
Water Quality in the Danube River Basin - 2017

TNMN – Yearbook 2017

Imprint

Published by:

ICPDR – International Commission for the Protection of the Danube River

Overall coordination and preparation of the TNMN Yearbook and database in 2017 & 2018:

Lea Mrafkova, Slovak Hydrometeorological Institute, Bratislava

in cooperation with the Monitoring and Assessment Expert Group of the ICPDR.

Editor: Igor Liska, ICPDR Secretariat

© ICPDR 2019

Contact

ICPDR Secretariat

Vienna International Centre / D0412

P.O. Box 500 / 1400 Vienna / Austria

T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895

secretariat@icpdr.org / www.icpdr.org

Table of content

1.	Introduction	4
	History of the TNMN Revision of the TNMN to meet the objectives of EU WFD	4 4
2.	Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures	6
	Objectives Selection of monitoring sites Quality elements Parameters indicative of selected biological quality elements Priority pollutants and parameters indicative of general physico-chemical quality elements Analytical Quality Control (AQC) TNMN Data Management	6 6 11 11 11 12 13
3.	Results of basic statistical processing	14
4.	Profiles and trend assessment of selected determinands	17
	Macrozoobenthos saprobic index Sava and Tisza Rivers	34 35
5.	Load Assssment	37
	Introduction Description of load assessment procedure Monitoring Data in 2016 Calculation Procedure Results 41	37 37 38 39
6.	Groundwater monitoring	54
	GW bodies of basin-wide importance Reporting on groundwater quality	54 54
7.	Abbreviations	56

1. Introduction

1.1 History of the TNMN

In June 1994, the Convention on Cooperation for the Protection and Sustainable Use of the Danube River (DRPC) was signed in Sofia, coming into force in October 1998 with the main objectives of achieving sustainable and equitable water management, including the conservation, improvement and the rational use of surface and ground waters in the Danube catchment area. The DRPC also emphasizes that the Contracting Parties shall cooperate in the field of monitoring and assessment. In this respect, the operation of the Trans National Monitoring Network (TNMN) in the Danube River Basin aims to contribute to the implementation of the DRPC. This Yearbook reports on results of the basin-wide monitoring programme and presents TNMN evaluated data for 2010.

The TNMN has been in operation since 1996, although the first steps towards its creation were taken about ten years earlier. In December 1985, the governments of the Danube riparian countries signed the Bucharest Declaration. The Declaration had as one of its objectives to observe the development of the water quality of the Danube, and in order to comply with this objective, a monitoring programme containing 11 cross-sections of the Danube River was established.

1.2 Revision of the TNMN to meet the objectives of EU WFD

The original objective of the TNMN was to strengthen the existing network set up by the Bucharest Declaration, to enable a reliable and consistent trend analysis for concentrations and loads of priority pollutants, to support the assessment of water quality for water use and to assist in the identification of major pollution sources.

In 2000, having the experience of the TNMN operation, the main objective of the TNMN was reformulated: to provide a structured and well-balanced overall view of the status and long-term development of quality and loads in terms of relevant constituents in the major rivers of the Danube Basin in an international context.

Implementation of the EU Water Framework Directive (2000/60/EC, short WFD) after 2000 necessitated the revision of the TNMN in the Danube River Basin District. In line with the WFD implementation timeline, the revision process has been completed in 2007.

The major objective of the revised TNMN is to provide an overview of the overall status and long-term changes of surface water and - where necessary - groundwater status in a basin-wide context with a particular attention paid to the transboundary pollution load. In view of the link between the nutrient loads of the Danube and the eutrophication of the Black Sea, it is necessary to monitor the sources and pathways of nutrients in the Danube River Basin District and the effects of measures taken to reduce the nutrient loads into the Black Sea.

To meet the requirements of both EU WFD and the Danube River Protection Convention the revised TNMN for surface waters consists of following elements:

- Surveillance monitoring I: Monitoring of surface water status
- Surveillance monitoring II: Monitoring of specific pressures
- Operational monitoring
- Investigative monitoring

Surveillance monitoring II is a joint monitoring activity of all ICPDR Contracting Parties that produces annual data on concentrations and loads of selected parameters in the Danube and major tributaries.

Surveillance monitoring I and the operational monitoring is based on collection of the data on the status of surface water and groundwater bodies in the DRB District to be published in the DRBM Plan once in six years.

Investigative monitoring is primarily a national task but at the basin-wide level the concept of Joint Danube Surveys was developed to carry out investigative monitoring as needed, e.g. for harmonization of the existing monitoring methodologies, filling the information gaps in the monitoring networks operating in the DRB, testing new methods or checking the impact of "new" chemical substances in different matrices. Joint Danube Surveys are carried out every 6 years.

A new element of the revised TNMN is monitoring of groundwater bodies of basin-wide importance. More information on this issue is provided in the respective chapter in this Yearbook.

Detailed description of the revised TNMN is given in the Summary Report to EU on monitoring programmes in the Danube River Basin District designed under WFD Article 8.

This Yearbook presents the results of the Surveillance monitoring II: Monitoring of specific pressures.

2. Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures

2.1 Objectives

Surveillance Monitoring II aims at long-term monitoring of specific pressures of basin-wide importance. Selected quality elements are monitored annually. Such denser monitoring programme is needed to identify the specific pressures in the Danube River Basin District in order to allow a sound and reliable long-term trend assessment of specific quality elements and to achieve a sound estimation of pollutant loads being transferred across states of Contracting Parties and into the Black Sea.

Surveillance Monitoring II is based on the set-up of the original TNMN and is fitted to respond to pressures of basin-wide importance. The monitoring network is based on the national monitoring networks and the operating conditions are harmonized between the national and basin-wide levels to minimise the efforts and maximise the benefits.

2.2 Selection of monitoring sites

The selection of monitoring sites is based on the following criteria:

- Monitoring sites that have been monitored in the past and are therefore suitable for longterm trend analysis; these include sites
 - located just upstream/downstream of an international border,
 - located upstream of confluences between Danube and main tributaries or main tributaries and larger sub-tributaries (to enable estimation of mass balances),
 - located downstream of the major point sources,
 - located to control important water uses.
- Sites required to estimate pollutant loads (e.g. of nutrients or priority pollutants) which are transferred across boundaries of Contracting Parties, and which are transferred into the marine environment.

The sites are located in particular on the Danube and its major primary or secondary tributaries near crossing boundaries of the Contracting Parties. List of monitoring sites is in the

Table 1.

Table 1: List of monitoring sites

No.	Country code	Site code	River	Name of site	Loca tions	x- coord	y-coord	River -km	Altitude	Catchment
1	DE	DE2	Danube	Jochenstein	М	13.703	48.520	2 204	290	77 086
2	DE	DE5	Danube	Dillingen	L	10.499	48.568	2 538	420	11 315
3	DE	DE3	/Inn	Kirchdorf	M	12.126	47.782	195	452	9 905
4	DE	DE4	/Inn/Salzach	Laufen	L	12.933	47.940	47	390	6 113
5	AT	AT1	Danube	Jochenstein	M	13.703	48.521	2 204	290	77 086
6	AT	AT5	Danube	Enghagen	R	14.512	48.240	2 113	241	84 869
7	AT	AT3	Danube	Wien-Nussdorf	R	16.371	48.262	1 935	159	101 700
8	AT	AT6	Danube	Hainburg	R	16.993	48.164	1 879	136	130 759
9	CZ	CZ1	/Morava	Lanzhot	M	16.989	48.687	79	150	9 725
10	CZ	CZ2	/Morava/Dyje	Pohansko	M	16.885	48.723	17	155	12 540
11	SK	SK1	Danube	Bratislava	LMR	17.107	48.138	1 869	128	131 329
12	SK	SK2	Danube	Medveďov	MR	17.652	47.794	1 806	108	132 168
13	SK	SK4	/Váh	Komárno	MR	18.142	47.761	1.5	106	19 661
14	SK	SK5	Danube	Szob	LMR	18.890	47.805	1 707	100	183 350
15	SK	SK6	/Morava	Devín	M	16.976	48.188	1	145	26 575
16	SK	SK7	/Hron	Kamenica	М	18.723	47.826	1.7	114	5 417
17	SK	SK8	/lpeľ	Salka	М	18.763	47.886	12	110	5 060
18	HU	HU1	Danube	Medvedov	MR	17.652	47.792	1 806	108	131 605
19	HU	HU2	Danube	Komarom	MR	18.121	47.751	1 768	101	150 820
20	HU	HU3	Danube	Szob	LMR	18.860	47.811	1 708	100	183 350
21	HU	HU4	Danube	Dunafoldvar	LMR	18.934	46.811	1 560	89	188 700
22	HU	HU5	Danube	Hercegszanto	LMR	18.814	45.909	1 435	79	211 503
23	HU	HU6	/Sio	Szekszard-Palank	LM	18.720	46.380	13	85	14 693
24	HU	HU7	/Drava	Dravaszabolcs	LM	18.200	45.784	78	92	35 764
25	HU	HU8	/Tisza/Sajo	Sajopuspoki	MR	20.340	48.283	124	148	3 224
26	HU	HU9	/Tisza	Tiszasziget	LMR	20.105	46.186	163	74	138 498
27	HU	HU10	/Tisza	Tiszabecs	М	22.831	48.104	757	114	9707
28	HU	HU11	/Tisza/Szamos	Csenger	M	22.693	47.841	45	113	15283
29	HU	HU12	/Tisza/Hármas- Körös/Sebes-Körös	Korosszakal	М	21.657	47.020	59	92	2489
30	HU	HU13	/Tisza/Hármas- Körös/Kettős- Körös/Fekete-Körös	Sarkad	М	21.431	46.694	16	85	4302
31	HU	HU14	/Tisza/Hármas- Körös/Kettős- Körös/Fehér-Körös	Gyulavari	М	21.336	46.629	9	85	4251
32	HU	HU15	/Tisza/Maros	Nagylak	R	20.703	46.161	51	80	30149
33	SI	SI1	/Drava	Ormož most	L	16.155	46.403	300	192	15 356
34	SI	SI2	/Sava	Jesenice na Dolenjskem	R	15.692	45.861	729	135	10 878
35	HR	HR1	Danube	Batina	MR	18.829	45.875	1 429	86	210 250
36	HR	HR2	Danube	Borovo	R	18.967	45.381	1 337	89	243 147
37	HR	HR11	Danube	llok	MR	19.401	45.232	1 302	73	253 737
38	HR	HR9	/Drava	Ormoz	LM	16.155	46.403	300	192	15356
39	HR	HR4	/Drava	Botovo	MR	16.938	46.241	227	123	31 038
40	HR	HR5	/Drava	Donji Miholjac	MR	18.201	45.783	78	92	37 142
41	HR	HR6	/Sava	Jesenice	R	15.692	45.861	729	135	10 834
42	HR	HR7	/Sava	Upstream Una Jasenovac	LM	16.915	45.269	525	87	30 953
	HR	HR8	/Sava	Zupanja	LMR	1	1			
43	HR	HR12	/Sava	Račinovci	L	18.696	45.040	254 218	85 78	62 890
44	RS	RS1	Danube	Bezdan	L	18.960	44.851			65 638
45	RS	RS2	Danube		L	18.860	45.854	1 426	83	210 250
46				Bogojevo Novi Sad		19.079	45.530	1 367	80	251 593
47	RS	RS3	Danube	Novi Sad	R	19.855	45.255	1 255	74	254 085
48	RS	RS4	Danube	Zemun Ranatska Palanka	R	20.412	44.849	1 173	71	412 762
49	RS	RS6	Danube	Banatska Palanka	M	21.339	44.826	1 077	70	568 648
50	RS	RS7	Danube	Tekija	R	22.419	44.700	954	68	574 307
51	RS	RS8	Danube	Radujevac	R	22.680	44.263	851	32	577 085

