expansion and upgrading of existing treatment plant Michalovce would cover the increased wastewater production and the required effluent standards. The existing treatment plant would be enlarged from the capacity 133 l/s to 350 l/s in two consecutive stages.          | The project will implement the treatment line with predenitrification and nitrification. The existing activated sludge tank will serve as an regeneration tank. The designed capacity of the treatment plant will be able to cover the total production of discharged municipal wastewater, therefore the significant reduction of pollution also in terms of TN is assumed. | The Eastern Slovakian Water and Sewage Works, the municipality of Michalovce city |

Table 3.3. continued

| Project<br>Beneficiaries                             | The Eastern<br>Slovakian<br>Water and<br>Sewage<br>Works, the<br>municipality<br>of Svidník city                                                                                                                                                                                                                                                                               | The<br>municipality<br>of Trenčín city                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters & Values which Define<br>Project Benefits | The wastewater generated in the territory of Svidník city are not treated at present and therefore the impact on the water quality of the Ondava river is very negative. The implementation of the project significantly reduce the discharged pollution to the river and also will protect the main water resource serves for Svidník public water supply distribution system | The wastewater generated in the right side of Trenčin city are not treated at present and therefore the impact on the water quality of the Váh river basin is very negative. The implementation of the project significantly reduce the discharged pollution to the Zlatovský creek. The present situation also limit the development of the locality The designed treatment line will reach the requirements of Slovak Gov. Decree 242/93 and EU effluent standards. |
| Project Strategy &<br>Targets                        | The construction of sewer network and mechanical-biological treatment plant. The treatment line is designed as a regeneration denitrification and nitrification with anaerobic stabilisation of sludge. The capacity of treatment line will cover the production of wastewater not only from Svidník city, but also from adjacent settlements.                                 | The construction of new treatment plant with mechanical biological treatment line has been designed for the capacity of 41 830 P.E. The capacity of mechanical and biological treatment line is 200 l/s. The implementation of the project will construct a new treatment plant covers the treatment of total production of wastewater on the right side of Trenčín.                                                                                                  |
| Name & Type of<br>Project                            | Svidník - sewer<br>network and<br>wastewater<br>treatment plant<br>& structural                                                                                                                                                                                                                                                                                                | Trenčín - sewer<br>system and<br>wastewater<br>treatment plant<br>& structural                                                                                                                                                                                                                                                                                                                                                                                        |
| Ranking of<br>the<br>Problem                         | Medium                                                                                                                                                                                                                                                                                                                                                                         | Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameters & Values which<br>Define the Problems     | Collection of wastewater of municipal wastewater of Svidník city and adjacent settlements. At present the city and these settlements do not have any treatment plant. The wastewater discharge to the Ondava river have the significant impact on the river water quality.                                                                                                     | At present the right side of city does not have any treatment plant. The wastewater discharge to the Váh river basin has the significant impact on the river water quality.                                                                                                                                                                                                                                                                                           |
| Hot Spot Name &<br>River & Location                  | WWTP Svidník & Ondava & Svidník                                                                                                                                                                                                                                                                                                                                                | WWTP Trenčín right side & Zlatovský creek & Trenčín                                                                                                                                                                                                                                                                                                                                                                                                                   |

Table 3.3. continued

| Hot Spot Name &<br>River & Location | Parameters & Values which<br>Define the Problems                                                                                                                                                                                                                                                                                                     | Ranking of<br>the<br>Problem | Name & Type of<br>Project                                     | Project Strategy &<br>Targets                                                                                                                                                                                                                                                                                   | Parameters & Values which Define<br>Project Benefits                                                                                                                                                                                                                                                                                                                                                                                           | Project<br>Beneficiaries                                                                            |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| WWTP Humenné & Laborec & Humenné    | The present capacity and the level of treatment of the existing plant is not sufficient. The project started in 1987, but the production of wastewater during its implementation has significantly changed and therefore the design project has had to be redesigned.                                                                                | Medium                       | Expansion of wastewater treatment plant Humenné & structural  | The existing treatment plant is mass and hydraulic overloaded. The expansion of treatment line was corrected according to new situation with respect to decreasing of wastewater production. In 1996 the capacity of treatment plant was estimated on 380 l/s. The treatment line is designed as nitrification. | The main goal of the project is to improve the effluent quality parameters, to reduce pollution impact of treated wastewater discharged to the river Laborec. The impact of discharged pollution has also the transboundary effect. (Hungary). The locality may be classified as a sensitive because this region is utilized for the public water supply, as well (there are two water resources for the settlements Strážske and Michalovce). | The Eastern<br>Slovakian<br>Water and<br>Sewage<br>Works, the<br>municipality<br>of Humenné<br>city |
|                                     |                                                                                                                                                                                                                                                                                                                                                      |                              | LOW PRIORITY                                                  | ORITY                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |
| WWTP Topolčany & Nitra & Topolčany  | The present capacity of existing treatment plant is not sufficient and the treatment line is not able to reach the required effluent quality. The treatment plant is in poor conditions with old and defective installations. The upgrading of plant has already started (12/96) however the lack of finances is the limit of completing the project | Low                          | Topolčany - wastewater treatment plant upgrading & structural | The upgrading of the treatment plant will be implemented in two subsequent stages. The treatment line is designed as a pre-denitrification and nitrification system.                                                                                                                                            | The main goal of the project is to reach the Slovak and EU effluent standards because of highly polluted receiving water - the Nitra river. All collected wastewater by sewer system will be treated in wastewater treatment plant after implementation of the project during the dry period.                                                                                                                                                  | The West Slovakian Water and Sewage Works, the municipality of Topolčany city                       |

Table 3.3. continued

| ot<br>aries                                          | ity<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e<br>ský<br>ity                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project<br>Beneficiaries                             | The East<br>Slovakian<br>Water and<br>Sewage<br>Works, the<br>municipality<br>of Rožňava<br>city                                                                                                                                                                                                                                                                                                                                                                                                           | The North<br>Slovakian<br>Water and<br>Sewage<br>Works, the<br>municipality<br>of Liptovský<br>Mikuláš city                                                                                                                                                                                                                                    |
| Parameters & Values which Define<br>Project Benefits | The main goal of the project is to complete the whole treatment plant and to improve the effluent quality and in this way to reduce the discharged pollution to the Slaná river. At present this reduction represent about 10 t/year less than before in terms of BOD <sub>5</sub> and SS. This region is very sensitive because of covering the protected region Slovenský Kras including the protected natural sources of water. The transboundary pollution plays the important role in this case, too. | The implementation of the project will help to reach the required effluent standards, reduce the discharged pollution to the Váh river and sensitive region nearby the Liptovský Mikuláš - reservoir Liptovská Mara. This fact will have a positive impact on aesthetic, recreational and fishing characteristics of Liptovská Mara reservoir. |
| Project Strategy &<br>Targets                        | The new treatment plant with capacity of 162 l/s has already constructed however only 1/3 of the total capacity of plant is in operation due to lack of finances necessary for technology supply. The civil part of the project is practically completed. The treatment line is represented by carrousel.                                                                                                                                                                                                  | The project covers the reconstruction of aeration system with fine bubbles, pumping station for sludge recycling, upgrading of biological step to pre-denitrification and nitrification and expansion of the capacity of final clarifiers.                                                                                                     |
| Name & Type of<br>Project                            | Rožňava - expansion of wastewater treatment plant & structural                                                                                                                                                                                                                                                                                                                                                                                                                                             | Liptovský<br>Mikuláš -<br>reconstruction of<br>wastewater<br>treatment plant<br>2 <sup>nd</sup> stage &<br>structural                                                                                                                                                                                                                          |
| Ranking of<br>the<br>Problem                         | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                                                                                                                                                            |
| Parameters & Values which<br>Define the Problems     | The capacity of 63 <i>l</i> /s of the existing treatment plant is not sufficient to ensure the required effluent quality. The present flowrate is from 140 to 160 <i>l</i> /s. The construction of a new treatment plant was started with the capacity of 162 <i>l</i> /s.                                                                                                                                                                                                                                 | The existing treatment plant does not reach the required effluent standards. The existing biological treatment line is not able to manage the treatment of the mass loading and to reduce the nutrients in effluent.                                                                                                                           |
| Hot Spot Name &<br>River & Location                  | WWTP Rožňava &<br>Slaná & Rožňava                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WWTP Liptovský<br>Mikuláš & Váh &<br>Liptovský Mikuláš                                                                                                                                                                                                                                                                                         |

Note:

WWTP Malacky and WWTP Ružomberok are not included in Table 3-3 in spite of the fact that they are included in the list of municipal hot-spots. Please see the explanation in the part C - Water Quality.

# 3.2. Reduction of Water Pollution from Agriculture

Agriculture is one of the most important pollution sources of aquatic environment in Slovakia. It is responsible for the nutrient input into surface water, for the sedimentation of soil solids in reservoirs, it threats or deteriorates groundwater, as well. The agriculture practices combined with the canalization of watercourses, which were often implemented in the past, are the reasons of impacts on landscape nature and negative biodiversity changes.

Basic information concerning agricultural soil, production and fertilizer application in Slovakia shows the following tables:

Table 3.4. The basic agricultural characteristics of the river basins

| River basin | Length of Stream [km] | Length of<br>border Stretch<br>[km] | River<br>basin<br>area<br>[km <sup>2</sup> ] | Total<br>Agricult.<br>Land<br>[km²] | Arable<br>Agricult.<br>Land<br>[km²] | Forest<br>Area<br>[ha] | Water<br>Area<br>[ha] |
|-------------|-----------------------|-------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------|------------------------|-----------------------|
| Morava      | 107,2                 | 107,2                               | 2 282                                        | 119 642                             | 95 876                               | 79 332                 | 3 897                 |
| Danube      | 172,0                 | 149,9                               | 1 138                                        | 195 264                             | 169 881                              | 40 544                 | 13 004                |
| Vah         | 367,2                 | -                                   | 14 268                                       | 581 843                             | 332 166                              | 492 758                | 22 491                |
| Nitra       | 168,4                 | -                                   | 4 501                                        | 314 449                             | 258 169                              | 144 068                | 10 868                |
| Hron        | 278,3                 | -                                   | 5 465                                        | 265 342                             | 120 866                              | 259 041                | 5 616                 |
| Ipel        | 197,9                 | 108,7                               | 3 649                                        | 157 349                             | 91 700                               | 132 132                | 3 879                 |
| Slana       | 92,5                  | -                                   | 3 217                                        | 150 542                             | 70 597                               | 171 708                | 2 956                 |
| Hornad      | 178,5                 | 10,4                                | 4 414                                        | 174 032                             | 96 851                               | 175 581                | 4 414                 |
| Bodrog      | 153,8                 |                                     | 7 265                                        | 381 550                             | 217 648                              | 271 288                | 19 827                |
| Tisa        | 5,2                   | 5,2                                 | 7                                            |                                     |                                      |                        |                       |
| Bodva       | 48,8                  | 1                                   | 858                                          | 40 306                              | 30 336                               | N/A                    | 1 244                 |

Note: Data concerning Morava, Danube, Bodrog and Tisa rivers are related only to Slovak territory

References to the Table 3.4.: Length of the streams, river basin areas and length of bordering water courses - Statistical Office of the SR, 1997. Structure of Land -Office of Geodesy, Cartography and Land Register of the SR, 1997

Danubian Lowland (765.000 ha of agricultural soil and 678.000 ha of arable land) may be considered as relatively most intensive part of Danube Catchment Area.

Table 3.5. Average yield of selected agricultural products within period 1990 to 1996

| Year    | Winter wheat | Barley | Grain<br>maize | Potatoes | Sugar<br>beet | Legumes | Oil crops |
|---------|--------------|--------|----------------|----------|---------------|---------|-----------|
| -       | [ tons/ha ]  |        |                |          |               |         |           |
| 1989-90 | 5,00         | 4,82   | 3,56           | 14,12    | 30,82         | 2,16    | 1,90      |
| 1990-91 | 5,22         | 4,59   | 5,40           | 12,26    | 31,07         | 2,26    | 2,22      |
| 1991-92 | 4,80         | 4,13   | 4,50           | 12,86    | 29,35         | 2,42    | 1,90      |
| 1992-93 | 3,85         | 3,33   | 4,62           | 18,15    | 34,26         | 1,88    | 1,70      |
| 1993-94 | 4,85         | 3,67   | 4,14           | 9,67     | 34,53         | 2,91    | 1,78      |
| 1994-95 | 4,44         | 3,40   | 4,90           | 10,07    | 34,26         | 2,17    | 1,90      |
| 1995-96 | 4,13         | 3,18   | 5,75           | 21,54    | 39,54         | 2,09    | 1,89      |

Since 1993 pastureland has been statistically estimated together with permanent grass-field. The area of permanent grassland in 1996 was 840.000 ha and pasture represents approximately one third of this area.

Typical pastureland dominates in hilly area of the Slovak Republic. In the year 1995 on 1 ha of agricultural soil was in average 0,55 of cattle number.

|             | _                        |      |      |      |
|-------------|--------------------------|------|------|------|
| Year        | Sum of N, P, K           | N    | P    | K    |
| -           | - [kg/ha/agricultural so |      |      |      |
| 1986 - 1987 | 251,6                    |      |      |      |
| 1990 - 1991 | 123,1                    | 62,8 | 30,7 | 29,6 |
| 1991 - 1992 | 63,9                     | 39,5 | 12,6 | 11,8 |
| 1992 - 1993 | 41,6                     | 28,4 | 7,2  | 6,0  |
| 1993 - 1994 | 43,5                     | 30,1 | 7,3  | 6,1  |
| 1994 - 1995 | 45,0                     | 30,6 | 7,8  | 6,6  |
| 1995 - 1996 | 48,9                     | 32,8 | 8,8  | 7,3  |

Table 3.6. The development of fertilizer consumption in Slovakia

# 3.2.1. Prevention of Pollution from Agricultural Point Sources

After 1989 year the live stocks have significantly decreased and those types of farms have reduced their production very sharp. At present they are not more important as the point sources of pollution. However it is assumed that they could be source of diffuse pollution with respect known level of water pollution control (e.g. percolation from holding sewage tanks may represent about 40 % of the collected wastewater in the particular territories). In Slovakia there exists the regulation concerning handling of manure, but in reality inspection of the level of fulfil of these specified requirements does not exist. We only know about the problems if the water quality has been already contaminated and the Slovak Water Inspectorate must start solving this serious situation. In addition it is necessary to stress that in Slovakia officially the septic tank is not allowed to be constructed because this structure does not reach the requirements of present level of wastewater treatment. The aim of this regulation is to control the withdrawal the sewage from the holding tanks, but it was stated that in fact this control is not efficient. Summing up, the prevention to reduce the contamination of water from the agriculture point sources practically does not exist due to the absence of regular inspection. The handling with fertilizers, manure etc. depends on man behavior, responsibility or environmental awareness. This problem should be solved in agricultural sector more intensively.

It is estimated that about 20 - 25 % of the total N and P loads of surface waters are due to the manure discharges. A strong focus is needed in the future to handle and utilize the manure in the agriculture properly. In Slovakia the guidelines for these activities are summarized in the material released by the Ministry of Soil Management of the Slovak Republic:

- > Guideline for balance of soil organic mass and determination of organic manure demand
- Principles of fertilizers dosages calculation and their application
- Regulation of the Ministry of Soil Management of the Slovak Republic No. 5000/82-OŽP about water protection against pollution from agriculture
- Regulation of the Ministry of Soil Management of the Slovak Republic No. 5001/82-OŽP about the handling and fertilization with manure and silage sap disposal

Final Report Nutrient Balances for Danube Countries (1997) summarized in Slovakia the following inputs from agriculture.