1 1	Country code	Site code	River	Name of site	Loca	x- coord	y-coord	River -km	Altitude	Catchment
52 l	RS	RS10	/Tisza (Tisa)	Martonos	R	20.081	46.114	152	76	140 130
53 l	RS	RS11	/Tisza (Tisa)	Novi Becej	L	20.135	45.586	65	75	145 415
54 l	RS	RS12	/Tisza (Tisa)	Titel	М	20.312	45.198	9	73	157 174
55 l	RS	RS13	/Sava	Jamena	L	19.084	44.878	205	77	64 073
56 l	RS	RS15	/Sava	Sabac	R	19.699	44.770	106	74	89 490
57 l	RS	RS16	/Sava	Ostruznica	R	20.312	44.732	17	72	95 430
58 I	RS	RS17	/Velika Morava	Ljubicevski Most	R	21.132	44.586	22	71	37 320
59 I	BA	BA5	/Sava	Gradiska	М	17.255	45.141	457	86	39 150
60 E	BA	BA6	/Sava/Una	Kozarska Dubica	M	16.836	45.188	16	94	9 130
61 E	BA	BA7	/Sava/Vrbas	Razboj	M	17.458	45.050	12	100	6 023
62 E	BA	BA8	/Sava/Bosna	Modrica	M	18.313	44.961	24	114	10 500
63 I	BA	BA9	/Sava/Drina	Foca	М	18.833	43.344	234	442	3 884
64 l	BA	BA10	/Sava/Drina	Badovinci	M	19.344	44.779	16	90	19 226
65 E	BA	BA11	/Sava	Raca	M	19.335	44.891	190	80	64 125
66 I	BA	BA12	/Sava/Una	Novi Grad	М	16.295	44.988	70	137	4 573
67 E	BA	BA13	/Sava/Bosna	Usora	М	18.074	44.664	78	148	7 313
68 I	BG	BG1	Danube	Novo Selo harbour	LMR	22.785	44.165	834	35	580 100
69 I	BG	BG2	Danube	Bajkal	R	24.400	43.711	641	20	608 820
70 E	BG	BG3	Danube	Svishtov	R	25.345	43.623	554	16	650 340
71 E	BG	BG4	Danube	Upstream Russe	R	25.907	43.793	503	12	669 900
72 I	BG	BG5	Danube	Silistra	LMR	27.268	44.125	375	7	698 600
73 E	BG	BG6	Iskar	Orechovitza	М	24.358	43.589	28	31	8 370
74 E	BG	BG7	Jantra	Karantzi	М	25.669	43.389	12	32	6 860
75 E	BG	BG8	Russenski Lom	Basarbovo	М	25.913	43.786	13	22	2 800
76 I	BG	BG12	/Iskar	mouth	М	24.456	43.706	4	27	8 646
77 E	BG	BG13	/Vit	Guljantzi	М	24.728	43.644	7	29	3 225
78 I	BG	BG14	/Jantra	mouth	М	25.579	43.609	4	25	7 869
	BG	BG15	/Russenski Lom	mouth	М	25.936	43.813	1	17	2 974
	RO	RO1	Danube	Bazias	LMR	21.384	44.816	1 071	70	570 896
81 F	RO	RO18	Danube	Gruia/Radujevac	LMR	22.684	44.270	851	32	577 085
	RO	RO2	Danube	Pristol/Novo Selo	LMR	22.676	44.214	834	31	580 100
	RO	RO3	Danube	Dunare - upstream Arges (Oltenita)	LMR	26.619	44.056	432	16	676 150
84 l	RO	RO4	Danube	Chiciu/Silistra	LMR	27.268	44.128	375	13	698 600
85 I	RO	RO5	Danube	Reni	LMR	28.232	45.463	132	4	805 700
	RO	RO6	Danube	Vilkova-Chilia arm/Kilia arm	LMR	29.553	45.406	18	1	817 000
	RO	RO7	Danube	Sulina - Sulina arm	LMR	29.530	45.183	0	1	817 000
	RO	RO8	Danube	Sf. Gheorghe-Ghorghe arm	LMR	29.609	44.885	0	1	817 000
	RO	RO9	/Arges	Conf. Danube (Clatesti)	М	26.599	44.145	0	14	12 550
	RO	RO10	/Siret	Conf. Danube (Sendreni)	М	28.009	45.415	0	4	42 890
	RO	RO11	/Prut	Conf. Danube (Giurgiulesti)	М	28.203	45.469	0	5	27 480
	RO	RO12	/Tisza/Somes	Dara (frontiera)	М	22.720	47.815	3		15 780
-	_		/Tisza/Hármas-					Ů		.0.00
	RO	RO13	Körös/Sebes-	Cheresig	M					
93			Körös/Crisul Repede	-		21.692	47.030	3	116	2 413
94	RO	RO14	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Negru	Zerind	М	21.517	46.627	13	86.4	3 750
95	RO	RO15	/Tisza/Hármas- Körös/Kettős- Körös/Crisul Alb	Varsand	М	21.339	46.626	0.2	88.9	4 240
96 I	RO	RO16	/Tisza/Mures	Nadlac	М	20.727	46.145	21	85.6	27 818
97 l	RO	RO17	/Tisza/Bega	Otelec	М	20.847	45.620	7	46	2 632
98 I	RO	RO19	/Jiu	Zaval	М	23.845	43.842	9	30.9	10 046
	RO	RO20	/Olt	Islaz	М	24.797	43.744	3	32	24 050
	RO	RO21	/lalomita	Downstream Tandarei	М	27.665	44.635	24	8.5	10 309
	MD	MD1	/Prut	Lipcani	L	26.483	48.152	658	100	8 750
	MD	MD3	/Prut	Conf. Danube-Giurgiulesti	L	28.124	45.285	0		27 480

No.	Country	Site	River	Name of site	Loca	x- coord	y-coord	River	Altitude	Catchment
	code	code			tions			-km		
103	MD	MD5	/Prut	Costesti Reservoir	L	27.145	47.513	557	91	11 800
104	MD	MD6	/Prut	Braniste	L	27.145	47.475	546	63	12 000
105	MD	MD7	/Prut	Valea Mare	L	27.515	47.075	387	55	15 200
106	UA	UA1	Danube	Reni	М	28.288	45.437	132	4	805 700
107	UA	UA2	Danube	Vylkove	М	29.592	45.394	18	1	817 000
108	UA	UA4	/Tisza	Chop	М	22.184	48.416	342	92	33000
109	UA	UA5	/Tisza/Bodrog/Latoritsa	Strazh	М	22.212	48.454	144	96	4418
110	UA	UA6	/Prut	Tarasivtsi	M	26.336	48.183	262	122	9836
111	UA	UA7	/Siret	Tcherepkivtsi	М	26.030	47.981	100	303	2070
112	UA	UA8	/Uzh	Storozhnica	R	22.200	48.617	106	112	1582
113	ME	ME1	/Lim	Dobrakovo	L	19.773	43.121	112	609	2875
114	ME	ME2	/Cehotina	Gradac	L	19.154	43.396	55.5	55	809.8

Distance: The distance in km from the mouth of the mentioned river Sampling location in profile:

Altitude: The mean surface water level in meters above sea level L: Left bank Catchment: The area in square km, from which water drains through the station M: Middle of river ds. Downstream of R: Right bank

us. Upstream of Confluence tributary/main river Conf.

Indicates tributary to river in front of the slash. No name in front of the slash means Danube

Map: TNMN Monitoring Sites

2.3 Quality elements

2.3.1 Parameters indicative of selected biological quality elements

To cover pressures of basin-wide importance as organic pollution, nutrient pollution and general degradation of the river, following biological quality elements have been agreed for SM2:

- Phytoplankton (chlorophyll-a)
- Benthic invertebrates (mandatory parameters: Saprobic index and number of families once yearly, both Pantle&Buck and Zelinka&Marvan SI are acceptable; optional parameters: ASPT and EPT taxa)
- Phytobenthos (benthic diatoms an optional parameter)

2.3.2 Priority pollutants and parameters indicative of general physico-chemical quality elements

The list of parameters for assessment of trends and loads and their monitoring frequencies are given in Table 2.

Table 2: Determinand list for water for TNMN

	Surveillance	Monitoring II
	Water	Water
Determinand	concentrations	load assessment
Flow	anually / 12 x per year	Daily
Temperature	anually / 12 x per year	
Transparency (1)	anually / 12 x per year	
Suspended Solids (5)	anually / 12 x per year	anually / 26 x per year
Dissolved Oxygen	anually / 12 x per year	
pH (5)	anually / 12 x per year	
Conductivity @ 20 °C (5)	anually / 12 x per year	
Alkalinity (5)	anually / 12 x per year	
Inorganic Nitrogen	anually / 12 x per year	anually / 26 x per year
Total Nitrogen	anually / 12 x per year	
Total Phosphorus	anually / 12 x per year	anually / 26 x per year
Dissolved Phosphorus	anually / 12 x per year	anually / 26 x per year
Ortho-Phosphate (PO ₄ ³⁻ -P) (2)	anually / 12 x per year	anually / 26 x per year
Calcium (Ca ²⁺) (3, 4, 5)	anually / 12 x per year	
Magnesium (Mg ²⁺) (4, 5)	anually / 12 x per year	
Chloride (Cl ⁻)	anually / 12 x per year	anually / 26 x per year
Atrazine	anually / 12 x per year	
Cadmium (6)	anually / 12 x per year	
Lindane (7)	anually / 12 x per year	
Lead (6)	anually / 12 x per year	
Mercury (6,8)	anually / 12 x per year	
Nickel (6)	anually / 12 x per year	
Arsenic (6)	anually / 12 x per year	

	Surveillance	Monitoring II
	Water	Water
Determinand	concentrations	load assessment
Copper (6)	anually / 12 x per year	
Chromium (6)	anually / 12 x per year	
Zinc (6)	anually / 12 x per year	
p,p´-DDT and its derivatives (7)	see below	
COD _{Cr} (5)	anually / 12 x per year	
COD _{Mn} (5)	anually / 12 x per year	
Dissolved Silica		anually / 26 x per year
BOD₅	anually / 12 x per year	anually / 26 x per year

- (1) Only in coastal waters
- (2) Soluble reactive phosphorus SRP
- (3) Mentioned in the tables of the CIS Guidance document but not in the related mind map
- (4) Supporting parameter for hardness-dependent EQS of PS metals
- (5) Not for coastal waters
- (6) Measured in a dissolved form. Measurement of total concentration is optional
- (7) In areas with no risk of failure to meet the environmental objectives for DDT and lindane the monitoring frequency is 12 x per a RBMP period; in case of risk the frequency is 12 x year
- (8) Mercury in fish is reported in three year reporting cycles

2.4 Analytical Quality Control (AQC)

Parameters covered and samples distributed in the 2017 QUALCODanube programme were as follows:

- real surface water samples for nutrient analysis: preserved natural surface water, spiked if necessary and adequately homogenised. Sample codes were SW-N-1 and SW-N-2. 500 cm³ plastic bottles were provided for NH4⁺, NO₃⁻, organic N, total N, PO₄³⁻ and total P analysis. Measurement results were asked to be reported as mg/dm³ N and P, respectively.
- real surface water samples for heavy metal analysis: preserved natural surface water, spiked and adequately homogenised. Sample codes were SW-M-1 and SW-M-2, 250 cm³ plastic bottles were provided for Cd, Ni and Pb analysis. Measurement results were asked to be reported as µg/dm³.
- spike solutions together with matrix water for NO₂ and Hg analysis: due to stability concerns during transport, it was decided that participants should compose the proficiency testing items themselves in situ by mixing prescribed amounts of the spike solutions (synthetic concentrates) of the measurand with the matrix water provided (simulated surface water, preatreated by bringing to boiling point) according to instructions. Spike solutions were put in 20 cm³ plastic containers with sample codes SW-N/M-1 and SW-N/M-2, whereas matrix water was provided in 500 cm³ plastic bottle labelled "WATER FOR DILUTION - NO₂-N and WATER FOR DILUTION - Hg". Measurement results were asked to be reported as mg/dm³ N and μg/dm³ Hg, respectively.

The 2017 proficiency testing scheme was highly successful overall, number and ratio of unsatisfactory results remained low. Similarly to previous year, organic nitrogen results could not be evaluated in either samples: only seven participants returned their measurement results, high dispersion of which

resulted in standard uncertainty of the robust average exceeding the critical limit. Z'-scores were used for performance assessment on five occasions (NO₂ and Hg: both samples, Cd: sample SW-M-2). Almost all participants reported expanded uncertainties together with their measurement results, allowing for calculation of E_n numbers, thus assessment of the validity of the underlying uncertainty estimation. E_n numbers were visualized on graphs as expanded uncertainty bars around reported results. Graphs clearly shows which participants have precision reserves, i.e. margin for the expanded uncertainty range between upper and lower unsatisfactory limits. Number and ratio of unsatisfactory E_n numbers were similar to those seen in previous rounds. Some unsatisfactory E_n numbers were attributable to reporting expanded uncertainties in % instead of the unit of measurement required.

As previously, determination of nutrients (with the exception of nitrite) was highly successful, with few unsatisfactory or questionable results if at all. Nitrite nitrogen proficiency testing shows a somewhat less favourable picture than previously, more results are in the questionable / unsatisfactory range: reported results scatter along the diagonal axis of the Youden-plot, meaning laboratories typically under- or overestimate the assigned value in both samples.

Organic nitrogen, which debuted in the scheme in 2013, was measured by only 7 participants (decreasing from 12 last year). Standard uncertainty of the assigned value compared to the standard deviation of proficiency assessment exceeded the critical limit of 120%, thus evaluation was not performed for the second year in a row. Low interest in this parameter and poor agreement between results raises the question whether or not this parameter should be included in the scheme in the future.

Determination of metals was successful overall, with nickel analysis being the most successful (only one unsatisfactory result per samples - attributable to the same laboratory). In case of Cd, comparison of measurement techniques reveal a tendency of ETA-AAS results being lower than ICP-AES/ICP-MS results.

In summary, the 2017 QualcoDanube proficiency testing scheme was successful, the scheme remains a useful and relevant tool in the quality framework of the Danube region.

2.5 TNMN Data Management

The procedure of TNMN data collection is organized at a national level. The National Data Managers (NDMs) are responsible for data acquisition from TNMN laboratories as well as for data checking, conversion into an agreed data exchange file format (DEFF) and sending it to the TNMN data management centre in the Slovak Hydrometeorological Institute in Bratislava. This centre performs a secondary check of the data and uploads them into the central TNMN database. In cooperation with the ICPDR Secretariat, the TNMN data are uploaded into the ICPDR website (www.icpdr.org).

3. Results of basic statistical processing

146 sites at 109 TNMN monitoring stations were monitored in the Danube River Basin in 2017 (some monitoring stations contain two or three sampling sites - left, middle and/or right side of the river). The data was collected from 70 sampling sites at 39 stations on the Danube River and from 76 sampling sites at 70 stations at the tributaries.

The basic processing of the TNMN data includes the calculation of selected statistical characteristics for each determinand/monitoring site. Results are presented in tables in the Annex I using the following format:

Term used	Explanation
Determinand name	name of the determinand measured according to the agreed method
Unit	unit of the determinand measured
N	number of measurements
Min	minimum value of the measurements done in the year 2017
Mean	arithmetical mean of the measurements done in the year 2017
Max	maximum value of the measurements done in the year 2017
C50	50 percentile of the measurements done in the year 2017
C90	90 percentile of the measurements done in the year 2017

When processing the TNMN data and presenting them in the tables of the Annex, the following rules have been applied:

- If "less than the quantification limit" values were present in the dataset for a given determinand, then the ½ value of the limit of quantification was used in statistical processing of the data.
- If the number of measurements for a particular determinand was lower than four, then only the minimum, maximum and mean are reported in the tables of the Annex.
- The statistic value "C90" is equal to 90 percentile (10 percentile for dissolved oxygen and lower limit of pH value) if the number of measurements in a year was at least eleven. If the number of measurements in a year was lower than eleven, then the "C90" value is represented by a maximum value from a data set (a minimum value for dissolved oxygen and lower limit of pH value).

The above mentioned analytical data method according to Directive 2009/90/EC with limit of quantification (LOQ) has been applied since 2009.

The reduced monitoring frequency for certain determinands such as dissolved phosphorus, biological determinands, heavy metals and specific organic micropollutants, is still an issue primarily in the lower part of the Danube River Basin.

Table 3, created on the basis of data in tables in the Annex I, shows in an aggregated way the concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2016. These include indicators of the oxygen regime, nutrients, heavy metals, biological determinands and organic micropollutants. Table 3 also includes information about the number of monitoring locations and sampling sites providing measurements of the determinands. In the table, there are minimal, maximal values for all determinands calculated from all Danube or tributaries station and minimal and maximal values for all determinands calculated from mean (average) values from all Danube or tributaries.

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2017

Determinand name	Unit		Da	anube				Trib	outaries		
		No.of monitoring	<u> </u>				No.of monitoring				·
		locations / No. of					locations / No. of				
		monitoring sites					monitoring sites				
		with measurements		of values	Me	an	with	Range of		Me	an
			Min	Max	Min _{avg}	Max_{avg}	measurements	Min	Max	Min _{av g}	Max _{avg}
Temperature	°C	69/39	-0.1	33	10.867	17.21	73/71	-0.9	30.5	8.731	18.544
Suspended solids	mg/l	69/39	< 1	571	7	57		< 1	950	5	
Dissolved oxygen	mg/l	69/39	3.27	14.88	6.21	11.36		3.25	748	5.35	
BOD (5)	mg/l	69/39	< 0.20	22.4	1.21	5.69		< 0.25	14.4	< 0.25	
COD (Mn)	mg/l	63/33	1.12	8.19	2.29	7.4	47/45	< 0.40	18.6	1.97	
COD (Cr)	mg/l	58/28	< 1.00	81	5.64	22.19	60/58	< 2.00	121.38	3.13	48.54
TOC	mg/l	45/25	< 0.49	10.4	2.26	4.76	35/33	< 0.49	14.5	1.28	_
DOC	mg/l	33/15	1.09	7.61	2.079	6.543	17/17	0.6	8.21	1.177	5.907
рН	-	69/39	7.09	9.3	7.66	8.4		6.91	8.93	7.38	8.33
Alkalinity - total	mmol/l	69/39	1.5	194	2.85	150.818	63/61	1.28	251	1.902	219.083
Ammonium (NH4-N)	mg/l	69/39	< 0.003	1.183	0.021	0.158	73/71	< 0.003	3.851	0.017	2.348
Nitrite (NO2-N)	mg/l	69/39	< 0.0005	0.268	0.0085	0.0291	73/71	< 0.0005	0.273	0.0046	0.1084
Nitrate (NO3-N)	mg/l	69/39	0.059	4.5	0.855	2.708	73/71	< 0.003	7.77	0.448	6.754
Total nitrogen	mg/l	52/26	0.5	140	1.498	7.95	57/55	0.4	18.8	0.873	5.184
Organic nitrogen	mg/l	30/20	< 0.025	3.07	0.032	0.906	33/31	< 0.4	4.36	0.067	1.134
Orthophosphate (PO4-P)	mg/l	69/39	< 0.0015	0.256	0.0146	0.1095	73/71	< 0.0015	1.3675	0.0073	0.3475
Total phosphorus	mg/l	63/35	0.0113	0.5	0.0441	0.2371	70/68	< 0.0035	1.828	0.0147	0.5145
Total phosphorus, dissolved	mg/l	40/18	< 0.0035	0.206	0.0329	0.1073	20/20	< 0.0035	1.558	0.0183	0.4024
Phytoplankton (biomass - chlorophyll-a)	μg/l	51/25	< 0.0015	131.03	1.381	36.1967	42/40	< 0.0015	201.14	< 0.0015	86.2167
Conductivity	μS/cm	67/37	260.5	1250	353.417	517	71/69	119	1630	251.462	1217.5
Calcium (Ca++)	mg/l	69/39	19.2	99	38.93	80.11	71/69	2	176	25.11	93.33
Sulphate (SO4)	mg/l	46/24	10.74	68	16.69	40.34	46/44	6.56	179	11.69	110.78
Magnesium (Mg++)	mg/l	69/39	2.9	43	11.23	26.91	71/69	1.4	66	4.53	56.36
Potassium (K+)	mg/l	29/17	1.3	5	1.68	3.33	38/36	< 0.30	14	1.19	10.45
Sodium (Na+)	mg/l	29/17	7.4	30	10.28	21.56	38/36	< 0.75	280	5.68	110.78
Manganese (Mn)	mg/l	14/10	< 0.0005	0.228	0.0053	0.0624	20/18	0.003	0.41	0.0047	0.279
Iron (Fe)	mg/l	10/8	< 0.001	3.59	0.01	0.716	26/24	< 0.005	9.4	0.011	2.093
Chloride (Cl-)	mg/l	60/34	10.1	327	15.38	54.63	66/64	1.33	439	2.08	178.09
Silicates (SiO2)	mg/l	16/8	< 0.0500	43	2.0383	7.7083	18/16	< 0.1000	27.2	1.3	21.35
Silicates(SiO2), dissolved	mg/l	12/10	< 0.125	13.4	3.111	5.692	14/14	< 0.200	13.8	3.268	9.578
Macrozoobenthos- saprobic index		21/16	1.9	2.427	1.9	2.401	36/36	1.64	3.099	1.7	2.9

Table 3: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2017 (cont.)

Determinand name	Unit		Da	nube				Trib	outaries		
		No.of monitoring locations / No. of monitoring sites with measurements					No. of monitoring locations / No. of monitoring sites with measurements				
			Range o	f values	Me	ean		Range of	f values	Mea	an
			Min	Max	Min _{av g}	Max _{avg}		Min	Max	Min _{av g}	Max _{av g}
Zinc - Dissolved *	µg/l	69/39	< 0.500	148.80	0.99			< 0.5	333.00	< 0.585	50.26
Copper - Dissolved	μg/l	69/39	< 0.250	28.60	1.07	8.32	73/71	< 0.1	25.60	< 0.5	7.73
Chromium - Dissolved	μg/l	69/39	< 0.05	6	0.2	2.83		< 0.05	42.20	0.11	9.40
Lead - Dissolved	μg/l	65/35	0.035	9.93	0.067	2.418	68/66	< 0.04	18.56	< 0.05	5.15
Cadmium - Dissolved	μg/l	67/37	< 0.003	0.77	< 0.007	0.14	69/67	< 0.003	3.92	< 0.005	0.44
Mercury - Dissolved	μg/l	67/37	< 0.001	0.28	< 0.0025	0.04	54/52	< 0.001	1.72	< 0.0025	0.16
Nickel - Dissolved	μg/l	67/37	< 0.250	35.80	0.38	7.73	68/66	0.25	168.00	0.40	18.50
Arsenic - Dissolved	μg/l	67/37	< 0.050	7.88	< 0.500	2.67	58/56	< 0.25	10.10	0.37	6.49
Aluminium - Dissolved	μg/l	20/12	0.92	1433.00	2.79	127.42	15/13	0.89	106.00	3.63	39.44
Zinc *	μg/l	23/19	< 0.50	316.20	2.87	60.88	29/27	1.59	455.17	4.06	136.90
Copper	μg/l	21/17	< 0.500	405.00	1.68	43.56	29/27	< 0.25	63.50	< 0.25	18.43
Chromium - total	μg/l	21/17	< 0.1000	5.86	< 0.5000	1.51	31/29	< 0.05	106.00	< 0.5	19.05
Lead	μg/l	23/19	< 0.025	11.30	0.06	2.27	34/32	< 0.025	20.00	0.03	5.88
Cadmium	μg/l	21/17	< 0.0025	0.75	0.03	0.13	33/31	< 0.0025	4.48	< 0.025	0.81
Mercury	μg/l	21/17	< 0.0075	0.12	0.01	< 0.0500	37/35	< 0.005	0.68	0.01	0.20
Nickel	μg/l	21/17	< 0.25	412.20	1.00	43.43	32/30	< 0.5	448.00	0.78	61.28
Arsenic	µg/l	21/17	< 0.5	6.70	0.86	2.83	22/20	< 0.25	9.09	< 0.500	5.16
Aluminium	μg/l	11/7	< 4.0	6306.0	171.3	808.2	8/6	32.9	9100.0	50.0	1843.8
Phenol index	mg/l	34/12	< 0.0025	0.044	< 0.0025	0.0072	23/23	< 0.0004	0.016	< 0.0004	0.0085
Anionic active surfactants	mg/l	40/16	< 0.01	0.21	< 0.01	0.15	27/27	< 0.0025	14.00	< 0.0025	3.52
AOX	μg/l	14/8	< 1.0	58.00	< 5.0	24.33	14/14	< 5.0	69.80	10.02	48.34
Petroleum hydrocarbons	mg/l	27/12	< 0.01	0.83	0.01	0.55	23/23	< 0.01	0.83	0.02	0.50
Lindane	μg/l	50/24	< 0.0003	0.039	< 0.0004	0.0092	60/58	< 0.0005	< 0.04	< 0.0005	< 0.04
pp´DDT	μg/l	52/26	< 0.0002	0.010	< 0.0002	0.009	60/58	< 0.0002	< 0.05	< 0.0002	< 0.05
Atrazine	μg/l	52/26	< 0.0001	< 0.0900	0.0012			< 0.0001	< 0.09	0.001	< 0.09
Chloroform	μg/l	23/15	< 0.081	1.2	< 0.081	0.5		< 0.015	0.750	< 0.015	-
Carbon tetrachloride	μg/l	14/10	< 0.025	< 0.500	< 0.025	< 0.5		< 0.5	< 0.5	< 0.5	
Trichloroethylene	μg/l	14/10	< 0.025	< 0.500	< 0.025	< 0.5		< 0.5	< 0.5	< 0.5	
Tetrachloroethylene	µg/l	14/10	< 0.025	< 0.500	< 0.025			< 0.5	< 0.5	< 0.5	-