Table 3.7. Estimated nutrient inputs from agriculture in Slovakia, 1992

| INPUT              | Nitrogen  | Phosphorus |
|--------------------|-----------|------------|
| GOODS              | [Kt/year] | [Kt/year]  |
| mineral fertilizer | 169       | 24,6       |
| feed for livestock | 44        | 13,4       |
| sewage sludge      | 6         | 1,5        |
| irrigation water   | 0         | 0,0        |
| Deposition         | 60        | 2,7        |
| N-fixation         | 27        | 0,0        |
| Others             | 0         | 0,0        |
| total input        | 307       | 42,2       |

#### 3.2.2. Prevention of Pollution from Agricultural Non-point sources

Pollution from diffuse sources can be related to weathering of minerals, erosion of lands and forest including residues of natural vegetation, or artificial or semiartificial sources. The last one can be related to human activities such as fertilizer application or use of agricultural chemicals controlling weeds or insects, erosion of soil materials from agricultural farming areas and animal feedlots, construction sites, transportation cumulating of dust and litter on urban surfaces, strip mining, and others.

One of most important diffuse pollution sources with strong negative impact to water quality is agriculture in Slovakia. Greatness of pollution depends on the extent and utilization of soil. The structure of the land in the relation to river basins is marked in Table 3.4.

The decline of agriculture production and the reduction of artificial nutrient sources applied on agricultural soils have reflected the decreasing of nitrogen and phosphorus concentrations in surface waters in the last years. The application of pure nutrients (N, P and K) was 251,6 kg/ha in years 1986/87, but in years 1991/92 dramatically reduced to 63,9 kg/ha only (farming lands). The fertilizer consumption is varied around 45 kg/ha/agricultural soil in the Slovak Republic now (see Table 3.6.).

There are several reasons of decreasing the fertilizer and pesticide consumption. The significant role plays the transient period of national economy, impact of inflation, increasing the prices, etc. This phenomenon can be identified in improvement of surface water quality (in terms of nutrients), but is not so evident on groundwater quality. The impact of this fact on groundwater quality is difficult to estimate because of long term changes in water quality in this case. As far as the pesticides are concerned there are no available data about their consumption, now.

It is known that a part of nutrients from agriculture applied to land penetrates into surface water by erosion, in Slovakia particularly by water erosion. This aspect is studied by the Research Institute of Soil Fertility. The results are summarized, as a comprehensive information, in graphical form on a map *«Water Erosion Risk on Slovakia Agricultural Soils»*. Based on the results described in the map the following table has been prepared.

| Rate of soil losses [t/ha/year] | Area [ ha ] | Farming land [ % ] |
|---------------------------------|-------------|--------------------|
| 0 - 4                           | 1 065 420   | 45,0               |
| 4 - 10                          | 473 520     | 20                 |
| 10 - 30                         | 426 170     | 18                 |
| more than 30                    | 402 490     | 17                 |

Table 3.8. Water erosion risk of agricultural soils in Slovakia

Calculation (based on the Table 3.8.) of nutrients transported into surface water is difficult from the next viewpoints:

- the term "farming land" includes the arable soils and pastures, as well. From the point of view of application of fertilizers there are the great difference
- the nutrient run-off from arable land is higher than from pasture.
- in addition it is not possible to include the whole part of nutrient transport from the farming land because the eroded soil is not transported only into surface water.

The second source of erosion (wind erosion) has less significant impact on water quality in our country and therefore it is not monitored regularly in Slovakia. Using the results of the Final Report on *Nutrient Balances for Danube Countries* (1997) the data about diffuse pollution have been compiled. Note that the data are valid for the year 1992. The following results have been presented in this Report (the data valid for the whole Danube River Basin):

In 1992 the respective contribution of different sectors to N and P emissions were as follows: agriculture  $51\,\%$  and  $55\,\%$ , households  $19\,\%$  and  $24\,\%$ , industry  $10\,\%$  and  $13\,\%$ , and others  $19\,\%$  and  $8\,\%$ .

Major paths are: base flow coming from groundwater (35 % and 6 % for N and P, resp.), erosion/runoff (20 % and 32 %), direct discharges of manure (12 % and 19 %), effluents of wastewater treatment plants (20 % and 29 %).

The diffuse source contribution is about 60 % for nitrogen, while 40 % for phosphorus. It is evident that in terms of N and P emissions, agriculture is the most important sector in Slovakia (see Table 3.9.).

Table 3.9. Input and output nutrients into surface waters in Slovakia, in 1992 (adopted according to the *Final Report Nutrient Balances for Danube Countries* (1997))

| INPUT                                | Nitrogen  | Phosphorus |  |
|--------------------------------------|-----------|------------|--|
| GOODS                                | [Kt/year] | [Kt/year]  |  |
| direct discharges industry           | 8         | 1,0        |  |
| direct discharges private households | 5         | 1,1        |  |
| storm weather overflow               | 1         | 0,2        |  |
| effluents from WWTP                  | 8         | 1,2        |  |
| base flow                            | 28        | 0,3        |  |
| erosion/runoff                       | 10        | 1,4        |  |
| discharge of manure                  | 0         | 0,0        |  |
| surface runoff from forests + others | 0         | 0,0        |  |
| N-fixation                           | 0         | 0,0        |  |
| total national input                 | 59        | 5,3        |  |
| total national output                | 50        | 2,4        |  |

The total emissions of T and P were estimated to 820 KtN/year and 105 KtP/year for the whole Danube River basin. The Slovak Republic shares in N and P emissions in 1992 are 7% and 5 %, respectively.

Table 3.10. Nutrient emission into surface water from Slovak part of Danube River basin

| Emission                                                    | Nitrogen | Phosphorus |
|-------------------------------------------------------------|----------|------------|
| Diffuse sources [ Kt ]                                      | 39       | 2          |
| the contribution of diffuse sources to the total load [ % ] | 66       | 37         |
| point sources [ Kt ]                                        | 20       | 3          |
| the contribution of point sources to the total load [ % ]   | 34       | 63         |
| total [ Kt ]                                                | 59       | 5          |
| area specific emission [kg/ha/year]                         | 12       | 1,2        |
| head specific emission [ kg/cap/year ]                      | 11,8     | 1,0        |

Note: assumptions made by National Team for the estimation of N and P emissions are as follows:

- erosion, including fertilizer washout: 1t/ha/year and N, P content therein.
- fertilizer washout: 20 % of the rest of applied N on agricultural soil (2,5-10 kgN/ha/year) and 2-3 % of the rest of P is washed out
- > percolation (agriculture): 10-20 kg N/ha/year and 0,5-1,0 kg P/ha/year
- > percolation (holding sewage tanks): 40 % of the collected waste water percolates

The contribution of *diffuse sources* were defined as the ratio of: base flow + erosion/runoff + surface runoff from forests + storm weather overflow + N-fixation in surface waters divided by the total input. *Point sources* were defined as: the ratio of effluents from wastewater treatment plants + direct discharges from households + direct discharges from industry + direct discharges of manure.

It is clear that for P the importance of agriculture is even greater than for N. The data clearly show that if Slovakia would develop future emission reduction strategies agriculture plays a key role. Almost 60 % of the total P stemmed from agriculture. In the case of P the paths erosion/runoff and direct discharges of manure should be underlined.

Groundwater contamination plays an important role from the viewpoint of nitrogen balance and impact of diffuse pollution on it. In the Report there were recognized three main input flows of N into groundwater in the whole Danube River Basin: percolation from

- agricultural soils (about 50 %),
- forestry soils (about 25 %),
- > septic or sewage holding tanks (about 15 %).

From the above-mentioned it is clear that a significant load nutrient reduction should be considered in order to protect the Delta and the Black Sea. The wastewater management contributes to a desired reduction only at a small extent, thus the development of an integrated approach with a strong focus on agriculture is of crucial importance.

Taking into account these facts also in Slovakia it is necessary to apply policy and measures focused to the prevention of pollution from agricultural sources (both that means point sources and diffuse pollution). Therefore the list of actual guidelines, manual of practices and/or research reports have been prepared with co-operation of the Ministry of Soil Management of the Slovak Republic to document the ongoing process of the implementation of the measures with the aim to reduce negative impact of agriculture on aquatic environment:

#### A. Measures to reduce the erosion/runoff of the soil:

➤ Guideline for the reduction of soil erosion applying its proper cultivation

This guideline is under preparation and it should be approved during the summer this year.

The additional measures are dealt with the forest shelterbelts on riverbanks along the watercourses and reservoirs with the aim to reduce nutrient run-off. The suitable forest vegetation was proposed to improve the biological protection of riverbanks. The results are summarized in several research reports but they have not been implemented in Slovakia in general, yet.

#### B. Pollution reduction from point and diffuse sources (see also chap.3.2.2.):

- > Guideline for balance of soil organic mass and determination of organic manure demand
- Principles of fertilizers dosages calculation and their application
- Regulation of the Ministry of Soil Management of the Slovak Republic No. 5000/82-OŽP about water protection against pollution from agriculture
- Regulation of the Ministry of Soil Management of the Slovak Republic No. 5001/82-OŽP about the handling and fertilization with manure and silage sap disposal
- > Guideline for the application of stabilized sludges and sediments on soils.

# C. Sustainable and ecological agriculture:

➤ Direction of the Ministry of Soil Management Rules for ecological agriculture

As a support of sustainable development in agriculture and ecological farming, a new Act on ecological agriculture is under preparation. At present mentioned instruction is valid. Research Institute of Soil Fertility deals with co-operation with agricultural sector in the area of fertilizer, waste and pesticide rations and their application conditions, but does not provide inspection activities. Weakness of this policy is that handling with fertilizers, manure etc. depends on human behavior, which is in relationship to his awareness.

Regarding to pesticides applications, all of them are assessed from hygienic-toxicology point of view by the Ministry of Health of the Slovak Republic. This body is responsible for reduction of those chemical substances, which deteriorate or threat environment.

Applications of lindan and DDT were prohibited since January 1976 in Slovakia.

The protection and cultivation of agriculture land is provided through legislative, agro-technical and organizational measures, namely Act 307/1992 (The Agricultural Land Protection Act). Further to this act, The Ministry of Soil Management issued Resolution No. 531/1994-540 (dated January 1995), which prescribes acceptable levels of deleterious substances in soil and stipulates the institutions entitled to measure the levels of these substances. Nevertheless, certain adverse influences on the fertility of land continue, for which reasons, it is necessary to upgrade the protection of land through support from the State Fund for the Protection and Cultivation of Agricultural Land (SFPCAL). Since 1995 SFPCAL has supported the fertilization measures, however this still falls short of being sufficient to ensure noticeable progress as no funds were released for this purpose previously.

From the viewpoint of environmental improvement and protection of agricultural land, the Ministry of Soil Management specified objectives of its environmental policy in a document entitled: The Concepts and Principles of Agricultural Policy in Slovakia. The main goal of the policy is to cultivate and protect agricultural land, to promote environmental management and to prevent the penetration of alien substances into the food chain. The priorities are as follows:

- to sow grass on steeply sloping and erosion-endangered arable land,
- to utilize damage soil for the production of non-food crops,
- > to implement organic method farming on agricultural land,
- to support entrepreneurial activities aimed at improving the condition of agricultural land.

The monitoring of alien substances in the soil covers the entire territory of Slovakia. In 1995, the monitoring expanded to include the movement of heavy metals in the soil and plants.

Within last years, organic farming covered an area of about 15.000 hectares of agricultural land (it is less than 1 % of total). The rules concerning ecological farming have already been published in the Bulletin No.9 of the Ministry of Soil Management. In July, the Government approved the Concept for Organic Farming Development. This document imposes the task upon the Ministry of Soil Management to ensure that the percentage of organically farmed land increases to 5 % by 2010 year.

## 3.2.3. Reduction of Water Pollution through Improved Land Management

In Slovakia from the total length 8.437 km of important river channels 3.156 km (41%) were regulated. Flood protection measures have caused decreasing of floodplains, from entire area of 7.856 km² of floodplains only 2.970 km² persist (38%). Big areas of wetlands were drained for farming purposes - more than 5.000 km². Totally, almost 20% of territory of Slovakia was affected by diking, damming and drainage.

The rivers were typically meandering, had close contact with their floodplains and passed through extensive areas of riparian wetlands. In recent times these natural streams have been modified. Tile draining of agricultural fields has had particularly detrimental effects: reducing the stream-land interaction, decreasing groundwater levels and limiting extent of hyporheic zone, which surrounds streams. Canalization of streams and drainage of riparian wetlands resulted in the widespread destruction of streams and their riparian floodplains.

Reduced contact between river channel and surrounding ecosystems has led to the following drawbacks:

- reduced nutrient retention capacity,
- greater peak discharges,
- rapid movement of both ground and surface waters (decreasing of self-cleaning capacity),
- increasing of bank erosion, sediment transport and deposition
- decreasing of original diversity fauna and flora around and within river channel

It is clear that in Slovakia the restoration of riverine ecosystems has to be considered. It is assumed that four principal measures should be applied for specific Slovak's conditions to restore riverine ecosystems, as follows:

a. Recreation of buffer strips - riparian ecotones: one of the most significant effects of the reintroduction of riparian ecotones along the margins of a river is that it can reduce input of nutrients entering streams by surface and ground flow. Buffer strips provide shade, improve channel stability and enhance fauna and flora.

- b. Alteration of tile drainage: many agricultural lands were originally developed from floodplain wetlands. To facilitate agricultural land drainage, river and stream channels were frequently lowered and surrounding lands underlain by tile drains. These drains now carry nutrient-laden waters below floodplain to empty directly into streams. A method, which can be used to decrease point-source pollution, is to open up the drainage pipes before they enter the stream.
- c. Restoration of riverine wetlands: along many canalized agricultural streams there are areas, which are seasonally wet and often difficult to plough. These swamps areas are usually relicts of former wetlands. Where it is possible to reclaim them, they can be valuable enhancement sites for both wildlife conservation and nutrient retention.
- d. *In-channel modification:* in canalized streams, bank failures along the channels sides are a major source of stream sediment. Sedimentation can be so great that canalized watercourses often have to be dredged every few years to maintain flood capacity. In many canalized rivers bank slopes are steep. Reducing these slopes and stabilizing them with vegetation can have several benefits.

In 1997 the Government of Slovak Republic agreed Programme of Wetland Conservation in Slovakia. In the framework of the *Programme* the Action Plan for 1997-2002 was released. It consists of nine following strategic goals:

- 1. to prevent loses and degradation of wetlands and their biological diversity,
- 2. to secure wise-use of wetlands,
- 3. to foster wetland restoration,
- 4. to strengthen of increasing of awareness on wetland functions and values,
- 5. to strengthen of building institutions responsible for conservation and wise-use of wetlands,
- 6. to secure protection of all Ramsar sites,
- 7. to add to Ramsar list the sites which fulfil criteria of Ramsar Convention,
- 8. to develop international co-operation by protection and wise-use of wetlands,
- 9. to plan and secure financial sources for realization of goals of Programme of Wetland Conservation in Slovakia.

All these goals are closely connected with protection and restoration of riverine wetland ecosystems.