4. Profiles and trend assessment of selected determinands

The 90 percentiles (C90) of selected determinands (dissolved oxygen, BOD₅, COD_{Cr}, N-NH₄ N-NO₃, P-PO₄, Ptotal and Cd) measured in last ten years are displayed in the Figures 4.1-4.16. Due to revision of the TNMN in 2006, following monitoring points on the Danube were replaced: AT2 rkm 2120 to AT5 rkm 2113, AT4 rkm 1874 to AT6 rkm 1879, DE1 rkm 2581 to DE5 rkm 2538. Among tributaries, the site HR3 rkm 288 was replaced by HR9 rkm 300 BG8 rkm 54 to BG14 rkm 4 and BG8 rkm 13 to BG15 rkm 1. In 2009 SK3 was replaced with SK5, this monitoring point is also in graphs illustrated as Hungarian point HU3. For trend graphs was used illustration of SK5 and HU3.

To indicate the long-term trends in the upper, middle and lower Danube a more detailed analysis for selected parameters (BOD₅, N-NO₃, P_{total}) is provided for the sites SK1 Bratislava, HU5 Hercegszanto and RO5 Reni (Figures 4.17-4.25).

As regards a general spatial distribution of key water quality parameters along the Danube River in 2017, the highest concentrations of biodegradable organic matter were observed in the middle and lower parts of the river. The concentration of nutrients and cadmium reached their highest concentration values in the middle and lower part of the Danube.

The highest values of dissolved oxygen were observed in the upper part of the Danube, in the lower Danube dissolved oxygen levels decrease (Figure 4.1). The lowest DO value was measured at the monitoring point HU3. Low values of dissolved oxygen were in 2017 measured in tributaries Sio, Jantra and Russenski Lom (Figure 4.2).

Taking into account the entire period of TNMN operations positive changes in water quality can be seen at several TNMN stations. Decreasing tendencies of biodegradable organic matter were observed in the lower Danube. A decreasing tendency of BOD levels in the tributaries Sio, Siret and Sava has been observed as well (Figure 4.4). In 2017, concentration of BOD increased in Dyje, Russenski Lom and Arges.

At selected monitoring sites (SK1, HU5 and RO5) BOD increased slightly in 2017 (Figure 4.17-4.19).

The decreasing or stable level of concentration of ammonium-N was recorded in the whole Danube River. Concentration of ammonium-N in 2017 increased in monitoring point BG2 (Figure 4.7) and it decreased in tributaries Morava and Sio (see Figure 4.8). The concentration of ammonium-N in Arges has a decreasing tendency over the past ten years but in 2017, this concentration slightly increased being still the highest from all Danube tributaries.

The level of nitrate-N concentrations is rather stable during recent years. A decrease was observed in 2017 at e.g., RO2, BG4 or BG1 (see Figure 4.9). At selected monitoring sites, (SK1, HU5 and RO5) the nitrate-N concentrations decreased slightly in 2017 at SK1 and HU5, while at RO5 this concentration slightly increased (Figure 4.20-4.22).

In tributaries, the nitrate-N decreased in 2017 in Morava, Dyje, Siret, Russenski Lom, Velika Morava and Jantra (Figure 4.10).

In the last decade, a decreasing tendency of ortho-phosphate-P concentrations is mostly seen in the upper part of the Danube, and at some sites in the lower Danube (RO1, RO4, RO6, BG3, BG4; Figure 4.11). Decreasing tendency of ortho-phosphate-P over the last decade was observed in the tributaries Russenski Lom, Arges and Jantra (Figure 4.12), but in 2017, ortho-phosphate-P concentration in these rivers slightly increased. A decrease of ortho-phosphate-P concentrations was observed in 2017 in Vah, Velika Morava and Prut.

P-total concentration has a decreasing tendency in the last decade in the upper and middle Danube (Figure 4.13). In 2017, P-total concentration decreased in Bulgarian monitoring sites BG1 and BG2 as well as in the tributaries Morava, Inn and Russenski Lom. An increase of P-total concentration was observed in Sio (see Figure 4.14).

The cadmium concentration is constant or slightly decreasing in the whole Danube River as well as in its tributaries (Figures 4.15 and 4.16). In 2017, the concentration of cadmium decreased in the tributaries Morava, Siret and Prut.

The 90 and 10 percentiles of selected determinands (N-NH₄, P-PO₄, COD_{Cr}, BOD₅) measured in 2017 are displayed in the Figures 4.26-4.33. These figures indicate the margins of a usual annual concentration range for a given parameter and site. In graphs for tributaries the rkm of the Danube are shown, where the tributaries discharge to the Danube River.

The annual differences between C90 and C10 have an insignificant variation for COD_{Cr}, P-PO₄ and BOD₅ in the upper and middle Danube. The visible differences were observed for N-NH₄ in the middle and lower part of the Danube. Insignificant differences were observed for N-NH₄, COD_{Cr} and BOD₅ in the upper and middle tributaries. The visible variation for N-NH₄ was observed in the lower Danube tributaries Arges, Ialomita and Bosna. Significant differences between 10 and 90 percentiles for P-PO₄ were observed in the tributaries Dyje and Sio.

Figure 4.1.: Temporal changes of dissolved oxygen (c10) in the Danube River.

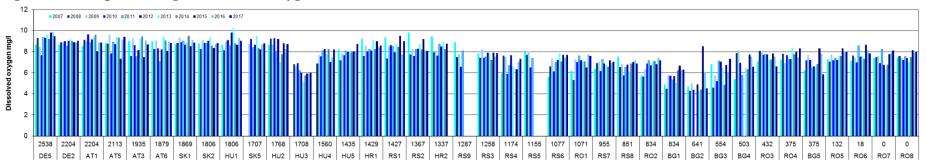


Figure 4.2.: Temporal changes of dissolved oxygen (c10) in tributaries.

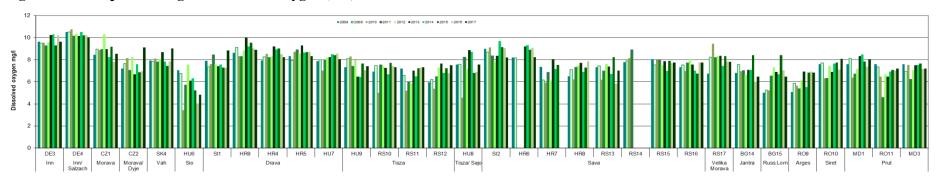


Figure 4.3.: Temporal changes of BOD₅ (c90) in the Danube River.

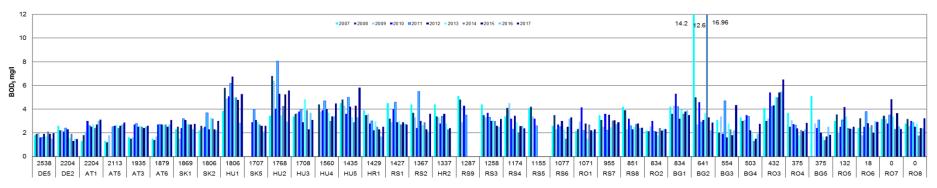


Figure 4.4.: Temporal changes of BOD₅ (c90) in tributaries.

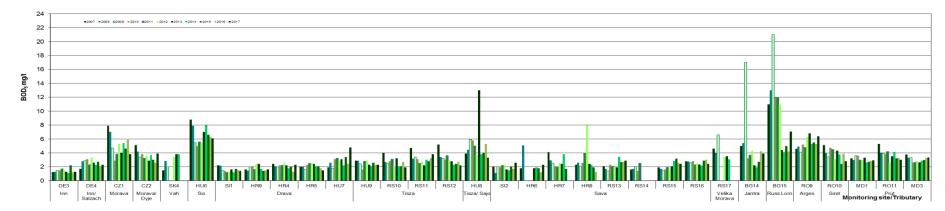


Figure 4.5.: Temporal changes of COD_{Cr} (c90) in the Danube River.

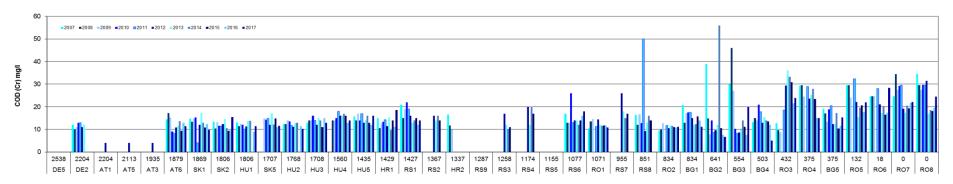


Figure 4.6.: Temporal changes of COD_{Cr} (c90) in tributaries.

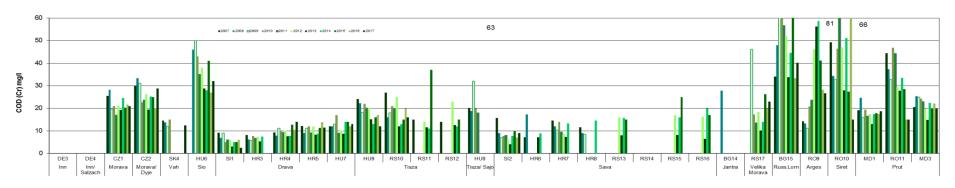


Figure 4.7.: Temporal changes of N-NH₄(c90) in the Danube River.

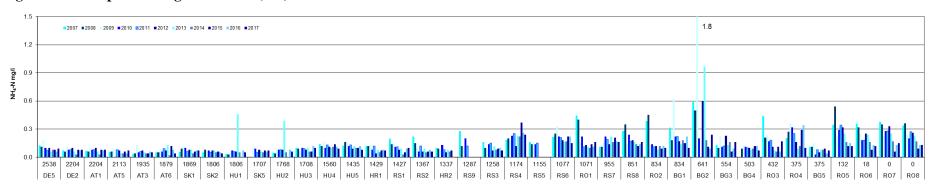


Figure 4.8.: Temporal changes of N-NH₄(c90) in tributaries.

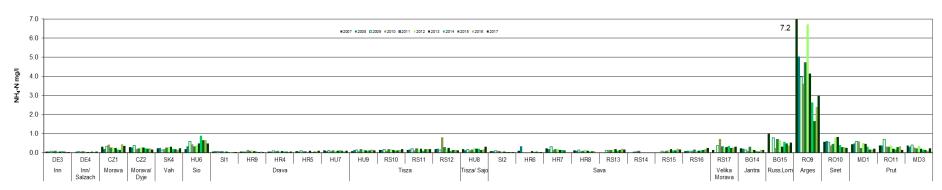


Figure 4.9.: Temporal changes of N-NO₃(c90) in the Danube River.

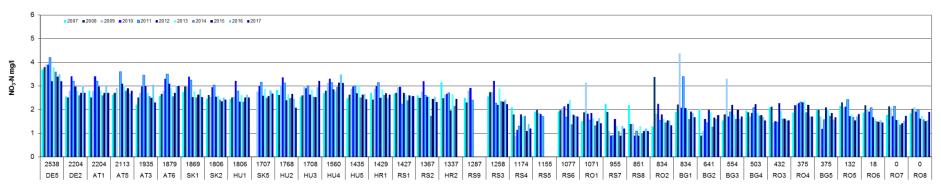


Figure 4.10.: Temporal changes of N-NO₃ (c90) in tributaries.

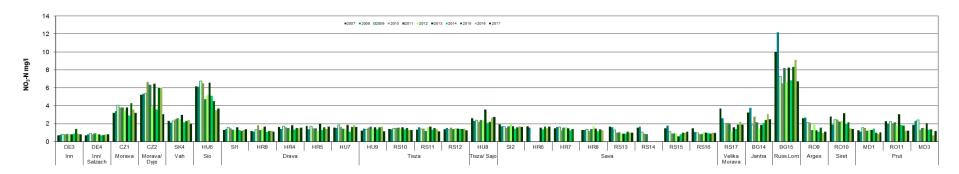


Figure 4.11.: Temporal changes of P-PO₄(c90) in the Danube River.

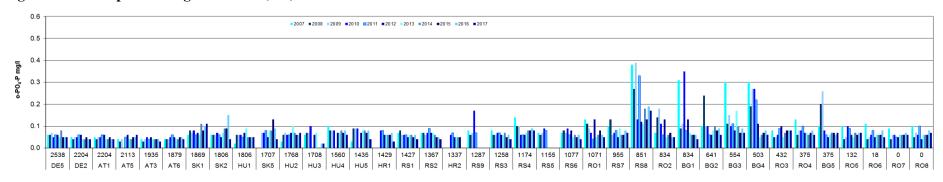


Figure 4.12.: Temporal changes of P-PO₄(c90) in tributaries

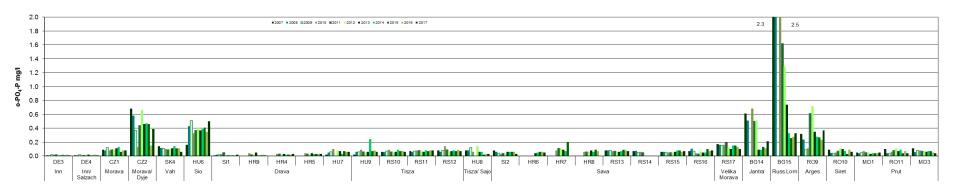


Figure 4.13.: Temporal changes of total phosphorus (c90) in the Danube River.

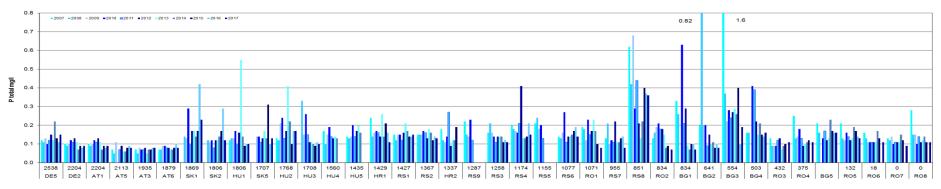


Figure 4.14.: Temporal changes of total phosphorus (c90) in tributaries.

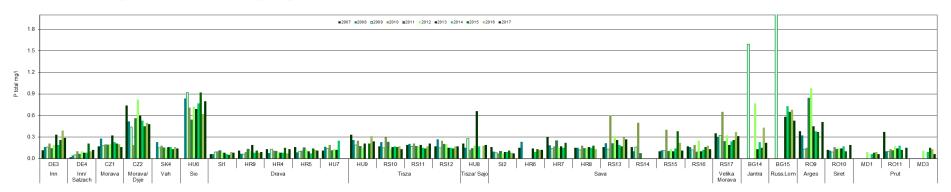


Figure 4.15.: Temporal changes of cadmium (c90) in the Danube River.

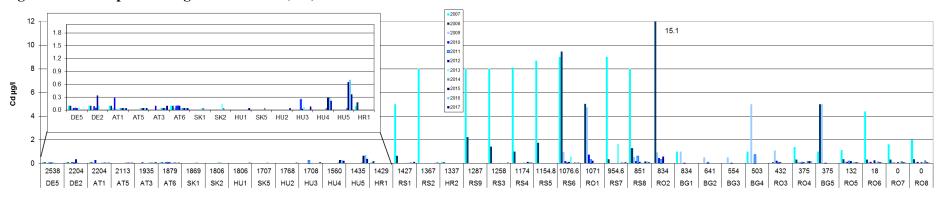


Figure 4.16.: Temporal changes of cadmium (c90) in tributaries.

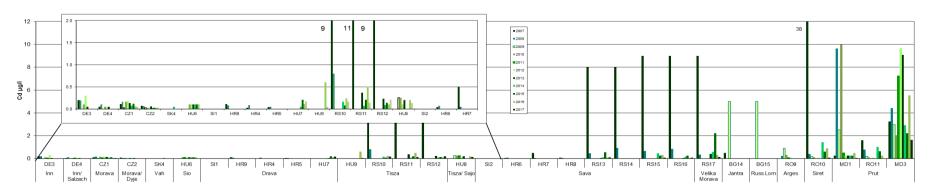


Figure 4.17.: Temporal changes of BOD₅ (c90) in Bratislava

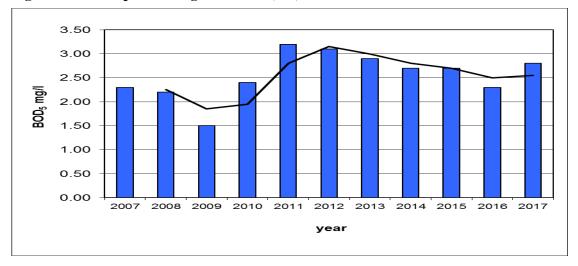


Figure 4.18.: Temporal changes of BOD₅ (c90) in Hercegszanto

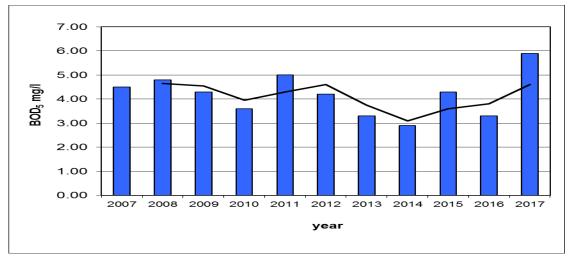


Figure 4.19.: Temporal changes of BOD₅ (c90) in Reni

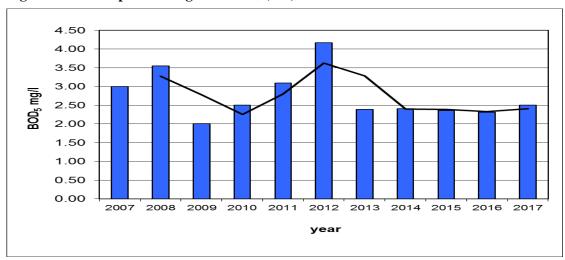


Figure 4.20.: Temporal changes of N-NO₃ (c90) in Bratislava

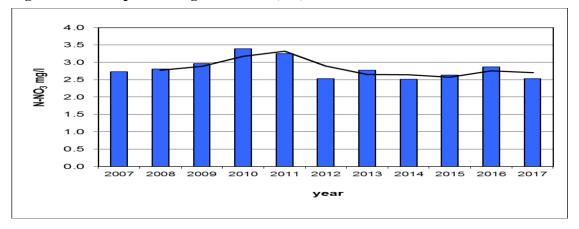


Figure 4.21.: Temporal changes of N-NO₃ (c90) in Hercegszanto

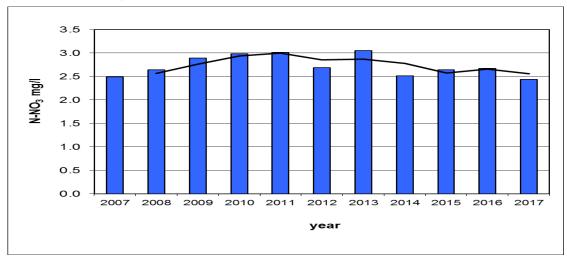


Figure 4.22.: Temporal changes of N-NO₃ (c90) in Reni

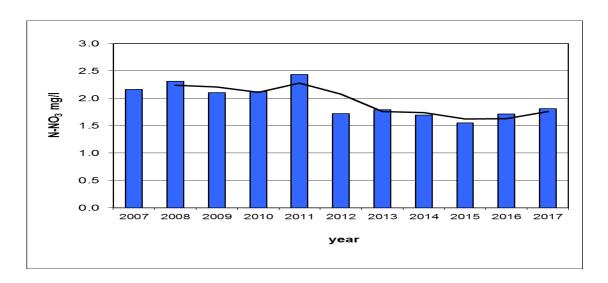


Figure 4.23.: Temporal changes of total phosphorus (c90) in Bratislava

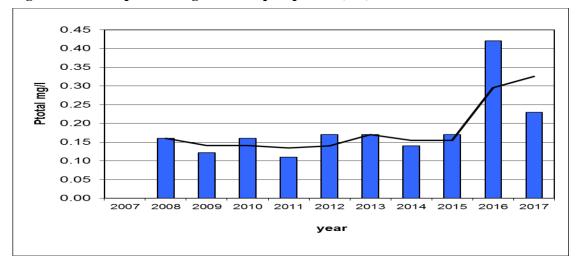


Figure 4.24.: Temporal changes of total phosphorus (c90) in Hercegszanto

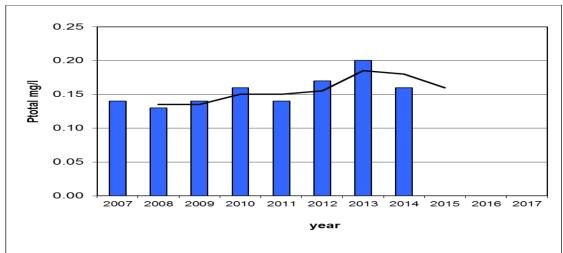


Figure 4.25.: Temporal changes of total phosphorus (c90) in Reni

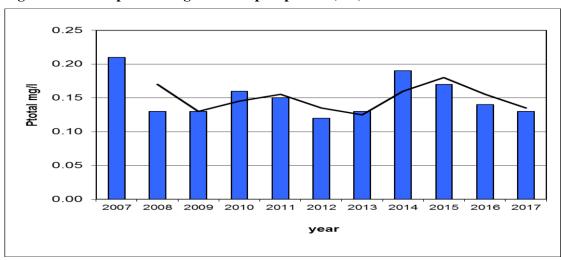


Figure 4.26.: The percentile (90, 10) of N-NH₄ concentration along the Danube River in 2017.

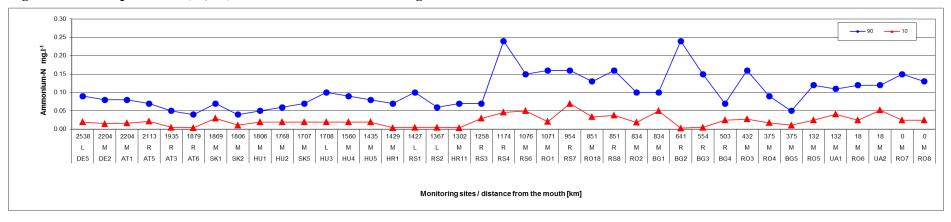


Figure 4.27.: The percentile (90, 10) of N-NH₄ concentration in the tributaries in 2017.

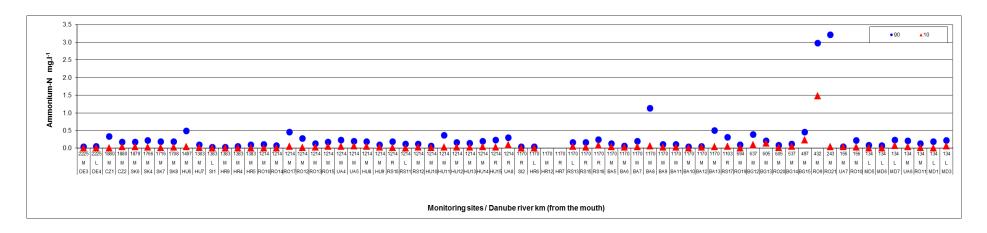


Figure 4.28.: The percentile (90, 10) of P-PO₄ concentration along the Danube River in 2017.