In addition the Government of Slovak Republic recognized the importance of biological diversity and signed the Convention in 1993. In 1994 it had been approved by the Slovak Parliament. In 1997 The National Strategy of Conservation of Biological Diversity was approved. In the same year started preparation of Action plan to implement biodiversity strategy, which was prepared with multisectoral effort and finished in February 1998. Summing up, the proposed actions for conservation and restoration of riverine wetland ecosystems are concentrated in Strategic goal 2 - Manage threatening processes (strengthen the application of appropriate mitigation measures), Strategic goal 3 (strengthen in-situ conservation biodiversity), Strategic direction 4 (to improve network of protected areas to achieve representative coverage of all types of habitats) and Strategic direction 5 (to introduce a national restoration programme).

Present state and functions of wetlands in Slovakia can be characterized in the following way.

In the last ten years, global attention has increased to save threatened wetlands. In Slovakia wetlands are very important for biodiversity conservation. Wetlands are also a very important component in the cycling of nitrogen. Nitrates and other chemicals from fertilizers decompose in wetlands and are retained from entering the groundwater. In Slovakia the regularly mowed

meadows in the Morava River Floodplains are a unique ecosystem not only for their high biodiversity value, but also because they act like huge nutrient sinks. After rough estimations it is predicted that 290 tons of nitrogen and 30 tons of phosphorus are removed by hay annually, but the potential only for this area is 480 tons and 50 tons respectively. Wetlands also slow floodwaters allowing sediments, nutrients, pesticides, heavy metals and other toxic metals to be trapped and absorbed into the soil. In Slovakia, the part of the river basins land is, under natural conditions, protected against floods by wetlands. They catch surges of flooding water, and slow down running water. Captured water is then slowly released. In this way wetlands help with flood control, because the flood peaks on the tributaries do not reach the main stream at the same time. In Slovakia most of wetlands serve as transitional areas between terrestrial and aquatic habitats, which protect the land against erosion. Wetland vegetation can reduce bank erosion in different ways: root systems, which stabilize the bank, reduce the effect of flooding waters and slow down a stream by friction. Mainly trees act as stabilizers for riverbanks.

It is possible to summarize the most significant wetland functions, typical in Slovak conditions, into the following items:

- Biodiversity conservation
  - habitat for an enormous diversity of micro-organisms, plants and animals
- Environmental functions
  - water quality control, removal of nutrients from water,
  - purification of water from chemical and organic waste,
  - removal of sediments,
  - biomass and oxygen production,
  - water retention in the soil.
- Socio-economic functions
  - flood control
  - erosion control,
  - water supply,
  - wood, hay and reed production,
  - cattle and sheep grazing areas,
  - fishing and hunting,
  - recreation,
  - education and research.

The following part of this chapter describes the short survey of the most important wetlands types in Slovakia.

The **willow-poplar forests** belong to the one of the most threatened types of wetlands. Only a few of them remain around the big rivers like Danube. Their biggest threats arise from dams and in the regulation of river basins. A noted example is the Gabcikovo Dam, which caused the destruction of about 40 km<sup>2</sup> of floodplain forest. Another threat to willow-poplar forests is the penetration of alien species, which quickly become dominant and suppress the indigenous species.

In the lowlands and rolling hill country there is another type of lowland wetland with an oak, elm and ash forest composition. It is situated on the upper elevated terraces of the rivers, creeks and dryer places out of the reach of regular floods. The hardwood from oak and elm is highly valued by foresters. The decline of the water table, due to drainage, influenced the succession from a willow-poplar composition to an oak-elm-ash composition. This is the reason why it is not as rare as the willow-poplar forest composition. They are endangered by plantation of high productive, non-native poplar or elm monocultures.

**Riparian Alder Wood.** The most important function of alder forests on banks is to stabilize and to protect the bank against erosion. The root systems of vegetation help to stabilize the soil and retain nutrients. Bank vegetation along rivers is suitable places for many different vegetative and animal species.

The alder forests were influenced by many human activities. Over a wide territory, but mostly on the floodplains, alder forests were destroyed and changed into pastures and meadows. There are fields of potatoes, cabbage, barley, oats growing on the higher terraces without the influence of floods. Well-preserved vegetation is rarely presented, only on few places of original distribution.

**Wet Meadows.** The most important factors influencing the life of wet meadows are floods, the level of groundwater and the frequency of mowing. The height above sea level is another factor influencing the distribution of plant and animal species. Grassland ecosystems provide a large number of habitat types that are important for both ecological and economical reasons.

It is probably not a well-known fact that wet meadows are also perfect "water treatment plants." During a successful year the production of biomass exceeds 10 tons per hectare. For example, when farmers collect hay from 1 km<sup>2</sup> of wetlands, they will also gain about 20 tons of nitrogen and 2 tons of phosphorous, all brought by polluted water.

In the past, wet meadows used to be dried out and ploughed in lowlands. In the mountain zone, wet meadows were destroyed by intensive grazing. Restoring wet meadows and re-introducing original vegetation species is not an easy task. Farmers have tried doing so with a mixture of hybrid grass and clover; however, these species are not originally found in wetlands, so they did not survive. The meadows deteriorated as these weaker species were quickly replaced by weeds.

**Reed Swamp.** Reed swamps are one of the most striking plant communities, but they are very poor in species diversity. The reed (Phragmites australis) is such a competitive plant that it creates almost a monoculture. Its root system is very dense and other plant roots can not survive. They live in the overgrown vegetation of river branches, depressions with a high level of ground water, and very often on the banks of dams. They are mainly in the lowland areas, but it is possible to see them up to the mountain zone.

Reed has the ability to spread very easily to places like dams, banks of rivers and ponds. It is very benevolent to the changes in the level of ground water, so it is attracted to artificial habitat made by humans such as: ditches near roads and railroad tracks. In the last two cases they are not considered to be part of a wetland system. It provides good nesting habitat for many bird species.

**Aquatic Vegetation.** The growth of hydrophytes in the water fluctuates during the year and they can exist at a maximum depth of 2 meters. They can tolerate changes of light, nutrients and hydrological conditions. We can find them in stagnant or slow-flowing waters such as depressions, oxbow lakes, shallow lakes, slow-flowing brooks, canals and artificial ditches or pits.

Water plant communities are threatened by regulations, drainage or by the construction of large dams. If a meander is cut off from the main river, it is no longer influenced by the dynamics of the river and gradually becomes overgrown.

Eutrophication, a high concentration of nitrogen and phosphorous, then becomes a danger. Under these conditions there is an increase of the biomass of some species, which displaces less competitive species. This results in communities with low diversity.

**Bogs and Fens.** Bog and mire fens are created by an overgrowth of water habitats or saturated shallow depressions, which contain an accumulation of dead and decaying plants. Bogs and fens function as water reservoirs and influence the hydrologic regime. These areas are important for the conservation of species diversity. These systems are fragile and easily disturbed by negative influences. Among the most serious influences are drainage and agriculture as a result of human activities.

The natural purification of water in different landscapes is the most important function of fens. In the past, these areas were mown and used for hay. Not being of a high quality, it was more often used as bedding for cattle. These areas were often drained despite the low fertility of the soil.

**Springs.** Springs are areas where due to a high level of groundwater, water is coming up from the ground to the surface naturally. Springs are located between 400-2000 m in elevation. Many activities threaten springs such as the harvesting of trees, drainage, and intensive agriculture using pesticides and chemical fertilizers.

**Ramsar Convention.** The aim of the Convention, which was signed by the Slovak Republic in 1990, is to ensure the protection and sustainable use of wetlands, which greatly contribute to biodiversity. Member states are responsible for protection, preparation and implementation of management plans for wetlands in their countries. A special commitment lies in the registration of wetlands into the list of wetlands of international importance, the adoption of special measurements for conservation and to ensure international cooperation.

The Slovak Republic has nominated the following locations: Šúr, Parížske močiare, Čičovské mŕtve rameno a Senné rybníky. In 1993, other extensive wetlands were included in the Morava, Danube and Latorica River floodplains. The wetlands areas of the Orava, Turiec, Ipeľ and Rudava Rivers are now proposed for nomination. Slovak wetland areas included in the Ramsar Convention cover 25 519 hectares of country.

One of the conditions of the Ramsar Convention is to complete an inventory of wetlands in the member countries. Since 1991 the Slovak Union of Nature and Landscape Protectors has been coordinating the mapping of Slovak wetlands. The main goal was to categorize wetlands according to their importance. The result of 5 years of work is about 1900 registered areas, from which 1379 are categorized as:

- ▶ 12 wetlands of international importance
- ▶ 69 wetlands of national importance
- > 4 wetlands of super-regional importance
- > 383 wetlands of regional importance
- > 911 wetlands of local importance

The following are wetlands in Slovakia that are considered internationally unique wetlands, wetlands important for biodiversity, containing ecological or hydrological functions.

**Šúr (Nature reserve)** - forest and meadow wetlands. Located between the Danube Lowland and Small Carpathian Mountains. Total area is 831,39 ha.

**Paris Swamps (Nature reserve)** - extensive wetland system with reeds and sedges. The Paríž steam is located in the southeast part of the Danube Lowland. This area is an important habitat for nesting and migrating birds and others animals. Total area is 140,59 ha.

**Číčov Oxbow Lake (Nature reserve)** - Danube oxbow lake, which was cut from the main stream by the creation of a dike. This area is a meadow and bush community. The area is dominated by reeds, cat-tales, sedges and water plants. Important habitat for rare plants and animals. Total area is 79,87 ha.

**Senné Ponds (Nature reserve)** - A series of ponds built in a previously flooded area of the Okna River in the Eastern Slovakian Lowland. This is one of the most significant areas for nesting and migrating birds in Slovakia. This area consists of wet meadows and pastures around ponds with rare vegetation and animal species. Total area is 213,31 ha.

**Morava River Floodplain (Protected landscape area of Záhorie)** - situated along the Slovak part of the Morava River between the village Brodské and the confluence of the Morava and Danube Rivers. This area preserves a unique system of oxbow lakes, wet meadows and floodplain forests which maintain a species-rich community of plants and animals. Total area is 4971 ha.

**Danube River Floodplain** - area of wetland forests, oxbow lakes and wet meadows. Within this total area of 14.335 ha are 19 small protected areas.

**Latorica Floodplain** - a 22 km stretch along the Latorica River in the Protected Landscape Area Latorica. This area is located in the southern part of the Eastern Slovakian Lowland and is composed of wetland forests, oxbow lakes and wet meadows. The total area is 4.358 ha.

The restoration of floodplain meadow in the Lower Morava River is the important problem therefore is covered also by the *Project File* Report.

# 3.3. Reduction of Water Pollution from Industries

Among the sources of water pollution, which are significant from whole-Slovakia point of view, respectively also with transboundary influence to the water quality, there are also the sources from the companies under competence of the Ministry of Economy of the Slovak Republic. There are constructions and actions, shown in the following Table 3.11., which are planned in selected enterprises in 1997-1999.

Table 3.11. Measures of the Ministry of Economy of SR in water pollution control field

| Enterprise - Action                                                                                                                           | Term of realization         | Financial of 1997-99 | Costs [SK]     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----------------|
| NCHZ Nováky                                                                                                                                   |                             | 1777 77              | 10111          |
| Pumping station for sewage wastewater                                                                                                         | 1997                        | 1,1                  | 1,1            |
| Reduction of the production of wastewater from the VC/EDC production                                                                          | 1996 - 1998                 | 1,85                 | 2,55           |
| Reduction of salinity in wastewater, from the production of caustic soda                                                                      | 1999                        | 18                   | 18             |
| Solving of the problems of waste technological water, from<br>the production of propylenoxide. (Modernization of<br>propylenoxide production) | 1997 - order<br>1998 - 2002 |                      | approx.<br>350 |
|                                                                                                                                               | total                       | 20,95                | 371,65         |
| Bukocel Hencovce                                                                                                                              |                             |                      |                |
| Realization of the ECF and TCF cellulose production                                                                                           | 1995 - 1997                 | 9                    | 36,7           |
| Installation of oxygen delignification                                                                                                        | 1999                        | 150                  | 150            |
| Reconstruction of the mechanical WWTP                                                                                                         | 2000 - 2001                 |                      | 150            |
|                                                                                                                                               | total                       | 159                  | 336,7          |
| Istrochem Bratislava                                                                                                                          |                             |                      |                |
| Construction of biological WWTP                                                                                                               | 1996 - 1999                 | 315                  | 350            |
|                                                                                                                                               | total                       | 315                  | 350            |
| Slovhodváb Senica nad Myjavou                                                                                                                 |                             |                      |                |
| Reduction of wastewater production                                                                                                            | 1997                        | 0,8                  | 0,8            |
| Completing of the technology for refining the viscose fibre                                                                                   | 1997                        |                      |                |
| Reduction of the loss in pipe lines                                                                                                           | 1997 - 1998                 | 3,61                 | 3,61           |
| Increasing the effectiveness of chemical part of WWTP                                                                                         | 1998 - 1999                 | 25                   | 25             |
| Change in the treatment technology to biological WWTP - final treatment                                                                       | 1999 - 2000                 |                      | 25             |
|                                                                                                                                               | total                       | 29,41                | 54,41          |
| Chemko Strážske                                                                                                                               | •                           | •                    | •              |
| Solving to the method of processing the alkaline water from formation of apparatus from the production site of cyclohexanone                  |                             | 6                    | 6              |
| Realization of new racking site for racking the raw substance for production site of phenocol - phenol, NaOH                                  | 1997 - 1998                 | 16                   | 16             |

Table 3.11. continued

|                                                                                                                                                       | Term of         | Financial costs [SK] |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--------|
| Enterprise - Action                                                                                                                                   | realization     | 1997-99              | Total  |
| Adjustment of the operation of collecting centers and decomposition of bound formaldehyde for the winter period, and repair of decomposition cisterns | 1997 - 1999     | 11                   | 11     |
| Reconstruction of formaldehyde storage facility                                                                                                       | 1997 - 2002     |                      | 12     |
| Reconstruction of neutralization raw substances storage facility(CHÚV II.)                                                                            | 1998 - 1999     | 17                   | 17     |
| New way of filling the glues into railway cisterns                                                                                                    | 1999            | 12                   | 12     |
| New way of filling the formaldehyde into railway cisterns                                                                                             | 1999            | 15                   | 15     |
| General reconstruction of A1 and A2 activation                                                                                                        | 1999 - 2000     |                      | 16     |
| Increasing the Poša sludge bed capacity                                                                                                               | 2000            |                      | 40     |
|                                                                                                                                                       | total           | 77                   | 145    |
| ZVL Skalica *                                                                                                                                         |                 |                      |        |
| WWTP construction – testing operation                                                                                                                 | 1997            |                      |        |
|                                                                                                                                                       | total           | 0                    | 75     |
| AssiDomän Štúrovo                                                                                                                                     |                 |                      |        |
| Ecological program (EP) years 1995 - 2002 : reconstruction of Racking station for primary asphalt                                                     | 1995 - 2002     | 15,4                 | 15,4   |
| EP: Reconstruction and modernization of the NSSC production                                                                                           |                 | 697,7                | 697,7  |
| EP: Reconstruction and expansion of WWTP capacity                                                                                                     | after year 1999 | -                    | 300    |
|                                                                                                                                                       | total           | 713,1                | 1013,1 |
| VSŽ Košice                                                                                                                                            |                 | •                    | •      |
| Dosing the lime milk at WWTP Sokol'any                                                                                                                | 1997 - 1998     | 13                   | 13     |
| II. stage of Continual Monitoring of waste water                                                                                                      | 1997 - 1998     | 20                   | 20     |
| Completing of biological WWTP                                                                                                                         |                 |                      | 295    |
|                                                                                                                                                       | total           | 33                   | 328    |

#### Note:

75 mil. SK present total realization costs for the construction of WWTP by the end of 1996. No other investment costs are expected within the operation (year 1997).