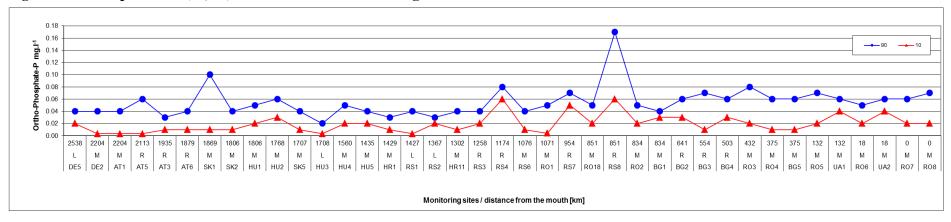


Figure 4.29.: The percentile (90, 10) of P-PO₄ concentration in the tributaries in 2017.

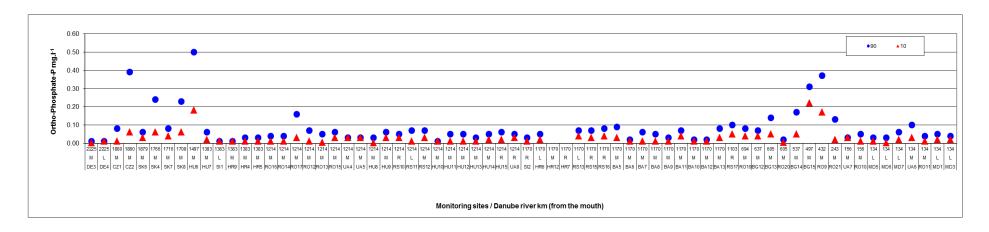


Figure 4.30.: The percentile (90, 10) of COD_{Cr} concentration along the Danube River in 2017.

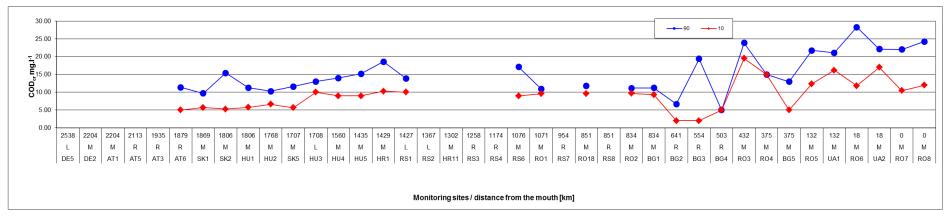


Figure 4.31.: The percentile (90, 10) of COD_{Cr} concentration in the tributaries in 2017.

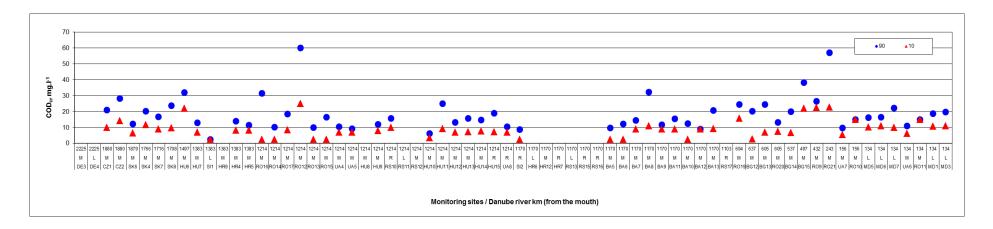


Figure 4.32.: The percentile (90, 10) of BOD₅ concentration along the Danube River in 2017.

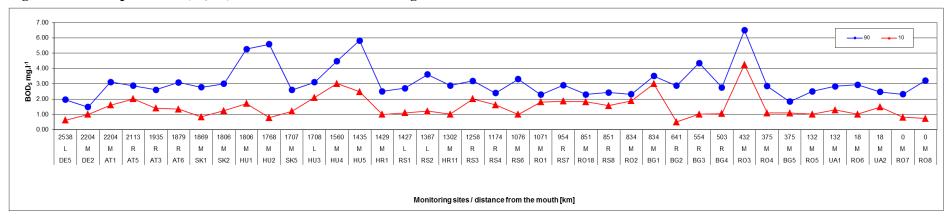
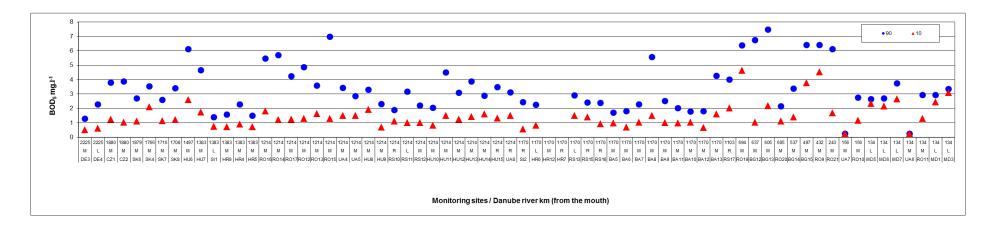



Figure 4.33.: The percentile (90, 10) of BOD₅ concentration in the tributaries in 2017.

4.1 Macrozoobenthos saprobic index and chlorophyll-a

The maximum values of macrozoobenthos- saprobic index in Danube River and tributaries are presented in the Figures 4.34 and 4.35. The data of macrozoobenthos were delivered during the year 2017 for 17 monitoring points located in the Danube River and for 34 monitoring points in tributaries. The maximal value of saprobic index was determined in RO4 Chiciu. The highest value of macrozoobenthos-saprobic index was found in the tributary Mures (RO16).

Figure 4.34.: The maximum values of macrozoobenthos-saprobic index along the Danube River in 2017.

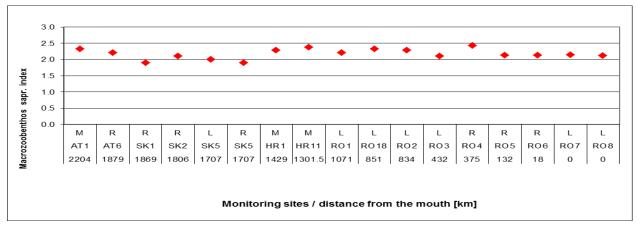


Figure 4.35.: The maximum values of macrozoobenthos- saprobic index in the tributaries in 2017.

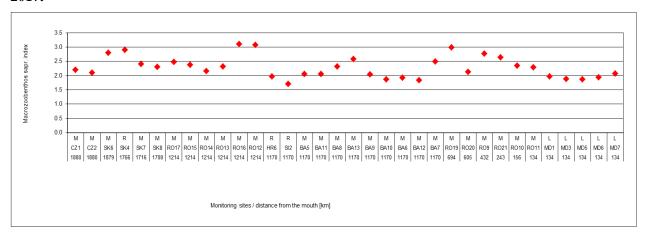
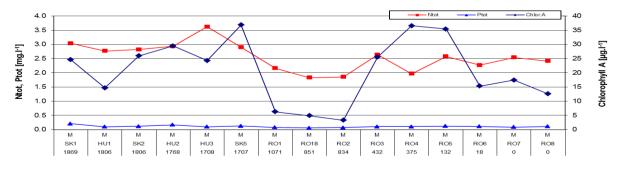



Figure 4.36.: The percentile (90) of total nitrogen, phosphorus and chlorophyll a concentration along the Danube River in 2017.

Monitoring sites / distance from the mouth [km]

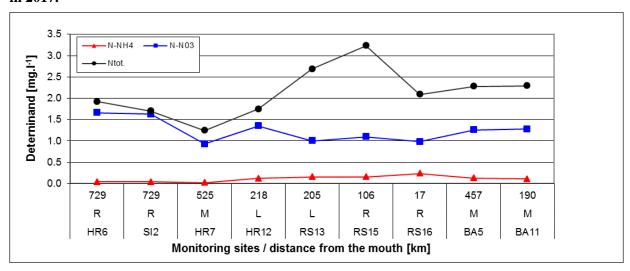
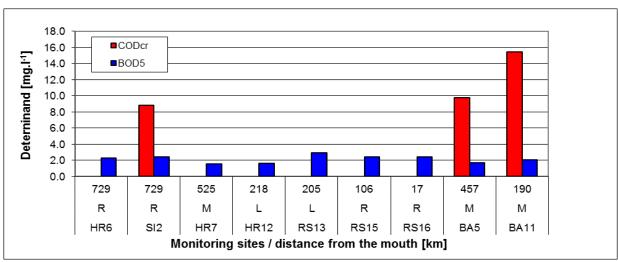
The concentration of nutrients and the chlorophyll a are presented in Figure 4.36 (in this figure there are described only those monitoring points where all three determinands were measured). The maximal concentration of chlorophyll a was observed in SK5. The highest concentration of N_{total} was observed in HU3 and maximal concentration of P_{total} was in SK1.

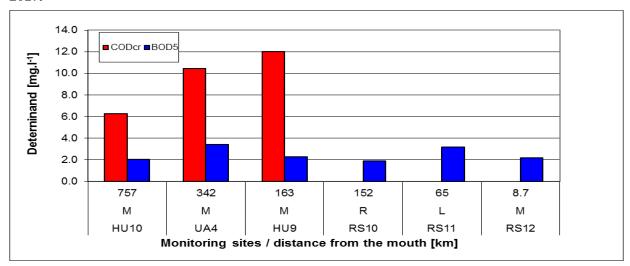
4.2 Sava and Tisza Rivers

The percentiles 90 of nutrients COD_{Cr} , BOD_5 measured in 2017 in Sava and Tisza Rivers are presented in the Figures 4.37-4.40. The highest value of N-NH₄ in Sava River was found in monitoring point RS16 (rkm 17). The maximal concentration of N-NO₃ was also observed in HR6 (rkm 729, Figure 4.37) and the highest value of N_{total} was measured in RS15 (rkm 106, Figure 4.37).

The highest values of BOD₅ in Sava River was measured in monitoring point RS13 rkm 205 and the highest COD_{Cr} value was measured in monitoring point BA11 (rkm 190, Figure 4.38).

Figure 4.37.: The percentile (90) of $N_{tot.}$, $N-NH_4$ and $N-NO_3$ concentration along the Sava River in 2017.


Figure 4.38.: The percentile (90) of BOD_5 and COD_{Cr} concentration along the Sava River in 2017.

2.5 - N-NH4 --- N-N 03 - Ntot 2.0 Deterninand [mg.l-1] 1.5 1.0 0.5 0.0 757 342 163 152 65 8.7 Μ Μ Μ R L Μ HU9 HU10 UA4 RS10 RS11 RS12 Monitoring sites / distance from the mouth [km]

Figure 4.39.: The percentile (90) of total nitrogen, N-NH₄ and N-NO₃ concentration along the Tisza River in 2017.

Figure 4.40.: The percentile (90) of BOD₅ and COD_{Cr} concentration along the Tisza River in 2017.

The maximal value of N-NH₄ in the Tisza River was measured in monitoring point UA4 rkm 342 (see Figure 4.39). The highest value of N-NO₃ was measured in RS10 rkm 152. In 2017 maximum of N_{total} was measured in HU9 rkm 163.

The highest value of COD_{Cr} in Tisza River was found in monitoring point HU9 rkm 163 and maximum of BOD₅ was measured in UA4 rkm 342. (Figure 4.40).

5. Load Assessment

5.1 Introduction

The long-term development of loads of relevant determinands in the important rivers of the Danube Basin is one of the major objectives of the TNMN. This is why the load assessment programme in the Danube River Basin started in 2000. For the calculation of loads, a commonly agreed standard operational procedure is used.

5.2 Description of load assessment procedure

The following principles have been agreed for the load assessment procedure:

- Load is calculated for the following determinands: BOD₅, inorganic nitrogen, ortho-phosphatephosphorus, dissolved phosphorus, total phosphorus, suspended solids and - on a voluntary basis chlorides and dissolved silica; based on the agreement with the Black Sea Commission, silicates are measured at the Romanian load assessment sites since 2004;
- The minimum sampling frequency at sampling sites selected for load calculation is set at 24 per vear;
- The load calculation is processed according to the procedure recommended by the Project "Transboundary assessment of pollution loads and trends" and described in Chapter 6.4. Additionally, countries can calculate annual load by using their national calculation methods, results of which should be presented together with data prepared on the basis of the agreed method;
- Countries should select for load assessment those TNMN monitoring sites for which valid flow data is available (see Table 4).

Table 4 shows TNMN monitoring locations selected for the load assessment program. It also provides information about hydrological stations collecting flow data for load assessment. Altogether 27 monitoring locations from nine countries are included in the list. One location – Danube-Jochenstein has been included by two neighbouring countries, therefore the actual number of locations is 26, with 10 locations on the Danube River itself and 16 locations on the tributaries. Rivers Prut and Siret were added in the year 2010.

5.3 Monitoring Data in 2017

The monitoring frequency is an important factor for the assessment of pollution loads in watercourses. Table 4 shows the number of measurements of flow and water quality determinands in the TNMN load assessment sites.

Data are shown in tables 4 - 10. In most of the locations, the number of samples was higher than 20, lower frequency was observed for chlorides. A frequency of 10-12 times per year was applied for Czech, Croatian, German and Ukrainian monitoring stations. In 2010, load calculation for Slovakian monitoring points on tributaries Morava, Hron and Ipel' was added, at a monitoring frequency of 12.

The loads in the Danube at Jochenstein are being assessed based on combined data from Germany and Austria; there is no issue with insufficient frequency there. For two Croatian stations, there is a complex data calculation using different hydrological stations and quality monitoring points: Danube -HR2 Borovo rkm 1337 and HR11 Ilok rkm 1302; Sava HR7 us Una Jesenovac rkm 525 and HR12 Račinovci rkm 218.

There is still a lack of data on dissolved phosphorus as it was measured at 14 locations only. Also the silicate /dissolved silica load was calculated at 12 monitoring points.

Table 4: List of TNMN locations selected for load assessment program

Country	River	Water quality me	onitoring location		Hydrological station	
				Distance from		Distance from
		Country Code	Location	mouth (Km)	Location	mouth (Km)
Germany	Danube	DE2	Jochenstein	2204	Achleiten	2223
Germany	Inn	DE3	Kirchdorf	195	Oberaudorf	211
Germany	Inn/Salzach	DE4	Laufen	47	Laufen	47
Austria	Danube	AT1	Jochenstein	2204	Aschach	2163
Austria	Danube	AT6	Hainburg	1879	Hainburg (Danube)	1884
					Angern (March)	32
Czech	Morava	CZ1	Lanzhot	79	Lanzhot	79
Republic						
Czech	Morava/Dyje	CZ2	Pohansko	17	Breclav-Ladná	32,3
Republic						
Slovak	Danube	SK1	Bratislava	1869	Bratislava	1869
Republic						
Slovak	Váh	SK4	Komárno		Sum of: Maly Dunaj -Trstice	22,5
Republic					Vah- Sala	58,8
					Nitra -Nove Zamky	12,3
Slovak	Morava	SK6	Devín		Zahorska Ves	32,5
Republic						
Slovak	Hron	SK7	Kamenica		Kamenin	10,9
Republic						
Slovak	lpeľ	SK8	Salka		Salka	12,2
Republic						
Hungary	Danube	HU3	Szob	1708	Nagymaros	1695
Hungary	Danube	HU5	Hercegszántó	1435	Mohács	1447
Hungary	Tisza	HU9	Tiszasziget	163	Szeged	174
Croatia	Danube	HR11	llok	1302	llok	1302
Croatia	Sava	HR06	Jesenice	729	Jesenice	729
Croatia	Sava	HR7	Una Jesenovac	525	Una Jesenovac	525
Croatia	Sava	HR8	Zupanja	254	Zupanja	254
Slovenia	Drava	SI1	Ormoz	300	Borl	325
					HE Formin	311
					Pesnica-Zamusani	10.1(to the
						Drava)
Slovenia	Sava	SI2	Jesenice	729	Catez	737
					Sotla -Rakovec	8.1 (to the Sava
Romania	Danube	RO2	Pristol-Novo Selo	834	Gruia	858
Romania	Danube	RO4	Chiciu-Silistra	375	Chiciu	379
Romania	Danube	RO5	Reni	132	Isaccea	101

Romania	Siret	RO10	Sendreni	0	Sendreni	0	
Romania	Prut	RO11	Giurgiulesti	0	Giurgiulesti	0	
Ukraine	Danube	UA2	Vylkove	18			

5.4 Calculation Procedure

Regarding several sampling sites in the profile, the average concentration at a site is calculated for each sampling day. In case of values "below the limit of quantification", the ½ of the limit of quantification is used in the further calculation. The average monthly concentrations are calculated according to the formula:

$$\begin{array}{c} \sum\limits_{i \in \textbf{M}} C_{i}\left[mg.l^{\text{-}1}\right].\ Q_{i}\left[m^{3}.s^{\text{-}1}\right] \\ \\ C_{m}\left[mg.l^{\text{-}1}\right] = & \\ & \sum\limits_{i \in \textbf{M}} Q_{i}\left[m^{3}.s^{\text{-}1}\right] \end{array}$$

where $C_{\rm m}$ average monthly concentrations

> C_{i} concentrations in the sampling days of each month Q_i discharges in the sampling days of each month

The monthly load is calculated by using the formula:

$$L_{m}$$
 [tones] = C_{m} [mg.l⁻¹] . Q_{m} [m³.s⁻¹] . days (m) . 0,0864

where $L_{\rm m}$ monthly load

> $Q_{\rm m}$ average monthly discharge

- If discharges are available only for the sampling days, then Q_m is calculated from those discharges.
- For months without measured values, the average of the products C_mQ_m in the months with sampling days is used.

The annual load is calculated as the sum of the monthly loads:

$$L_a [tones] = \sum_{m=1}^{12} L_m [tones]$$

Table 5: Number of measurements at TNMN locations selected for assessment of pollution load in 2017

Country	River	Location	Location	River]	Number of n	neaus remei	nts in 2017					
Code			in profile	Km	Q	SS	Ninorg	P-PO ₄	P _{total}	BOD ₅	Cl	P _{diss}	SiO ₂
DE2	Danube	Jochenstein	M	2204	365	14	26	26	26	14	14		
DE3	Inn	Kirchdorf	M	195	365	13	13	13	13	12	13		
DE4	Inn/Salzach	Laufen	L	47	365	13	13	13	13	13	13		
AT1	Danube	Jochenstein	M	2204	365	12	26	26	26	12	12	12	
AT6	Danube	Hainburg	R	1879	365	24	24	24	24	23	24	24	
CZ1	Morava	Lanzhot	M	79	365	12	12	12	12	12	12		12
CZ2	Morava/Dyje	Pohansko	M	17	365	12	12	12	12	12	12		12
SK1	Danube	Bratislava	M	1869	365	24	24	24	24	24	12	24	24
SK4	Váh	Komárno	M	1	365	12	12	12	12	12	12		12
SK6	Morava	Devín	M	1	365	12	12	12	12	12	12	12	12
SK7	Hron	Kamenica	M	2	365	12	12	12	12	12	12	12	12
SK8	Ipoly	Salka	M	12	365	12	12	12	8	12	12	12	12
HU3	Danube	Szob	L	1708		12	24	24	24	12	12		12
			M	1708	365	11	23	23	23	11	11		10
			R	1708		12	24	24	24	12	12		11
HU5	Danube	Hercegszántó	M	1435	365	15	24	24		19	17		12
HU9	Tisza	Tiszasziget	L	163		11	11	11	11	11	11		11
			M	163	365	12	24	24	24	11	11		11
			R	163		11	11	11	11	11	11		11
HR2	Danube	Borovo	R	1337	365								
HR11	Danube	Ilok	M	1302		12	12	12	12	12	12		12
HR6	Sava	Jesenice	R	729	365	12	12	12	12	12	12		12
HR7	Sava	us Una Jesenovac	M	525	365	8	8	8	8	8	8		8
HR12	Sava	Račinovci	L	218	365	12	12	12	12	12	12		12
HR8	Sava	ds Zupanja	ML	254									
SI1	Drava	Ormoz	L	300	365	26	26	26	26	26	12		
SI2	Sava	Jesenice	R	729	365	26	26	26	26	26	12		
RO2	Danube	Pristol-Novo Selo	L	834		25	25	25	25	25	12	25	
			M	834	365	23	23	23	23	23	11	23	
			R	834		23	23	23	23	23	11	23	
RO4	Danube	Chiciu-Silistra	L	375	365	25	25	25	25	11	11	11	
			M	375		25	25	25	25	11	11	11	
			R	375		25	25	25	25	11	11	11	
RO5	Danube	Reni	L	132		25	25	25	25	13	12	12	25
			M	132	365	25	25	25	25	13	12	12	25
			R	132		25	25	25	25	13	12	12	25
RO10	M	Siret	M	0	365	26	26	26	26	13	12	12	
RO11	M	Prut	M	0	365	26	26	26	26	12	12	12	
UA2	Danube	Vylkove	M	18	365	12	12	12		12	12	12	12

5.5 Results

The mean annual concentrations and annual loads of suspended solids, inorganic nitrogen, orthophosphate-phosphorus, total phosphorus, BOD₅, chlorides and – where available – dissolved phosphorus and silicates - are presented in tables 6 to 10, separately for monitoring locations on the Danube River and for monitoring locations on tributaries. The explanation of terms used in the tables 6 to 10 is as follows:

Term used	Explanation
Station Code	TNMN monitoring location code
Profile	location of sampling site in profile (L-left, M-middle, R-right)
River Name	name of river
Location	name of monitoring location
River km	distance to mouth of the river
Qa	mean annual discharge in the year 2017
Cmean	arithmetical mean of the concentrations in the year 2017
Annual Load	annual load of given determinand in the year 2017

Table 10 shows loads of other determinands (nitrogen forms and heavy metals) at the profile Reni, which are monitored since 2005 based on the agreement with the Black Sea Commission. Annual loads for Danube and tributaries are in figures 5.1 -5.12.

Trends for load during last 10 years at the Reni are in figures 5.13.-5.18. In general, loads had a decreasing tendency in years 2011 and 2012. Due to the high discharges in 2005 and 2010 higher loads were observed in those years. In 2017, loads decreased for suspended solids and chlorides while they increased for inorganic nitrogen, ortho-phosphate, total phosphorus dissolved phosphorus and silicates.

The mean annual discharge was lower in whole Danube River than in 2016. Also in most tributaries, discharges were lower than in 2016. Only in Inn, Morava, and Prut the annual discharge was higher than in 2016.

The spatial pattern of the annual load along the Danube River is similar to the previous year. In the case of suspended solids, inorganic nitrogen, BOD₅, ortho-phosphate, total phosphorus and chlorides, the highest load is observed in the lower part of the Danube River. The maximum load of suspended solids, inorganic nitrogen ortho-phosphate, total phosphorus, dissolved phosphorus, chlorides and silicates was observed at monitoring location Danube-Reni (RO5). Maximal load for BOD₅ was calculated for RO2 Pristol-Novo Selo.

In the case of tributaries, the highest load of inorganic nitrogen, BOD₅, total phosphorus and chlorides is coming from the Tisza River.