The sources for financial funds, needed for realization of mentioned measures, will come from own sources of enterprises, and loans from domestic, respectively from foreign financial institutions.

The list of industrial hot spots have been again prepared with co-operation of Water Quality National Expert using multi-criteria analysis of ranking the particular problems. The results of this approach are presented in the following Table 3.12.

The list of prepared hot spots generally coincides with the table developed by the Ministry of Economy of SR (see Table 3.11.).

The obtained results and the summary of recommended projects for industrial hot spots are presented in Table 3.13. and the Project Files.

#### Oil and grease

The most important shipping transporters in Slovakia are SPaP and River Basin Authority. Both of them collect the bilge oils in holding tanks and based on contract with particular private firms, the contaminated water by oil materials is transported to MCHB treatment plant in Slovnaft Bratislava. Sewage water is discharged to recipient without any treatment.

Table 3.12. Selected industrial hot spots

| No.        | Locality                | Number of<br>Projects Files | Project File or letter |
|------------|-------------------------|-----------------------------|------------------------|
| HIGH PRIOR | ITY                     |                             |                        |
| 1a-b -I    | NCHZ Nováky             | 2                           | yes                    |
| 2 -I       | Bukocel Hencovce        | 1                           | yes                    |
| MEDIUM PR  | IORITY                  |                             |                        |
| 3a-d -I    | PCHZ Žilina             | 4                           | yes                    |
| 4.         | Istrochem Bratislava*   | 1                           | yes                    |
| 5.         | SH Senica nad Myjavou** | 0                           | no                     |
| 6a-d -I    | Chemko Strážske         | 4                           | yes                    |
| LOW PRIORI | TY                      |                             |                        |
| 7- I       | AssiDomän Štúrovo       | 1                           | yes                    |
| 8- I       | Bučina Zvolen           | 1                           | yes                    |
| 9- I       | Biotika Slovenská Lupča | 1                           | yes                    |
| 10- I      | Koželužne Bošany        | 1                           | yes                    |
| 11- I      | HP Harmanec             | 1                           | yes                    |
| 12- I      | VSŽ Košice              | 1                           | yes                    |

Note:

According to the Slovak Environmental Inspectorate the most of the accidents on the Danube River are caused by the oil material. The sources of these accidents are probably the ships however it is very difficult to approve it. During the time period 1988 - 1997 the Inspectorate recognized 106 accidents. All of them were caused by oil.

In Slovakia, due to the relatively high number of existing water dams and reservoirs, the problem of sediments and their contamination has to be considered, as well. The sediments play important role at the quality of surface water and groundwater. Correct way of sediments dredging and disposal is the important problem with respect to water quality of rivers and has to be solved in Slovak conditions. The *Project File No. 2-O* Analysis of sediments quality and disposal of extracted sediments within the Slovak part of the Danube river basin plans to study these problems.

<sup>\* -</sup> in this plant the significant changes have been applied in process technology, therefore the flow rate as well as the wastewater characteristics have been altered. The present construction of biological treatment plant has stopped and nowadays the design project is redesigned to the new actual state,

<sup>\*\* -</sup> in spite of several call phones, utilized the personal contacts and polite requirements to fill in the Project File (during two and half months), since the time of completing this report we have not obtained any respond.

Table 3.13. Summary of recommended projects for industrial hot spots

| Project<br>Beneficiaries                             |               | Nováky<br>Nováky                                                                                                                                                                                                                                                                                                   | Bukocel, a.s.<br>Hencovce                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters & Values which<br>Define Project Benefits |               | The reduction of possible risk of accidents in company's sewer system and the acute pollution of the river.  It is estimated that the reduction of chlorinated hydrocarbons would be from 300 to 500 t/year less.                                                                                                  | The main goal of the project is to reduce the pollution discharged to the Ondava river from the present 305.5 t BOD <sub>5</sub> /year to 203.1 t BOD <sub>5</sub> /year. In addition all collected wastewater in the territory of company will be treating on the existing treatment plant. The reduction of pollution will positively improve the fish management, hygienic and water quality of irrigation system under the effluent discharge point. |
| Project Strategy & Targets                           | ATY           | The aim of the project is to develop the water pollution control model and to set up the optimal warning system of uncontrolled flow of particular organic substances to the sewer system. The second project will reduce the discharge of chlorinated hydrocarbons generated in the production of propylen oxide. | The project has already started in 1992 however because of lack of investments it was stopped. The project implements the construction of pumping station. settling and thickening and dewatering of suspended solids and sludges, respectively. The reconstruction of sewer system to collect and lift a part of wastewater to the treatment plant is planed in this project, as well.                                                                  |
| Name & Type of Project                               | HIGH PRIORITY | Management of wastewater in NCHZ Nováky. a.s., Removal of chlorinated hydrocarbons in the production of propylen oxide & structural                                                                                                                                                                                | Reconstruction of wastewater treatment plant in Bukocel, a.s. & structural                                                                                                                                                                                                                                                                                                                                                                               |
| Ranking of<br>the<br>Problem                         |               | High                                                                                                                                                                                                                                                                                                               | High                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Parameters & Values which<br>Define the Problems     |               | The most important industrial point source of pollution in the Nitra River Basin. In 1992 the construction of new mechanical -biological WWTP has started. The changes in production programme have required the redesign of plant The construction of WWTP was not accomplished because of financial constraints. | The existing treatment plant is in poor conditions ( it was constructed in 1956) with old fashion treatment line. The reconstruction of sewer system to collect and treat all the wastewater generated in the territory of company is considered, too. At this time a part of wastewater is discharged to the receiving water without any treatment.                                                                                                     |
| Hot Spot Name &<br>River & Location                  |               | Novácke chemické<br>závody Nováky &<br>Nitra & Nováky                                                                                                                                                                                                                                                              | Bukocel Hencovce & Ondava & Vranov                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 3.13. continued

| Hot Spot Name &<br>River & Location | Parameters & Values which<br>Define the Problems | Ranking of<br>the<br>Problem | Name & Type<br>of Project | Project Strategy & Targets        | Parameters & Values which<br>Define Project Benefits | Project<br>Beneficiaries |
|-------------------------------------|--------------------------------------------------|------------------------------|---------------------------|-----------------------------------|------------------------------------------------------|--------------------------|
|                                     |                                                  |                              | MEDIUM PRIORITY           | ORITY                             |                                                      |                          |
| Považské chemické                   | The present state of holding                     | Medium                       | Reconstruction            | Reconstruction of holding         | The projects will reduce the                         | Považské                 |
| závody Žilina & Váh                 | tanks for chemicals does not                     |                              | of ammonium               | tanks for chemicals and           | groundwater pollution and                            | chemické                 |
| & Žilina                            | achieve the requirements of                      |                              | storehouse                | storehouse Varín intends to       | subsequently the Váh river                           | závody Žilina            |
|                                     | groundwater protection. These                    |                              | Varín,                    | improve the groundwater           | contaminated by hazardous                            |                          |
|                                     | problems are deal with                           |                              | Reconstruction            | protection and to ensure the      | organic and inorganic                                |                          |
|                                     | barrelling, pumping or                           |                              | of caprolactam            | higher level of reduction the     | substances. The projects will                        |                          |
|                                     | handling of chemicals and                        |                              | holding tanks,            | possible risk of spill accidents. | reduce the possible risk of                          |                          |
|                                     | there is a low protection                        |                              | Reconstruction            | These projects will construct     | accidents caused by spills.                          |                          |
|                                     | against the possible accidents.                  |                              | Jo                        | the water pollution control       | There is a risk of pollution of                      |                          |
|                                     | The age of these tanks is                        |                              | methylmethacry            | basin under the existing          | contamination by                                     |                          |
|                                     | about 30 years. The                              |                              | late holding              | holding tanks as well as under    | cyclohexanon, trichlorethylen,                       |                          |
|                                     | reconstruction of the existing                   |                              | tanks,                    | the barrelling stations.          | caprolactam, sulphur                                 |                          |
|                                     | treatment plant is focused on                    |                              | Reconstruction            | Reconstruction of wastewater      | ammonium, hydroxylamin,                              |                          |
|                                     | the reduction of nutrients (                     |                              | of treatment              | treatment plant will reduce the   | ammonium and etc.                                    |                          |
|                                     | TN) due to the construction of                   |                              | plant & all these         | emission of nutrients using       | The present situation is more                        |                          |
|                                     | a new water dam Zilina.                          |                              | projects are              | nitrification-denitrification     | complex than before because                          |                          |
|                                     |                                                  |                              | structural                | processes. The project            | of constructing the Žilina                           |                          |
|                                     |                                                  |                              |                           | includes the following            | water dam. The water dam                             |                          |
|                                     |                                                  |                              |                           | measures: reconstruction of       | will change the present                              |                          |
|                                     |                                                  |                              |                           | existing activated sludge         | receptor to very sensitive                           |                          |
|                                     |                                                  |                              |                           | tanks, expansion of their         | receiving water especially                           |                          |
|                                     |                                                  |                              |                           | volumes, reconstruction of        | with respect to nutrients,                           |                          |
|                                     |                                                  |                              |                           | aeration system to fine bubble    | chemicals and                                        |                          |
|                                     |                                                  |                              |                           | one, re-arrange of existing       | micropollutants. This problem                        |                          |
|                                     |                                                  |                              |                           | treatment line to                 | ( in case of nutrients reduction                     |                          |
|                                     |                                                  |                              |                           | denitrification-nitrification.    | ) is solved by the project of                        |                          |
|                                     |                                                  |                              |                           |                                   | the reconstruction of                                |                          |
|                                     |                                                  |                              |                           |                                   | wastewater treatment plant as                        |                          |
|                                     |                                                  |                              |                           |                                   | well.                                                |                          |

Table 3.13. continued

| Hot Spot<br>Name &<br>River &<br>Location                | Parameters & Values which<br>Define the Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ranking<br>of the<br>Problem | Name & Type<br>of Project                                                                                                                                                     | Project Strategy & Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameters & Values which<br>Define Project Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project<br>Benefi-<br>ciaries           |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Istrochem<br>Bratislava,<br>a.s. & Dunaj<br>& Bratislava | Existing wastewater treatment plant has only mechanical-chemical treatment line. There is a need of upgrading of treatment to biological treatment system. Istrochem has already started the implementation of the project of biological treatment plant however at this time is reevaluated due to the significant changes in process technology of company.                                                                                                                                                                             | Medium                       | Upgrading of wastewater treatment plant with biological treatment step & structural                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Istro-<br>chem, a.s.<br>Bratisla-<br>va |
| Chemko<br>Strážske &<br>Ondava &<br>Strážske             | The present mass and energy consumption in the process technology is very high and the impact on the environment. The dominant role plays the production of cyclohexanon. In addition the protection of the sites where the barrelling the chemicals (Phenols, NaOH) is taking place and the reduction of the leakage to the groundwater is considered. The existing activated sludge tanks are in poor conditions therefore the reconstruction of them is necessary. The existing combine sewer system is necessary to upgrade, as well. | Medium                       | Project 2000. Barrelling the chemicals for production, Reconstructio n of activated sludge tanks of wastewater treatment plants, Reconstructio n of sewer system & structural | The project 2000 will replace the oxidation process of cyclohexanon production to non oxidation one. The project for barrelling of chemicals assumes to construct a new basin under the site where the manipulation with chemicals is provided to collect and reuse the spills and/or leakage. A new pumping station and holding tanks will have to be constructed. Upgrading of treatment plant is planned to install the fine bubble aeration system to improve the operation of present carrousels. Reconstruction of sewer system includes the separation of sewage from the combine sewer system, the construction a new sewer system for collecting sewage flowing from the old part of company and pumping station to lift these wastewater to the existing treatment plant. | The project 2000 will improve the safety factor of this process, reduce energy requirements, production of wastewater and wastes. Barrelling the chemicals will improve the protection of groundwater contamination. The economic benefit of wastewater plant upgrading is possible to estimate in terms of energy savings - 1600 MWh/year. The effluent parameters of treatment plant will be improved, as well. The reconstruction of sewer system will decrease the amount of pollution discharge to the Laborec river - 18.85 kg BOD <sub>3</sub> /h. | Chemko<br>Strážske,<br>a.s.             |

Table 3.13. continued

| Hot Spot Name &<br>River & Location                              | Parameters & Values which<br>Define the Problems                                                                                                                                                                                                                                                                                                                                                                       | Ranking of the Problem | Name & Type<br>of Project                                                                                  | Project Strategy & Targets                                                                                                                                                                                                                                                                                                                                                                                   | Parameters & Values which<br>Define Project Benefits                                                                                                                                                                                                                                                                                                                                                  | Project<br>Beneficiaries          |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | LOW PRIORITY                                                                                               | RITY                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| AssiDomän<br>Packaging Štúrovo &<br>Obidský channel &<br>Štúrovo | The existing mechanical - biological treatment plant is not able to reach the required effluent standards. The necessity of upgrading of combine sewer system is considered, too.                                                                                                                                                                                                                                      | Low                    | The reduction of discharged wastewater pollution to the Danube river & structural                          | The project is planned to implement in 3 stages. The upgrading of treatment plant and collecting of wastewaters includes the expansion and reconstruction of activation, the replacement of aeration system to fine bubble one, the upgrading of final clarifiers, connecting the existing combine sewer to treatment plant, construction of stormwater tank.                                                | The main target of the project is to reduce of effluent pollution to reach the effluent standards set by Gov. Decree 242/93. This is very important issue because of the problem of transboundary pollution. At the site of the company the Danube creates the natural border between Hungary and Slovakia. The sensitivity of the Danube will improve if the waterworks Gabčíkovo-Nagymaros would be | AssiDomän<br>Packaging<br>Štúrovo |
| Bučina Zvolen &<br>Hron, Slatina, Zolná<br>& Zvolen              | The existing sewer network in Bučina Zvolen is not complete and some parts of it are in poor conditions or even defective. A part of collecting wastewater are not connected to treatment plant and are discharging to receiving water without any treatment. The upgrading and expansion of the existing treatment plant is considered, as well. The reduction of groundwater and soil contamination is assumed, too. | Low                    | Construction of wastewater treatment plant with reconstruction and expansion of sewer network & structural | The project should cover the reconstruction the old sewer network ( separation of sewage ) with the connection to biological treatment plant, expansion and completing storm and sewage sewer network in the northern part of company with the connection to the biological treatment plant, expansion of biological treatment step to treat wastewater after the pretreatment at the electroflotation unit. | The project helps to improve the water quality in the creeks Zolná and Slatina and finally in the Hron river. The final solution could improve situation in groundwater and soil contamination in the territory as well as in the vicinity of the company.                                                                                                                                            | Bučina, a.s.<br>Zvolen            |

Table 3.13. continued

| Hot Spot Name &<br>River & Location                                        | Parameters & Values which<br>Define the Problems                                                                                                                                                                                                             | Ranking of the Problem | Name & Type<br>of Project                                                             | Project Strategy & Targets                                                                                                                                                                                                                                                                                                                                | Parameters & Values which<br>Define Project Benefits                                                                                                                                                                                                                                                                                                              | Project<br>Beneficiaries      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Biotika Slovenská<br>Lupča & Istebník<br>creek - Hron &<br>Slovenská Lupča | The existing treatment plant was upgraded during the last four years, however the age of civil constructions is more than 25 years. The part of these old structures in poor conditions and aeration system of activation. There are also the odor problems. | Low                    | Wastewater treatment plant reconstruction & structural                                | The reconstruction of aerobic part of biological treatment step will increase the present water level in tanks, it will change the aeration system to fine bubble one, and it will reduce the odour problems by covering the tanks and treatment the air in biofilters.                                                                                   | The project will improve the situation in aerobic part of treatment plant. The present efficiency of the first two tanks is low due to the critical state of mechanical aerators. The effluent quality will improve (BOD <sub>5</sub> form 210 to 50 mg/l) situation in the Hron river .                                                                          | Biotika<br>Slovenská<br>Lupča |
| Koželužne Bošany &<br>Nitra & Bošany                                       | At present the sludges generated at treatment plant are highly contaminated by chrome. The high consumption of wastewater in the process and their contamination by heavy metals is due to the old fashion process technologies used.                        | Low                    | Centralise the collection and treatment of wastewater polluted by chrome & structural | Optimisation of tannery processes, the reduction of water consumption and contamination of wastewater and sludges is considered in the project. The aim is to collect wastewater polluted by Cr3+ and treat with the change of pH to precipitate and separate Cr in the form of Cr(OH)3. This product will be recycle and utilise in the plant processes. | Implementation of the project will enable to solve the problem of sludge utilisation in agriculture. At present the disposal of sludge is the tremendous problem and it is a regional problem. It is supposed the reduction of operational costs, reduction of material use and Cr <sup>3+</sup> , reduction of water consumption and finally reduction of energy | Koželužne<br>Bošany, a.s.     |

The Project Files are enclosed in Annexes. In addition there are the Project Files of HP Harmanec and VSŽ Košice ranking of the problems with low priority.

## 3.4. Reduction of Water Pollution from Dump Sites

The comprehensive overview of solid waste disposal including the maps and the problems concerning with landfills has already been described in *National Review*, 1994. However from this time the significant improvements in this filed could occur in Slovakia. Therefore the short questionnaire was developed and filled in co-operation with the Slovak Inspectorate for Environment, section of waste management inspection. According to this questionnaire the following table was developed.

This list of the landfills or dumps presented in table was selected by the regional inspections on waste management in Bratislava, Nitra, Žilina, Banská Bystrica and Košice. We assume that the employees of these inspections are the most familiar with the considerable and significant problems concerning with the possible impact of existing landfill on the groundwater and surface water pollution. The table presents only the brief characteristics of the selected landfills.

Table 3.14. Selected landfills with the possible impact on groundwater or surface water

| Locality/Responsible-<br>Legal Body                             | Impact on<br>River                  | River<br>Basin | Type of landfill                  | Definition of Problem                                                                                                                     |
|-----------------------------------------------------------------|-------------------------------------|----------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Dunajská Streda-Veľké<br>Dvorníky/PURE,<br>Dunajská Streda      | Protected<br>Region<br>Žitný Ostrov | Danube         | municipal                         | the monitoring and control of landfill exist                                                                                              |
| Dunajská Streda-Mliečany<br>/Municipality of Dunajská<br>Streda | Protected<br>Region<br>Žitný Ostrov | Danube         | municipal                         | Contamination of groundwater, landfill is controlling, monitoring and control of run-off and leachate is not ensured, landfill is closed. |
| Gabčíkovo/Technical<br>Services Gabčíkovo                       | Protected<br>Region<br>Žitný Ostrov | Danube         | municipal                         | new landfill (1996)<br>constructed and controlling<br>according to legislation                                                            |
| Iža-Bokroš/Reko, Ltd.<br>Komárno                                | Protected<br>Region<br>Žitný Ostrov | Danube         | municipal                         | landfill constructed and controlling according to legislation                                                                             |
| Holíčov vrch<br>Myjava/Technical<br>Servicies, Myjava           | Myjava                              | Morava         | municipal                         | monitoring and control of<br>landfill exist, however the<br>problem with run-off and<br>leachate is not solved                            |
| Piesky/A.S.A. Zohor, Ltd.                                       | Morava                              | Morava         | municipal                         | the monitoring and control of landfill exist                                                                                              |
| Šulekovo/Drôtovňa, a.s.<br>Hlohovec                             | Váh                                 | Váh            | industrial (ferric sludges)       | monitoring of landfill exists,<br>local impact on groundwater<br>pollution                                                                |
| Locality/Responsible-<br>Legal Body                             | Impact on<br>River                  | River<br>Basin | Type of landfill                  | Definition of Problem                                                                                                                     |
| Trnovec nad<br>Váhom/Duslo Šaľa, a.s.                           | Váh                                 | Váh            | industrial (ash, dust, mud, etc.) | monitoring of landfill exists,<br>measures to reduce<br>contamination of ground-<br>water are going to be solved                          |

Table 3.14. continued

| Locality/Responsible-<br>Legal Body             | Impact on River                                                   | River<br>Basin          | Type of landfill                                                         | Definition of Problem                                                                                                    |
|-------------------------------------------------|-------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Dolná<br>Streda/FERROMIN, a.s.<br>Bratislava    | Váh                                                               | Váh                     | industrial (residues from the treatment of ferric - nickel raw material) | monitoring of landfill exists, landfill is controlled and rehabilitated                                                  |
| Sučany/Ekopolis, Ltd.<br>Martin                 | Váh                                                               | Váh                     | municipal                                                                | the impact of landfill on groundwater and Váh river is not controlled                                                    |
| Považský Chlmec/City of<br>Žilina               | Váh                                                               | Váh                     | municipal                                                                | the groundwater contamination, the Váh river by particular contaminants (oil material, B), the landfill is controlled    |
| Podstránie/Ledrov, Ltd.<br>Lednické Rovné       | Váh                                                               | Váh                     | municipal                                                                | the monitoring and control of landfill exist                                                                             |
| Bytča-Mikšová-<br>Ratlianky/Renol,Ltd.<br>Bytča | Váh                                                               | Váh                     | municipal                                                                | the monitoring and control of landfill exist                                                                             |
| Čadca - Podzávoz/JOKO,<br>Čadca                 | Kysuca                                                            | Váh                     | municipal                                                                | the monitoring and control of landfill exist                                                                             |
| Predajná1, 11/Petrochema, a.s. Dubová           | Hron                                                              | Hron                    | industrial                                                               | landfill in liquidation - the old environmental loading                                                                  |
| ZSNP, a.s. Žiar nad<br>Hronom/ZSNP, a.s.        | Hron                                                              | Hron                    | industrial                                                               | the monitoring and control of<br>landfill exist, the latest<br>measures protect the impact<br>of landfill on environment |
| Kovohuty a.s.<br>Krompachy/Kovohuty,<br>a.s.    | Hornád                                                            | Bodrog<br>and<br>Hornád | industrial and<br>municipal                                              | landfill is controlled,<br>groundwater is contaminated<br>and the run-off is not<br>controlled                           |
| VSŽ Košice/Slag-Scrab,<br>a.s. Košice           | Sokoľanský<br>creek, Gom-<br>boššký cha-<br>nel, Idanský<br>creek | Bodrog<br>and<br>Hornád | industrial                                                               | landfill is controlled and<br>monitored, groundwater and<br>surface water is contaminated<br>by landfill                 |
| Chemko<br>Strážske/Chemko, a.s.<br>Strážske     | channel<br>Duša                                                   | Bodrog<br>and<br>Hornád | industrial                                                               | landfill is controlled and<br>monitored, there are<br>indications of groundwater<br>contamination                        |
| Lipany/Technical<br>Services, Ltd. Lipany       | Torysa                                                            | Bodrog<br>and<br>Hornád | municipal                                                                | landfill is controlled and monitored                                                                                     |
| Lovinobaňa/LOVINIT,<br>a.s. Lovinobaňa          | Krivánsky<br>creek                                                | Ipeľ                    | industrial                                                               | landfill is not controlled and monitored                                                                                 |
| Tisovec/COMBIN, Ltd.<br>Banská Štiavnica        | Rimava                                                            | Slaná                   | industrial                                                               | landfill is controlled but not monitored                                                                                 |
| Plešivec/Municipality of Plešivec               | Slaná                                                             | Slaná                   | municipal                                                                | non controlled landfill, the<br>landfill is not monitored, the<br>risk of transboundary<br>pollution                     |

In addition the above mentioned questionnaires the selected hot spots were asked to fill in the Project Files (see Table 3.15.). The obtained results and the summary of recommended projects for landfill hot spots is presented in Table 3.16. and the Project Files.

Table 3.15. Selected hot spots of landfills and dumps

| No. | Locality                                                             | No. of project file or letter |
|-----|----------------------------------------------------------------------|-------------------------------|
| 1.  | Krompachy - municipal and industrial landfill                        | 1-L                           |
| 2.  | Power plant Nováky-Kostoľany - landfill                              | 2-L                           |
| 3.  | VSŽ Košice - reconstruction of wet waste tip                         | 3-L                           |
| 4.  | VSŽ Košice - reconstruction of dry waste tip and waste liquidation   | 4-L                           |
| 5.  | Bukocel Hencovce - reconstruction of industrial landfill             | 5-L                           |
| 6.  | Chemko Strážske - industrial landfill*                               | 6e - I                        |
| 7.  | Hlinikáreň Žiar nad Hronom - landfill/lagoon for utilized bauxite ** | letter                        |

Note:

<sup>\* -</sup> included in industrial hot-spots,

<sup>\*\* -</sup> the project has been already completed and it is under test operation. The description of deletion of this hot spot from the list, please see the Part C - Water Quality.

Table 3.16. Summary of recommended projects for landfill hot spots

| Hot Spot Name &<br>River & Location                 | Parameters & Values which<br>Define the Problems                                                                                                                         | Ranking of<br>the<br>Problem | Name & Type of<br>Project                                                                       | Project Strategy &<br>Targets                                                                                                                                                                                                | Parameters & Values which Define<br>Project Benefits                                                                                                                               | Project<br>Beneficiaries                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Kovohuty<br>Krompachy &<br>Hornád &<br>Krompachy    | Protection of the groundwater by contamination with heavy metals coming from the landfill and the revitalisation of the site of landfill                                 | High                         | Reduction of contamination of groundwater and revitalisation of landfill Krompachy & structural | protect the site of landfill and to reduce contamination of groundwater and river Hornád                                                                                                                                     | Reduction of the risk of contamination of the Hornád river by polluted groundwater                                                                                                 | Municipality of Krompachy, Kovohuty Krompachy, a.s.                                                   |
| SE Zemianske<br>Kostoľany & Nitra &<br>Chalmová     | Ensuring the sufficient capacity of landfill site for residual ash produced by thermal power plant, to control the groundwater and soil contamination by leachate water. | Medium                       | Final landfill Chalmová - VI. construction & structural                                         | The treatment of slurry - its thickening. The slurry flows from the power plant with the ratio 1:20 (ash: water) and then it is thickening to the ratio 1: 2 with utilisation of pumping station in the site of power plant. | The primary effect is to eliminate the leakage of leachate to groundwater from the landfill and to protect the landfill site and finally the Nitra river against the contamination | SE, a.s. Elektrárne Nováky, o.z. Zemianske Kostoľany                                                  |
| Chemko Strážske, &<br>Laborec, Ondava &<br>Strážske | Disposal of PCB wastes                                                                                                                                                   | Low                          | Disposal of wastes from the PCB production & non-structural                                     | The development of general methodology of PCB waste disposal for the whole territory of Slovakia.                                                                                                                            | reduction of possible impact on the environment of this type of waste, the results of this project will have effect for the whole territory of Slovakia and CEE countries.         | all producers<br>of this type of<br>waste,<br>Chemko<br>Strážske, a.s.,<br>Ministry of<br>Environment |
| Bukocel &<br>Ondava & Hencovce                      | The reconstruction of the existing industrial landfill                                                                                                                   | Low                          | Reconstruction of industrial landfill & structural                                              | The solidification of the dam with the length 400m and the height 8 m. It is necessary to carry out geological survey, draining of the landfill and solidified the dam.                                                      | The protection of groundwater and surface water quality against the impact of pollution coming from the landfill.                                                                  | Bukocel, a.s.<br>Hencovce                                                                             |

Table 3.16. continued

| Hot Spot Name &<br>River & Location               | Parameters & Values which<br>Define the Problems                                                         | Ranking of<br>the<br>Problem | Name & Type of<br>Project                                         | Project Strategy &<br>Targets                                                                                                          | Parameters & Values which Define<br>Project Benefits                                                                                                                                               | Project<br>Beneficiaries    |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| VSŽ oceľ, Ltd.<br>Košice &groundwater<br>& Košice | The disposal the wastes and by-products from furnace with the aim to eliminate the groundwater pollution | Low                          | Reconstruction of dry waste tip and waste liquidation &structural | The elimination of the secondary dustiness, the effective utilisation of the existing dump, the protection of the groundwater quality. | The existing lagoon will be sealed by geomembranes. The run-off will be collected and transported to neutralisation station. The construction of the hydrosealing and sealing walls is considered. | VSŽ<br>Oce1,Ltd.<br>Košice. |
| VSŽ oceľ, Ltd.<br>Košice &groundwater<br>& Košice | The reconstruction of slagash mixture lagoon to protect groundwater.                                     | Low                          | Reconstruction of wet waste tip & structural                      | The sealing of existing lagoon, construction of waste dump for slag and ash with the sealing system.                                   | The existing lagoon will be protected by sealing wall with the length of 1650 m. The sealing will be made from the plastic geomembranes.                                                           | VSŽ<br>Oce1,Ltd.<br>Košice. |

## 3.5. Special Policy Measures

It is assumed that the following legislative measures and norms may have the most important impact on the improving of present status in the water quality in Slovakia.

#### Improvement of water management legislation

Government Decree No.242/1993 was prepared with the aim to correspond with European legislation, especially with Directive 91/271/EEC. It represents a fusion of ambient water quality standards and effluent standards. Nowadays the Gov. Decree No.242/1993 seems to be the most important legislative norm and it will hopefully influence the perspectives of wastewater treatment in the Slovak Republic for a long time. However, it contains many problematic parts and therefore at present is under preparation the amendment of this Decree.

It is assumed the amendment will have to solve the following problems:

- to introduce the term of TN or TIN to effluent standards in order to force the operators control the removal of nitrogen (introduction of denitrification in the treatment line),
- to decrease the concentration of effluent standard in term of TP to be compatible with EU Directive.

It is known that the finances accumulated from the fines create a basic income of the State Fund of Environment. In addition, the polluter must pay compensation fee for the discharged effluent pollution to the river basin authorities. The last two legislative norms are old fashioned and they do not reflect the new economic situation such as inflation, changes from planned to market economy, etc. Especially the Slovak Government Decree No. 31/1975 does not fulfil the expected effect and is together with Government Decree No.2/1989 in the process of amendment.

#### Legislation regarding to sewage sludge disposal

The EU directive 86/278/EEC established the basic legislation on agricultural use of sludge in EU. Slovakia has two legislative norms to control the utilization the sludge in agriculture. The latest manual of application of sludge in agriculture has been already released, however at present the reevaluation of several standards in it is going on to create the better conditions (more realistic) for sludge disposal in agriculture.

#### Improvement of technical standards related to water management

The most important Standard is the STN 73 6707 Municipal Wastewater Treatment Plants from 1983. At present the amendment of the standard is prepared with regard to the problem of nitrogen and phosphorus removal processes and improving the clarifier design.

#### The problem of washing powders

In the Slovak Republic the amount of detergents used is about 25.000 t/year. In households is used 22.700 t/year: P-containing 90 %, P-free 10 % and in industry 2300 t/year (liquid detergents P-free). The firm Henkel Palma is a dominant producer of detergents in Slovakia. Approximately 50 % of used detergents are imported to Slovakia. Pišoft, O. et al. (1996) has estimated the P-emission load of surface water from the detergents for three time levels, as follows: 1032,5 t/year (in 1992), 869,7 (in 2000) and 915,4 (in 2005). In Slovakia there is no legislative tool to encourage the using or producing P-free detergents. It is expected that in the near future the relevant legislation will be prepared to control the content of P in detergents. The different situation is in the water sector because of the existence of the Gover. Decree 242/93 where the effluent standards are set also in terms of TP for the treatment plants ranking according to P.E. (see Table 2.3.).

It is expected that the significant impact on the water management will have the **transformation of water and sewage works.** The comprehensive analysis of the conditions of transformation and the actual state of institutional development of self-government bodies is needed to secure a support for the communities as partners of the state in process of transformation with the final target to improve quality management in water sector. The project target of the *Project File No. 3-O* fully coincides with these objectives. This Project File with the title Water management transformation process - the support of municipal authorities is in *Project Files* report.

# 4. Expected Effects of Current and Planned Projects and Policy Measures

This chapter summarizes the results and expected effects of the projects supported by the Project Files. In general the *Project Files* questionnaires have been obtained almost from all addressed institutions. The level and the quality of the Project Files vary in spite of the fact that they were several times updated and usually by phone completed. The wastewater treatment plant Nitra was visited personally because of the high priority of the project and very complex situation at this treatment plant. Similarly WWTP Košice and NCHZ Nováky were consulted with responsible persons during the arranged meetings.

Within the preparation of the Project Files the following actions were identified: monitoring of water pollution control, upgrading of wastewater treatment lines, protecting of water resources, reduction, groundwater pollution control and protection, changes in process technologies to environmental sound ones, improving the protection and operation of landfills, restoration of wetlands, institutional and research projects, etc.

#### 4.1. Reduction of Nutrient Emissions

Reduction of nutrient emissions from hot spots after the implementation of projects described in the Projects Files is mostly covered by the pollution discharged from municipal wastewater treatment plants. The summary of the activities concerned with the reduction of nutrient emissions is as follows:

- all the projects are structural,
- > upgrading, expansion or completing WWTP are typical goals of the projects,
- ➤ upgrading of treatment line to pre-denitrification, nitrification or R-D-N process and biological phosphorus removal are the typical measures of the Project Files,
- replacement of the existing aeration system (usually represented by mechanical aerators) to fine bubble is considered very often, as well.

It is assumed that in case of point source pollution the driving force in reduction of nutrient emissions has been and will be Gov. Decree 242/93. This impact may be accelerated after the implementation of amendment of this legislative tool if the effluent standard TN or TIN (total inorganic nitrogen) are introduced.

The different situation is in case of diffuse pollution. Due to the lack of data in this field (see part C Water Quality) and the problems with the identification of responsible institutions able to submit the ongoing or planned projects solving these problems, this report does not include any project covering these issues. In fact, it is not possible to estimate the expected effects of nutrient reduction in the case of diffuse pollution with respect to a project. However it is necessary to note that the significant reduction of industrial fertilizers, e.g. the total consumption in tones decreased from 562.496 in 1989 to 102.233 in 1995, and consumption per hec. of agriculture land in kgs from 231,2 in 1989 to 41,8 in 1995, Green Report, 1996). Recently the consumption of industrial fertilizers is more or less stable, it varies around 46 kg/hec of agriculture land/year. It seems that the problem of over-fertilization is less important in SR than before from the point of view of diffuse pollution. Except for municipal emissions as the main source of TN and TP (see the estimation of reduction in the next paragraph of this chapter) the Project of Floodplain Meadow Restoration in the Lower Morava River could improve the present status especially in the Lower Morava River Basin. According to this project one may estimate that the growing vegetation removes nutrient from water. The rough estimation predicts the reduction of 290 t/year of TN and 30 t/year of TP if this project is implemented (see the Project File No. 1-O).

A comprehensive analysis based on the *Project Files* has been prepared to estimate the effect of implementation of the projects on the nutrient removal. As it is stated before we estimated this reduction only for municipal wastewater treatment plants. Note that these results are valid only if these projects are completed and they are not valid for the whole territory of Slovakia draining to the Danube River Basin.

In spite of the fact that we obtained the data about the present quality of wastewater in particular hot spots, the range of water quality of parameters, flow rates etc. were not sufficient for the required estimation. The additional data were asked from the institutions operating treatment plants. We tried to complete the tables using the different sources of data (Database of LABOD, Database of Slovak Hydrometeorological Institute) however still we were not able to obtain the complete database. Therefore a part of data are estimated or calculated based on the different available data (e.g. BOD<sub>5</sub>, P.E., etc.). Unfortunately we have got the table with non-compatible or non-consistent data, therefore the «strange» results are summarized at the bottom of the table. The problems can be explained as follows:

Most of Slovak existing treatment plants are overloaded and therefore the capacity of them is not sufficient. Due to this fact the collected wastewater have to be very often by-passed at treatment plants and therefore the actual total efficiency of plant would be different if the effluent quality is measured in the outlet of WWTP. However most of the data are based on effluent quality measured after the final clarification (before the confluence with the by-passed wastewater). Due to the difficulties with the interpretation of obtained results, the second scenario has been proposed. This scenario is based only on influent quality of wastewater. The capacity of treatment plant is the same at present (theoretical) and in the future if the project is implemented. We changed only the treatment line from mechanical-biological treatment plant (at present) to treatment line planning according to the requirement of Project File. In most projects the denitrification-nitrification have been applied.

The following assumptions were considering:

- > quality of influent in TP, TN was calculated based on P.E. or BOD<sub>5</sub> and known flow rate
- the same capacity of WWTP was assumed for present and future state,
- the following emission factors were considered in Table 4.1.

Table 4.1. Estimated emission factors for particular treatment lines

| Treatment line used                                                               | Emission      | Factors       |
|-----------------------------------------------------------------------------------|---------------|---------------|
| Treatment fine used                                                               | residue of TN | residue of TP |
| Mechanical-biological *                                                           | 75 %          | 63 %          |
| only nitrification                                                                | 75 %          | 63 %          |
| Nitrification-denitrification **                                                  | 30 %          | 69 %          |
| nitrification-denitrification and biological phosphorus removal ( luxury uptake ) | 30 %          | 22 %          |

Note:

According the above estimated assumptions the Table 2 has been developed and it is enclosed in Annexes with the following final results:

about 60 % TN reduction and 22 % TP reduction.

<sup>\*</sup> sludge age 5 d, influent:  $BOD5 \sim 200$  mg/l, typical composition of untreated municipal wastewater, 1 P.E. is 60 gBOD5/cap./day, TN = 11 g/P.E./day, TP = 2.5 g/P.E./day,

<sup>\*\*</sup> due to the higher sludge age the phosphorus removal is less efficient if only assimilation of phosphorus is taken into account.

This estimation is on our opinion more less the realistic. Note that these results are valid only for the municipal WWTP projects defined by Project Files.

In industrial sector only the upgrading of treatment plant in PCHZ Žilina will reduce TN from 167,9 t/year to 32,85 t/year. The flux of TP in this case is not interesting because TP concentration is not sufficient for the biological treatment processes. The rest of the plants do not have to assume the implementation of the measures leading to the reduction of nutrients. In fact, they should not be so important that they should be considered in this analysis.

If we assume that the total emission in terms of TN and TP discharged from the Slovakia territory drained to the Danube River Basin is about 59 KtN/year and 5 KtP/year, respectively (see Table 3.10.), one may assume that after the implementation of the projects (including the wetland one) the total impact of nutrients will reduce to 55.374 tN/year and 4755 tP/year.

| <b>Table 4.2.</b> | Summary of the reduction of nutrient emissions if the projects |
|-------------------|----------------------------------------------------------------|
|                   | defined in Project Files would implement                       |

|                                | At<br>present | after the<br>implementa-<br>tion of the<br>project | redu-<br>ction | at<br>present | after the implementation of the project | reduction |
|--------------------------------|---------------|----------------------------------------------------|----------------|---------------|-----------------------------------------|-----------|
| Sector                         |               | TN [ t/year]                                       |                | TP [t/year]   |                                         |           |
| municipal                      | 5 279         | 2 078                                              | 3 201          | 1 010         | 795                                     | 215       |
| industrial (PCHZ<br>Žilina)    | 168           | 33                                                 | 135            | the same      | the same                                | -         |
| agricultural (wetland project) | N/A           | 290 less                                           | 290            | N/A           | 30 less                                 | 30        |
| Total reduction TN             |               |                                                    | 3 626          | Total r       | reduction TP                            | 245       |

The more significant impact on the reduction of nutrients can be pointed out if we only look on the reduction of point-source load (see again Table 3.10.). In this case the nutrient load would reduce from 20 ktN/year to 16.374 tN/year (reduction about 20 %) and 3 ktP/year to 2 755 tP/year (reduction about 10 %). It is clear that the more significant reduction of nutrient pollution could be obtained if the problem of diffuse pollution is solved in Slovakia.

#### 4.2. Hazardous Substances

In general, it is assumed that only industrial emission discharges can contain the hazardous substances. The results of the projects in industry sector can be summarized as follows:

- changes in process technology in several plants to environmental sound technologies,
- > significant reduction in mass and hydraulic loading of existing WWTPs, e.g. NCHZ Nováky, Chemko Strážske, Istrochem Bratislava,
- most of effluent water quality parameters set in consent contracts are regularly reach,
- the measures in process technology to reduce the consumption of water and influent pollution,
- monitoring of water pollution and improvement of process water quality management,
- reduction of possible risk of accidents and establishment of warning system in plants.

It is not possible to define generally the reduction of hazardous substances therefore the selected industrial plants and expected reduction of them is described in the next paragraphs:

**PCHZ Žilina:** reduction of NH<sub>3</sub> spills, caprolactam and methymethacrylate. At present the impact on the groundwater quality is significant e.g. the average concentration of NH<sub>4</sub>-N is about 1000 mg/l and COD 120 mg/l in the vicinity of holding tanks for these chemicals.

**Bučina Zvolen:** it is expected the reduction of phenols - less 0,147 t/year and 4,75 t/year of NES compared to the present state.

**Tannery Bošany:** The project should reduce the contamination of water and mainly the sludge by heavy metals especially by chromium.

**NCHZ Nováky:** The project will treat the discharged wastewater contaminated by chlorinated hydrocarbons. The expected reduction is from 300 to 500 t/year. This project is very important because this measure could significantly improve the water quality in highly polluted the Nitra River

Reduction of water pollution from dumpsites also can improve the situation in particular river basins, but predominantly the ground water quality. Most of the projects in this sector are structural serving for upgrading the protection of the groundwater, monitoring and control and/or treatment of leachate. The revitalization of landfills and sealing of the existing landfill sites with integrated monitoring system of landfill are the typical activities proposed in these projects.

## 4.3. Microbiological Contamination

The reduction of microbial contamination is very difficult to estimate because the accessible effluent water quality monitoring does not include any parameters in terms of microbiology, therefore we do not have any available information in this field. However it could be assumed that after the implementation of the projects the portion of untreated wastewater will reduce (the reduction of by-passed wastewater) and the advanced treatment technologies (e.g. nutrient removal) usually required the higher sludge age, lower sludge loading and thus less organic portion in MLSS with more stabilized activated sludge. Based on this assumption we may expect the reduction of microbial contamination however at this time it is not possible to quantify the range of this reduction.

#### 4.4. Adverse Environmental Effects

Transboundary pollution has been studied by the Water Quality Expert and identified according to several indicators (see part C Water Quality). The results have been utilized in the following analysis and combined with the information obtained from the Project Files. In addition we have introduced also the source of pollution (AssiDomän Štúrovo), which is not so important from the point of view of ambient water quality criteria, but knowing that it might have impact on the water resources utilized for Budapest situated nearby downstream from the Štúrovo, it was recognized, to take into account also the Slovak foreign environmental sound policy, as the transboundary hot spot.

This approach defined the five industrial plants having the significant impacts on the transboundary pollution. The first one is a chemical plant **Istrochem Bratislava**. The discharged of wastewater is to the Danube River (r.km. 1863,6). At this time this source of pollution does not reach the requirements of Gov. Decree in particular effluent standards because of only mechanical-chemical

treatment. Therefore the construction of biological treatment step has started but this year this construction was stopped due to the significant changes in process technology. At present the situation at this plant is under solution and it is necessary to wait for the decision of the company executive board. The second plant is **AssiDomän Packaging Štúrovo**. This paper company intends to improve the situation in wastewater treatment. The expected results can be characterized in term of emission pollution, as follows:

| effluent quality | at present [t/year] | after the implementation of the project (in 2005) [t/year] |
|------------------|---------------------|------------------------------------------------------------|
| $BOD_5$          | 2228                | 611                                                        |
| COD              | 4400                | 3058                                                       |
| SS               | 1570                | 611                                                        |
| DS               | 9800                | 9785                                                       |
| NES              | 23                  | 37                                                         |

The third one is **Bukocel Hencovce**, fourth **Slovhodváb Senica** and finally **Chemko Strážske**. All these plants (except Slovhodváb Senica) are covered by the projects defined in *Project Files*.

**Bukocel Hencovce**: the main goal of the project is to reduce the pollution to the Ondava River from the present 305,5 t BOD<sub>5</sub>/year to 203,1 BOD<sub>5</sub>/year.

**Chemko Strážske:** separation and treatment of wastewater conveyed by the existing combined sewer system the plant will reduce discharged BOD<sub>5</sub> to the Laborec River by 165,1 t/year compared to the present state ( $\sim 310$  t/year of BOD<sub>5</sub>).

**Slovhodváb Senica:** as it was stated before, this point source of pollution is not covered by any projects.

Municipal pollution has also the significant impact on the transboundary pollution. Košice wastewater treatment plant is the most important problem from this point of view in Slovakia. At present the civil construction of new treatment plant is an almost finished. If the biological treatment step could be completed the plant in very short time would start the operation with the significant reduction of pollution discharged to the Hornád River. Recently only mechanical treatment step is operated. Since this time the term of the project completing has not been accomplished because of financial constraints.

The total discharge of wastewater is about 1250 l/s. The quality of wastewater discharged to the Hornád River deteriorates especially oxygen regime, however the increasing of nutrient content is also significant. The wastewater discharge has also an impact on microbiological pollution of water (number of coliform and psychrophilic bacteria increases downstream from the outlet from 2051 CFU/ml to 11.083 CFU/ml in 1996).

The Malacky wastewater treatment plant is the second serious transboundary source of pollution. The treatment plant discharges the partially treated water to Malina River. It is the tributary of the Morava River. Fortunately at this time Malacky plant is under construction and at the end of this year the 1<sup>st</sup> stage of its construction should be finished.

A relatively new adverse environmental effect with the direct impact on the present state of wastewater treatment can be documented in case study of PCHZ Žilina. The existing treatment plant has to upgrade its efficiency because of construction of new water dam. Due to the fact that the effluent will be discharged to the reduced flow rate than before the new more stringent effluent standards have been set. The present receptor will change to very sensitive one especially with respect of nutrients and micro-pollutants. In spite of this fact that this adverse environmental effect will cause the new investments these additional costs were not included in the capital cots of the hydropower and PCHZ Žilina has to solve this upgrading itself.

## 5. Cost Estimation of Programmes and Projects

Using the information obtained in Project Files the four tables with cost estimation of ongoing or planned projects have been prepared.

The tables are categorized in four groups:

- Table 5.1. summarizes the costs in municipal sector,
- Table 5.2. identifies the costs in industrial sector,
- Table 5.3. recapitulates the projects costs necessary for landfills and lagoons,
- Table 5.4. presents the required costs for non-structural projects or programmes.

The compilation of these data required the particular simplification to be able to present data in this report therefore the headings of tables are organized in the following way:

the number of project coincides with the number in *Project Files* used. In addition the same assignments have been used in the *hot spot* tables (see Table 3.1., 3.5. and 3.8.). Utilizing this system of the projects labeling one may find out the necessary information about the particular program or project. The ranking of the projects has been included in these tables, as well.

Analysis of the cost estimation in the **municipal sector** indicates that the National Environmental Fund and Water Management Fund for the required investment costs are supposed to be mostly used. Public loans covered by central or regional budget is the second important group of expected source of fund. The equity of owner is less important source of financing. The total requirement costs in this sector are about 3640 mil. Sk (105.5 mil. US\$). At this time it is expected that only about 50 % of the required investment costs could be covered from the domestic funds (about 53 mil. US\$ is required for this sector). At present the situation in this field is quite complex because of the privatization of water and sewage works and reducing the net profit of these institutions during two last years. At present water and sewage works practically do not have any own source for investment costs.

The different situation is in **industry** because now most of the companies are shareholding companies with minor state influence on their management, economy, etc. If we do not take into account the Project 2000 (No. 6a - I, Table 5.2.) the significant source of expected financing, except commercial bank and international loans, plays important role also the equity of the owner. In this case the total expected capital costs of the projects are 3507,4 mil. Sk (101,7 US\$) and the requested or non-secured amount is about 85,5 US\$. These huge costs are more realistic if we do not consider the costs required for the Project 2000 (6a-I). Then the total capital costs will reduce to 1092,4 mil. Sk (31,66 mil. US\$) and the requested funds to 29,5 US\$.

Unfortunately in case of projects for **landfills or lagoons** (Table 5.3.) we obtained only the estimation of capital costs without any specification of the sources of financing. The total investment costs in national currency is about 1500 mil. Sk (43,5 US\$) and the same amount is non-secured, yet.

Interesting status can be found in Table 5.4. All the proposed projects assume only the international grants and a small part can be covered from National Environmental and Water Management Fund. In this matter the requested sum is 38 mil. Sk or 1,1 US\$. The projects with the expected significant impact on the transboundary pollution are summarized in the Table 5.5. The more comprehensive description of the projects could be found in *Project Files*, also in Tables 3.3., 3.6. and 3.9., and/or in text of the chapters 3 and 4 of this report.

Summary of the cost estimation of the proposed programmes and projects in municipal sector **Table 5.1.** 

|                   |                                                  | J                          |                                             |                        |                    | National F              | National Funding Sources                    |                              | •                                  |         |
|-------------------|--------------------------------------------------|----------------------------|---------------------------------------------|------------------------|--------------------|-------------------------|---------------------------------------------|------------------------------|------------------------------------|---------|
| No. of<br>project | Wastewater treatment plant locality the projects | Kanking or<br>the projects | Kanking of Total capital the projects costs | Total capital<br>costs | Equity of<br>Owner | National<br>Envir. Fund | Water Manag. Public loans Fund Centr.+ Reg. | Public loans<br>Centr.+ Reg. | total requested or non-<br>secured | r non-  |
|                   |                                                  | [priority]                 | [MNC]                                       | [WUS\$]                | [MNC]              | [MNC]                   | [MNC]                                       | [MNC]                        | [MNC]                              | [MUS\$] |
| 1- M              | Košice                                           | high                       | 900,000                                     | 26,087                 | 30,000             | 100,000                 | 30,000                                      | 130,000                      | 290,000                            | 8,406   |
| 2- M              | Nitra                                            | high                       | 552,000                                     | 16,000                 |                    |                         |                                             |                              | 373,676                            | 10,831  |
| 4- M              | Banská Bystrica                                  | medium                     | 593,461                                     | 17,202                 |                    |                         | 38,000                                      | 131,106                      | 169,106                            | 4,902   |
| 5- M              | Michalovce                                       | medium                     | 114,000                                     | 3,304                  | 10,000             | 20,000                  |                                             | 25,000                       | 55,000                             | 1,594   |
| 6- M              | Svidník                                          | medium                     | 410,000                                     | 11,884                 | 16,000             | 86,000                  |                                             | 110,000                      | 212,000                            | 6,145   |
| 7- M              | Trenčín right side                               | medium                     | 267,000                                     | 7,739                  |                    |                         |                                             |                              | 257,000                            | 7,449   |
| 8- M              | Humenné                                          | medium                     | 597,806                                     | 17,328                 | 35,000             | 100,000                 |                                             | 200,000                      | 335,000                            | 9,710   |
| 10- M             | Topol'čany                                       | low                        | 34,298                                      | 0,994                  | 28,298             |                         |                                             |                              | 28,298                             | 0,820   |
| 13- M             | 13- M Rožňava                                    | low                        | 91,605                                      | 2,655                  | 16,000             | 30,000                  |                                             |                              | 46,000                             | 1,333   |
| 14- M             | 14- M Liptovský Mikuláš                          | low                        | 80,000                                      | 2,319                  | 22,000             | 20,000                  | 30,000                                      |                              | 72,000                             | 2,087   |
|                   | Total                                            |                            | 3640,170                                    | 105,512                | 157,298            | 356,000                 | 98,000                                      | 596,106                      | 1838,080                           | 53,278  |
|                   |                                                  |                            |                                             |                        |                    |                         |                                             |                              |                                    |         |

MNC - millions in national currency - Slovak crowns

MUS\$ - millions in US\$

exchange rate used : 34.5 Sk = 1 US\$

Summary of the cost estimation of the proposed programmes and projects in industrial sector

**Table 5.2.** 

| Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part    |                   |                                |              |          |           |                    | Nat            | National Funding Sources | ng Sources                |         |        |               |           |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|--------------|----------|-----------|--------------------|----------------|--------------------------|---------------------------|---------|--------|---------------|-----------|---------------|
| Plant locality   the projecte   Cookis   Cooki |                   |                                | Ranking of   | Total    | Total     |                    | National       | Water                    | Public                    | Interna | tional | Commerc.      | total req | nested or     |
| NCHZ Nováky         high         12         0.348         IMNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. of<br>project |                                | the projects | capital  | capital   | Equity<br>of Owner | Envir.<br>Fund | Manag.<br>Fund           | grants<br>Centr.+<br>Reg. | Loans   | Grants | Bank<br>Loans | s-uou     | ecured        |
| NCHZ Nováky         high         12         0.348         1         1         1         3         5         5         5         5         5         3         9           NCHZ Nováky         high         30         0.870         3         2         5         5         5         5         3         30           Bukocel Hencovce         high         200         5.797         3         2         5         5         5         5         30         30           PCHZ Žilina         medium         57.464         1,666         3         6         48         193         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                | [priority]   | [MNC]    | [\\$S\nM] | [MNC]              | [MNC]          | [MNC]                    | [MNC]                     | [MNC]   | [MNC]  | [MNC]         | [MNC]     | [\\$CIMOS\\$] |
| NCHZ Nováky         high         30         0,870         3         2         5         5         5         3         3           Bukocel Hencovce         high         200         5,797         9         21,93         21,93         21,93           PCHZ Žilina         medium         21,93         0,636         1,901         9         8         5         5         5         5         30         21,93         20,03         20,93         20,93         20,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,53         21,53         21,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1a -I             | NCHZ Nováky                    | high         | 12       | 0,348     |                    | 1              | 1                        |                           |         | 3      |               | 5         | 0,145         |
| Bukboel Hencovee         high         200         5,797         9         200         200           PCHZ Žilina         medium         21,93         0,636         1         1         21,93         21,93         21,93           PCHZ Žilina         medium         57,464         1,666         1         1         1         21,91         1         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,73         21,93         21,73         21,43         21,43         21,43         21,43         21,43         21,43         21,43         21,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1b -I             | NCHZ Nováky                    | high         | 30       | 0,870     |                    | 2              | 5                        | 5                         | 5       | 5      | 5             | 30        | 0,870         |
| PCHZ Žilina         medium         21,93         0,636         9         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,93         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53         21,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 -I              | Bukocel Hencovce               | high         | 200      | 5,797     |                    |                |                          |                           |         |        |               | 200       | 5,797         |
| PCHZ Žilina         medium         68,681         1,991         9         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         66,481         67,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509         77,509 </td <td>3a -I</td> <td>PCHZ Žilina</td> <td>medium</td> <td>21,93</td> <td>0,636</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21,93</td> <td></td> <td>0,636</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3a -I             | PCHZ Žilina                    | medium       | 21,93    | 0,636     |                    |                |                          |                           |         |        | 21,93         |           | 0,636         |
| PCHZ Žilina         medium         57,464         1,666         9         55         55           1         PCHZ Žilina         medium         28,809         0,835         9         77,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3b -I             | PCHZ Žilina                    | medium       | 68,681   | 1,991     |                    |                |                          |                           |         |        | 66,481        | 66,481    | 1,927         |
| I PCHZ Žilina         medium         28,809         0,835         medium         2415         70,000         483         1207,5         724,5         724,5         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509         27,509 </td <td>3c -I</td> <td>PCHZ Žilina</td> <td>medium</td> <td>57,464</td> <td>1,666</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>55</td> <td>55</td> <td>1,594</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3c -I             | PCHZ Žilina                    | medium       | 57,464   | 1,666     |                    |                |                          |                           |         |        | 55            | 55        | 1,594         |
| Chemko Stážske         medium         2415         70,000         483         1207,5         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3d -I             | PCHZ Žilina                    | medium       | 28,809   | 0,835     |                    |                |                          |                           |         |        | 27,509        | 27,509    | 0,797         |
| I Chemko Stäzske         medium         15,05         0,464         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         9         9         9         9         7,5         7,5         9         9         100         2,899         50         50         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6a -I             | Chemko Stážske                 | medium       | 2415     | 70,000    | 483                | 1207,5         |                          |                           | 724,5   |        |               | 1932      | 56,000        |
| Chemko Stážske         medium         15,05         0,436         7,5         7,5         7,5         15           Chemko Stážske         medium         100         2,899         50         50         6         7         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I- 99             | Chemko Stážske                 | medium       | 16       | 0,464     | 8                  | 8              |                          |                           |         |        |               | 8         | 0,232         |
| Chemko Stážske         medium         100         2,899         50         50         50         6         6         6         6         6         6         6         6         7         7         7         7           AssiDomän Packaging Stúrovo         low         317,7         9,209         2,725         2         2         2         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td< td=""><td>6c -I</td><td>Chemko Stážske</td><td>medium</td><td>15,05</td><td>0,436</td><td>7,5</td><td>7,5</td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>0,435</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6c -I             | Chemko Stážske                 | medium       | 15,05    | 0,436     | 7,5                | 7,5            |                          |                           |         |        |               | 15        | 0,435         |
| AssiDomän Packaging         low         317,7         9,209         mathematication         mathe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I- p9             | Chemko Stážske                 | medium       | 100      | 2,899     | 50                 | 90             |                          |                           |         |        |               | 100       | 2,899         |
| Bučina Zvolen.         low         94         2,725         94         94           Biotika Slovenská Lupča         low         80,702         1,449         10         15         25         25         25,8         25,8           I Tannery Bošany         low         3507,336         101,662         570,3         1300,5         6         5         754,5         8         175,920         2948,420         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 - I             | AssiDomän Packaging<br>Štúrovo | low          | 317,7    | 9,209     |                    |                |                          |                           |         |        |               | 317,7     | 9,209         |
| Biotika         Slovenská         low         50         1,449         10         15         25         50         50           Lupča         1         Tamery Bošany         low         80,702         2,339         8,8         17         1300,5         6         5         754,5         8         175,920         2948,420         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I - 8             | Bučina Zvolen.                 | low          | 94       | 2,725     |                    |                |                          |                           |         |        |               | 76        | 2,725         |
| -I Tannery Bošany low 80,702 2,339 8,8 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I - 6             |                                | low          | 50       | 1,449     | 10                 | 15             |                          |                           | 25      |        |               | 90        | 1,449         |
| <b>3507,336 101,662</b> 570,3 1300,5 6 5 754,5 8 175,920 <b>2948,420</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 - I            | Tannery Bošany                 | low          | 80,702   | 2,339     | 8,8                | 17             |                          |                           |         |        |               | 25,8      | 0,748         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Total                          |              | 3507,336 | 101,662   | 570,3              |                | 9                        | 5                         | 754,5   | 8      | 175,920       | 2948,420  | 85,461        |

Summary of the cost estimation of the proposed programmes and projects for landfills **Table 5.3.** 

| No. of | Landfill or Lagoon/Locality          | Ranking of the projects | Total capital costs | Total capital costs | total requested or non-<br>secured | r non-  |
|--------|--------------------------------------|-------------------------|---------------------|---------------------|------------------------------------|---------|
| 32614  |                                      | [priority]              | [MNC]               | [WUS\$]             | [MINC]                             | [MUS\$] |
| 1 - L  | Kovohuty Krompachy                   | High                    | N/A                 | N/A                 | N/A                                | N/A     |
| 2 - L  | 2 - L Power plant Nováky - Kostoľany | Medium                  | 335,160             | 9,715               | 335,160                            | 9,715   |
| 3 - T  | VSŽ Oceľ Košice                      | Low                     | 212,550             | 6,161               | 212,550                            | 6,161   |
| 4 - L  | VSŽ Oceľ Košice                      | Low                     | 503,062             | 14,582              | 503,062                            | 14,582  |
| 2 - T  | Bukocel Hencovce                     | Low                     | 50,000              | 1,449               | 50,000                             | 1,449   |
| ee - I | Chemko Strážske                      | Low                     | 400,000             | 11,594              | 400,000                            | 11,594  |
|        | Total                                |                         | 1500,772            | 43,501              | 1500,772                           | 43,501  |

MNC - millions in national currency - Slovak crowns

MUS\$ - millions in US\$

exchange rate used: 34.5 Sk = 1 US\$

Summary of the cost estimation of the proposed programmes for non-structural projects **Table 5.4.** 

|         |                                                        | :-                       |        |               | Nationa              | National Funding Sources | ces          | 1240               | 1000     | ,                       |           |
|---------|--------------------------------------------------------|--------------------------|--------|---------------|----------------------|--------------------------|--------------|--------------------|----------|-------------------------|-----------|
| No. of  | 7.7                                                    | Kanking of Total capital |        | Total capital | T Carrier Of Carrier | National                 | Water Manag. | IIITEIIIAIIOIIAI   | allollal | total requested or non- | l or non- |
| project | name or the project                                    | nie projects             | G 500  |               | Equity of Owner      | Envir. Fund              | Fund         | Loans Grants       | Grants   |                         | 3         |
|         |                                                        | [priority]               | [MNC]  | [MUS\$]       | [MNC]                | [MINC]                   | [MNC]        | [MNC] [MNC]        | [MNC]    | [MNC]                   | [MUS\$]   |
| 1 - O   | - O Restoration of wetlands                            | high                     | 14,408 | 0,418         |                      |                          |              |                    | 11,873   | 11,873                  | 0,344     |
| 3 - 0   | 3 - O Transformation of water boards                   | medium                   | 6,156  | 0,178         |                      |                          |              |                    | 6,156    | 6,156                   | 0,178     |
| 2 - 0   | 2 - O Analysis of quality sediments and their disposal | low                      | 20,000 | 0,580         | 3,000                | 2,000                    | 1,000        |                    | 14,000   | 20,000                  | 0,580     |
|         | Total                                                  |                          | 40,564 | 1,176         | 3,000                | 2,000                    |              | 0,000 0,000 32,029 | 32,029   | 38,029                  | 1,102     |

MNC - millions in national currency - Slovak crowns

MUS\$ - millions in US\$

exchange rate used: 34.5 Sk = 1 US\$

Summary of the cost estimation of the proposed programmes or projects with significant impact on transboundary pollution **Table 5.5.** 

| total requested or<br>non-secured | [MNC] [MUS\$] | 290,0 8,406                                                                                                                                                                                                                                                                                                       | N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200 5,797                                                                                                                                                                                                     | 100 2,899                                                                                                              |
|-----------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Total capital costs               | [WUS\$]       | 26,087                                                                                                                                                                                                                                                                                                            | A/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,797                                                                                                                                                                                                         | 2,899                                                                                                                  |
| Total capital costs               | [MNC]         | 0,009                                                                                                                                                                                                                                                                                                             | Z/Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                           | 100                                                                                                                    |
| Ranking of the projects           | [priority]    | High                                                                                                                                                                                                                                                                                                              | Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | High                                                                                                                                                                                                          | Medium                                                                                                                 |
| Description of the project        |               | In 1991/92 years a new WWTP has started. At present the civil construction of plant is finished and the mechanical treatment is already running. The biological treatment step is not finished due to the financial constraints. The completing of aeration tanks and clarifiers is the main goal of the project. | WWTP is under construction, the civil structures are financed by the Programme Phare, the investment costs for the technology is covered by the municipality of Malacky. This year the 1 <sup>st</sup> stage of the upgrading and expansion of treatment plant will finish. The starting and implementation of the 2 <sup>nd</sup> stage of construction has not been clarified and therefore it is not covered by investment costs, yet. The design project for the 2 <sup>nd</sup> stage was already done. | The reconstruction of treatment plant consists of construction sedimentation tanks, thickeners and upgrading of dewatering process. It is expected the reduction of pollution discharged to the Ondava river. | Reconstruction of sewer The project assumes to separate the sewage Medium from the combine sewer system its collection |
| Name of the project               |               | Košice-expansion of wastewater treatament plant 2 <sup>nd</sup> stage of construction                                                                                                                                                                                                                             | WWTP is under construction, the civil string Programme Phare, the investment costs for the municipality of Malacky. This year the and expansion of treatment plant will finis implementation of the 2 <sup>nd</sup> stage of construand therefore it is not covered by investme project for the 2 <sup>nd</sup> stage was already done.                                                                                                                                                                      | Reconstruction of wastewater treatment plant in Bukocel, a.s.                                                                                                                                                 | Reconstruction of sewe                                                                                                 |
| name of the project               |               | WWTP Košice                                                                                                                                                                                                                                                                                                       | WWTP Malacky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bukocel Hencovce                                                                                                                                                                                              | Chemko Strážske                                                                                                        |
| No. of project                    | -             | 1 - M                                                                                                                                                                                                                                                                                                             | 3 - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - I                                                                                                                                                                                                         | I - p9                                                                                                                 |

Table 5.5. continued

| 0,344           | 11,873 0,344                      | 0,418                            | 14,408                 | High                    | rder with Hungary is effected by the kovo-Nagymaros. ed the degraded 1000 ha of lish the system of that about 290 t of e removed by hay | river creates the natural border with Hungary and the sensitivity Danube is effected by the planned waterworks Gabčíkovo-Nagymaros.  The project should identified the degraded or meadows, to restore about 1000 ha of degraded meadow, to establish the system of monitoring. It is predicted that about 290 t of TN and 30 t of TP would be removed by hay annually. | river creates the natural bor and the sensitivity Danube planned waterworks Gabčíl Floodplain Meadow  Floodplain Meadow  The project should identific Restoration in the Lower meadows, to restore about degraded meadow, to estab monitoring. It is predicted to TN and 30 t of TP would be annually. |
|-----------------|-----------------------------------|----------------------------------|------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 11,873                            | 0,418                            | 14,408                 | High                    | ied the degraded<br>1000 ha of<br>blish the system of<br>that about 290 t of<br>ce removed by hay                                       | The project should identifier meadows, to restore about degraded meadow, to estal monitoring. It is predicted TN and 30 t of TP would I annually.                                                                                                                                                                                                                       | adow<br>the Lower                                                                                                                                                                                                                                                                                      |
| 317,7 9,209     | 317,7                             | 9,209                            | 317,7                  | Low                     | lemented in 3 is not able to reach sfore its upgrading iny site the Danube order with Hungary is effected by the Ikovo-Nagymaros.       |                                                                                                                                                                                                                                                                                                                                                                         | The reduction of discharged wastewater pollution to the Danube the effluent standards there river is necessary. At the compariver river creates the natural board the sensitivity Danube planned waterworks Gabö                                                                                       |
| [MUS\$]         | [MNC] [MUS\$]                     | [WUS\$]                          | [MNC]                  | [priority]              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |
| sted or<br>ured | total requested or<br>non-secured | Ranking of the costs costs costs | Total capital<br>costs | Ranking of the projects | ne project                                                                                                                              | Description of the project                                                                                                                                                                                                                                                                                                                                              | Name of the project Description of th                                                                                                                                                                                                                                                                  |

## 6. Planning and Implementing Capacities

## 6.1. Planning Capacities

In the Slovak Republic the planing activities and thus the capacities can be divided into several levels:

- planing capacities on the country level presented mainly by the Ministries,
- > planing capacities on the river basin level represented by river basin authorities,
- > planning capacities on the regional level.

As far as the purely planning capacities are concerned it is assumed that they are sufficient with respect to water pollution reduction. Some problems are expected in preparation of bankable projects because of problems concerning the economics. The professional level according to BAT or BEP is comparable to Western European standard.

## **6.2.** Implementing Capacities

### 6.2.1. Implementing Capacities for Structural Projects

In Slovakia after 1989 has started the process of privatization and transformation of state companies. During this period a number of new firms have been established or they have been created from the previous state companies. It is typical that the previous huge state corps split to the smaller private or share holding firms. This trend has been typical also in water management. At present a number of new firms exist and they are engaged in this field. The Catalogue of Firms Dealing with Ecology in the Slovak Republic summarizes the names of about 250 firms working in water industry. Most of these firms are purely Slovak firms, however a part of them are partially controlled by foreign investors.

There are several typical categories of firms as follows:

- design and consulting firms such as Hydroconsult (state firm) Bratislava, Hydrocoop, Ltd. Bratislava, Chempik, a.s. Bratislava, Hydroeko, a.s. Banská Bystrica, Keramoprojekt Trenčín, Unipid, Ltd. Trenčín, Celprojekt Ružomberok, etc.,
- complete design and delivery of particular structures in water management (e.g. wastewater treatment plants) including treatment plan services concerning with their operation, start-up, etc. such as ČOVSPOL, Ltd. Bratislava, Hydrotech, a.s. Bratislava, AQUIPUR, Ltd., PROX.T.E.C., Trenčín, etc.,
- typical civil engineering firms such as: Hydrostav, a.s. Bratislava, Inžinierske stavby Košice, Stredoslovenské stavby, a.s. Žilina, Váhostav, a.s. Žilina, Vodohospodárske stavby Bratislava, Záhorácke vodohospodárske stavby, Malacky, etc.
- > typical consulting firm is very difficult to find in water management, because most investors prefer to construct the structure without complete evaluation of the problem, which is typical for the prefeasibility studies in western European conditions.

At present the reasonable efficiency, low construction and operation costs of new and upgraded existing structures or processes in water management are required. Many treatment plants should be expanded or upgraded in several steps resulting in more complicated treatment lines.

From this point of view it is clear that there is the trend to apply the new technologies as well as the latest reliable equipment (blowers, mixers, pumps, engines etc.). In Slovakia the most of these equipment have to be imported. Therefore there is several headquarters of known firms not only in

the field of engineering but also in monitoring, chemistry etc. (e.g. suppliers of blowers, pumps, mixers, aeration systems, flow meters - devices, probes, sensors for monitoring, chemicals used in water management e.g. for conditioning of sludges, for precipitation of phosphorus, etc.). During last years the significant portion of the necessary technique for treatment plants is also produced in Slovak Republic or Czech Republic, such as making the bridges for clarifiers or settling tanks, beltpresses, pressfiltress, centrifuges for thickening, plastic pipes and fittings, screenings, etc. There are several small firms, which are predominantly specialized in production of special products for the water management. As far as the innovated technology treatment lines are concerned the significant number of biological treatment systems are designed and constructed by Slovak companies. Many of these technologies with positive references are of Slovak or the former Czechoslovak origin, e.g. selector activated sludge system (compartmentalized activation reactors, kinetic and metabolic selection), R-D-N and AN-R-D-N process (nutrient removal systems with compartmentalized anaerobic and anoxic reactor and with regeneration of recycled sludge), activated sludge system with integrated clarifier ODKAL (high recirculation ratio of activated sludge by means of pressure air, without recirculation pumps), etc.

The civil firm have a huge amount of capacities for the constructing the treatment plants, upgrading the existing ones and/or uncontrolled landfills etc.

There is potential space for co-operation with foreign companies for turnkey projects especially in the field of industrial wastewater and waste disposal. It is expected that the foreign firm would be able to deliver not only the know-how of BAT but also to ensure the quality of latest technologies and installations made in EU.

### 6.2.2. Implementing Capacities for Non-structural Projects

There are several consulting and design firms with the high professional level. The most of them were created from the former employees of universities, research institutes, ministries or water and sewage works. The ability of these firms to speak in foreign language is very good. Therefore we do not expect the language barrier, which is important fact to overcome the problems concerning with international co-operation. In Slovakia we assume that except the foreign investments we need especially the international co-operation for implementation of non-structural projects.

## **Bibliography** on Water Environmental Engineering

- 1. Bočková,M. (1998) Evaluation of the present state of water management in Chemko Strážske, a.s. with respect to wastewater, Final Report of 2<sup>nd</sup> Course of Operators, Strážske (in Slovak)
- 2. Bodík I., Drtil M., Piatrik M. Present state of wastewater treatment in Slovakia, Vodní hospodářství/Water Management 43, 5 -7, 1993, (in Slovak).
- 3. Carl Bro a/s (1993) Danube River Basin Environmental Programme Pre-investment Diagnostic Mission 2, Upper Tisza River Basin, Final Report, European Bank for Reconstruction and Development.
- 4. Carl Bro a/s (1993) Danube River Basin Environmental Programme Pre-investment Diagnostic Mission 1, Váh River Basin, Final Report, European Bank for Reconstruction and Development
- 5. Daphne Foundation (1996) Wetlands for Life, Bratislava, p.33
- 6. Delft Hydraulics/RIZA (1994) Pre-investment Study Hron River Basin Bučina Wood Processing Factory Zvolen, Danube Environmental Programme, PSO- Support Programme, Water Research Institute Bratislava, DHV Consultants BV, p.32
- 7. Delft Hydraulics/RIZA (1994) Banská Bystrica Wastewater Treatment. Part Economic and Financial Aspects.
- 8. GEF/UNDP Project Implementation (1997) Inception Workshop, Donau University, Krems, Austria
- 9. Green Report (1997) Report on Water Management in the Slovak Republic, Ministry of Soil, Bratislava
- 10. Henze, M., Harremoës, P., La Cour Jansen, J., Arvin, E. (1996) Wastewater Treatment. Biological and Chemical Processes. Second edition, Lyngby, Springer, p.383
- 11. Holobradá, M. (1997) Present and Future Role in Nutrient Removal from Surface Water by Wetlands, Floodplains and Reservoirs, Phare project 201/91, Final Report, Water Research Institute, Bratislava
- 12. Holobradý K, Ilka,P.(1997) Guideline for the Application of Stabilised Sludges and Sediments on Soil, VÚPÚ Bratislava (in Slovak)
- 13. Hucko, P. et. al. (1994) Danube Integrated Environmental Study. Phase II-Report from the Expert Group of Slovakia, Water Research Institute, Bratislava, p. 38
- 14. Chemko, a.s. Strážske (1996) Annual Report, Strážske, p.29
- 15. Lahmeyer-BCEOM (1993) Danube River Basin Environmental Programme, NITRA, World Bank Contract No.1, Stage 1 Report, Annex 2.
- 16. Molnár, L., Miklánek, P., Mészároš, I. et al. (1994) Environmental Programme for the Danube River Basin, National Review, Bratislava, Slovakia
- 17. Námer J. and Hyánek Ľ (1994) Municipal Wastewater Treatment in Slovakia, Water Science Technology 30, 49-58, 1994.
- 18. National Environmental Policy (1995) Ministry of Environment of the Slovak Republic, Bratislava, p.130

- 19. Neradovičová, J. (1997) Water Management Database about Construction and Operation in Slovakia by the 31/12/1996, Final Report, Water Research Institute Bratislava (in Slovak).
- 20. Novácke chemické závody, a.s. (1997) Annual Report, Nováky, p.23
- 21. Nutrient Balances for Danube Countries (1997) Danube Applied Research Programme, Project EU/AR/102A/91, Final Report
- 22. Pišoft, O. (1996) Introduction of Phosphate Free Detergents in the Danube Basin (The Slovak Republic), Final Report of Project No. EU/AR/205/91,VUVH Bratislava
- 23. Rajczyková, E. et al. (1997) Evaluation of Discharge and Wastewater Quality from Small Communities and Their Impact on Small Treatment Plants Efficiency, Research Report No. 95/5145/442/03, VUVH Bratislava (in Slovak)
- 24. Report on Agriculture and the Food Industry in the Slovak Republic (1997) (*Green Report*), Ministry of Soil Management, Bratislava, Slovakia
- 25. Slovak Republic Waste Management till 2000 Programme (1996) Slovak Republic Ministry of Environment, p. 44
- 26. Somlyódy L. Looking over the Environmental Legacy. Water Quality International, .4, 17 20, 1993.
- 27. STN 46 5735 Industrial Compost, 1991 (Slovak Techn. Standard in Slovak)
- 28. Strategic Action Plan for the Danube River Basin 1995-2005, Environmental Programme for the Danube River Basin, p. 383
- 29. Šumná, J. et al. (1998) Monitoring of Municipal Sludge Production and its Quality Generated in the Slovak Territory and in Treatment Plants Running by Waterworks, Research Report 95/5145/442/01.1, VUVH Bratislava (in Slovak)
- 30. The National Action Plant for the Danube Basin (1997) Ministry of Environment of the Slovak Republic, p. 60
- 31. Tchobanoglous, G., Burton, F.L. (1991) Wastewater Engineering. Treatment, Disposal and Reuse, third ed., Metcalf & Eddy Inc.
- 32. Wanner J., Čech J.S., Kos M. Barchánek M. (1995) Municipal Effluent Standards in the Czech Republic, Proc. Conf. on Large Wastewater Treatment Plants, Wien, 1 3, 1995.
- 33. Wanner J., Kos M., Grau P. An Innovative Technology for Upgrading Nutrient Removal Activated Sludge Plants. Water Science Technology, 22, 9 20, 1990.
- 34. Waste Management Programme in the Slovak Republic (1993) Ministry of Environment of the Slovak Republic, p.87