Table 6: Mean annual concentrations in monitoring locations selected for load assessment on Danube River in 2017

Station	Profile	River Name	Location	River km	Qa			C _{mean}					
Code						Suspended Solids	Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE2													
+AT1	M	Danube	Jochenstein	2204	1307	24.11	1.87	0.02	0.06	1.67	18.48	0.04	
AT6	R	Danube	Hainburg	1879	1834	20.75	1.81	0.02	0.05	2.07	18.97	0.04	
SK1	М	Danube	Bratislava	1869	1844	43.88	1.76	0.04	0.12	1.70	17.75	0.07	5.32
HU3	LMR	Danube	Szob	1708	2041	14.56	2.01	0.02	0.11	2.69	18.96		4.27
HU5	М	Danube	Hercegszántó	1435	2143	9.76	1.54	0.03		4.25	20.65		3.58
HR11	М	Danube	llok	1302	2659	20.73	1.48	0.02	0.10	1.86	18.22		4.39
RO2	LMR	Danube	Pristol-Novo Selo	834	4270	37.00	1.19	0.04	0.06	2.16	21.41	0.05	
RO4	LMR	Danube	Chiciu-Silistra	375	4813	15.22	1.19	0.04	0.08	1.86	24.20	0.06	
RO5	LMR	Danube	Reni	132	5202	46.18	1.18	0.05	0.09	1.78	27.57	0.08	3.17*
UA2	М	Danube	Vylkove	18	2554	48	1.15	0.04		1.93	33.18	0.11	2.09

Table 7: Mean annual concentrations in monitoring locations selected for load assessment on tributaries in 2017

Station	Profile	River Name	Location	River km	Qa				C _{mea}	n			
Code						Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE3	М	Inn	Kirchdorf	195	291	78.58	0.64	0.01	0.12	0.78	7.66		
DE4	L	Inn/Salzach	Laufen	47	254	43.62	0.67	0.01	0.05	1.56	8.34		
CZ1	М	Morava	Lanzhot	79	39	15.59	0.03	0.03	0.11	2.59	31.33		7.94
CZ2	L	Morava/Dyje	Pohansko	17.00	16	8.13	1.67	0.20	0.27	2.59	64.75		11.66
SK4	М	Váh	Komárno	1	195	26.00	1.52	0.05	0.13	1.98	18.02	0.09	5.81
SK6	М	Morava	Devín	1	56	81.83	2.70	0.19	0.27	2.70	44.93	0.19	10.45
SK7	М	Hron	Kamenica	2	36	22.67	1.93	0.13	0.24	2.03	45.50	0.19	9.12
SK8	М	lpoly	Salka	12	10	35.33	1.82	0.14	0.27	2.43	29.32	0.20	21.35
HU9	LMR	Tisza	Tiszasziget	163	611	31.47	0.88	0.04	0.17	1.42	37.12		8.873
SI1	L	Drava	Ormoz	300	256	10.03	1.01	0.01	0.05	1.11	8.42		
SI2	R	Sava	Jesenice	729	265	4.71	1.34	0.02	0.05	1.23	7.91		
HR6	R	Sava	Jesenice	729	266	6.31	1.33	0.03	0.09	1.38	9.24		3.27*
HR7	L	Sava	us. Una Jasenovac	525	675	16.66	0.96	0.09	0.17	1.53	40.26		4.34*
HR12	М	Sava	Račinovci	218	989	8.72	1.50	0.10	0.18	1.58	10.45		4.34*
RO10	М	Siret	Conf. Danube (Sendreni)	729	138	163.65	1.18	0.03	0.11	1.85	86.42	0.04	
RO11	М	Prut	Conf. Danube (Giurgiulesti)	729	64	67.54	0.74	0.03	0.09	2.02	44.61	0.04	•

Table 8: Annual load in selected monitoring locations on Danube River

Station	Profile	River Name	Location	River km				Annual L	oad in 2017			
Code					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10³tonns)	(x10 ⁶ tonns)
DE2+AT1	М	Danube	Jochenstein	2204	1.25	73.30	0.83	2.36	69.66	0.69	1.26	
AT6	R	Danube	Hainburg	1879	1.34	99.67	1.31	2.70	118.73	1.03	2.38	
SK1	М	Danube	Bratislava	1869	3.78	97.71	2.14	7.40	94.23	1.02	3.94	0.30
HU3	LMR	Danube	Szob	1708	0.94	130.94	1.38	6.80	180.12	1.19		0.27
HU5	М	Danube	Hercegszántó	1435	0.64	104.39	2.07		272.26	1.32		0.25
HR11	М	Danube	llok	1302	1.83	123.89	1.92	8.46	158.01	1.49		0.37
RO2	LMR	Danube	Pristol-Novo Selo	834	5.01	168.10	4.99	7.67	285.09	2.86	6.04	
RO4	LMR	Danube	Chiciu-Silistra	375	2.22	178.66	5.71	11.41	263.53	3.39	8.29	
RO5	LMR	Danube	Reni	132	7.84	201.73	7.28	14.50	277.59	4.58	11.70	0.55*
UA2	М	Danube	Vylkove	18	4.35	95.39	3.60		151.53	2.66	8.46	0.18

^{*}Silicates (SiO₂) in dissolved form

Table 9: Annual load in selected monitoring locations on tributaries

Station Code	Profile	River Name	Location	River km	Annual Load in 2017									
3343					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates		
					(x10 ⁶ tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10³tonns)	(x10 ⁶ tonns)	(x10³tonns)	(x10 ⁶ tonns)		
DE3	М	Inn	Kirchdorf	195	1.25	5.39	0.17	1.54	6.60	0.06				
DE4	٦	Inn/Salzach	Laufen	47	0.45	5.03	0.07	0.45	11.04	0.06				
CZ1	М	Morava	Lanzhot	79	0.02	2.98	0.03	0.10	2.56	0.03		0.009		
CZ2	Ь	Morava/Dyje	Pohansko	17	0.004	0.92	0.08	0.11	1.05	0.03		0.005		
SK4	М	Váh	Komárno	1	0.196	9.84	0.29	0.75	12.09	0.11	0.54	0.038		
SK6	М	Morava	Devín	1	0.043	3.95	0.19	0.37	4.67	0.08	0.28	0.016		
SK7	М	Hron	Kamenica	2	0.021	1.71	0.07	0.16	1.83	0.02	0.12	0.016		
SK8	М	lpoly	Salka	12	0.015	0.67	0.04	0.08	0.84	0.01	0.06	0.007		
HU9	LMR	Tisza	Tiszasziget	163	0.724	18.66	0.75	3.25	30.23	0.56		0.187		
SI1	L	Drava	Ormoz	300	0.101	7.99	0.06	0.40	8.72	0.06				
SI2	R	Sava	Jesenice	729	0.041	11.50	0.18	0.36	8.05	0.06				
HR6	R	Sava	Jesenice	729	0.060	11.45	0.27	0.68	10.93	0.08		0.035		
HR7	М	Sava	us. Una Jasenovac	525	0.202	31.72	1.67	3.00	33.54	0.21		0.103		
HR12	L	Sava	Račinovci	218	0.377	26.27	1.83	3.56	30.91	0.60		0.135		
RO10	М	Siret	Conf. Danube (Sendreni)	0	0.605	5.41	0.14	0.47	8.18	0.36	0.18			
RO11	М	Prut	Conf. Danube (Giurgiulesti)	0	0.137	1.58	0.06	0.20	4.26	0.10	0.08			

Silicates (SiO₂) in dissolved form

Table 10: Additional annual load data at Reni for reporting to the Black Sea Commission

River	Location	Location	River		Number of measurements in 2017											
		in profile	km	Q	N-NH₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
Danube	Reni	LMR	132	366	25	25	25	24		12		12		12		12
River	Location	Location	River						C _{mean}							
		in profile	km	Q_a	N-NH₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
				(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(µg.l ⁻¹)							
Danube	Reni	LMR	132	5202	0.07	0.015	1.09	1.71		3.29		0.84		0.084		0.032
River	Location	Location	River							Annua	al Load in	2017				
		in profile	km		N-NH₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss.}
					(x10³tonns)	(x10³tonns)	(x10 ³ tonns)	(x10³tonns)	(tonns)							
Danube	Reni	LMR	132		11.51	2.48	187.74	291.51		528.97		145.39		13.42		4.48

Figure 5.1.: Annual load of suspended solids at monitoring locations along the Danube River.

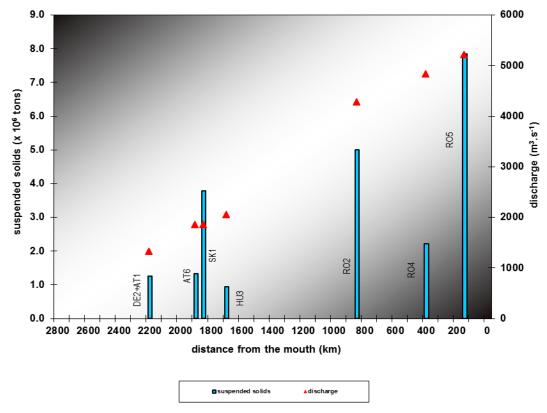


Figure 5.2.: Annual load of suspended solids at monitoring locations on tributaries.

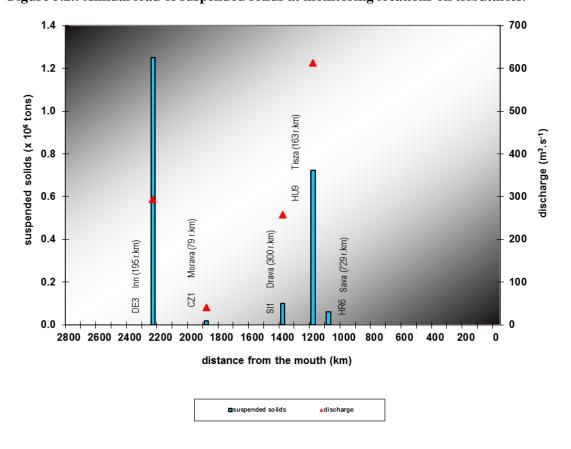


Figure 5.3.: Annual loads of inorganic nitrogen at monitoring locations along the Danube River.

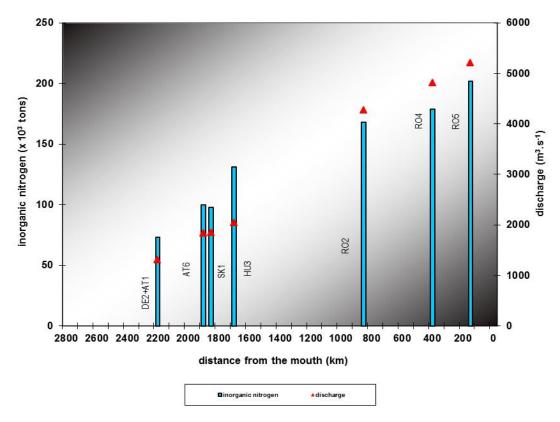


Figure 5.4.: Annual loads of inorganic nitrogen at monitoring locations on tributaries.

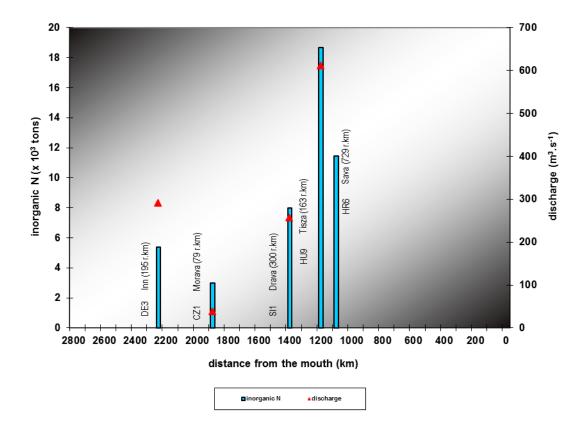


Figure 5.5.: Annual loads of P-PO₄ at monitoring locations along the Danube River.

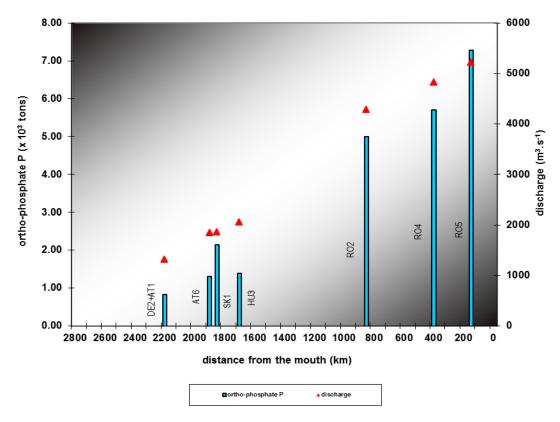


Figure 5.6.: Annual loads of P-PO₄ at monitoring locations on tributaries.

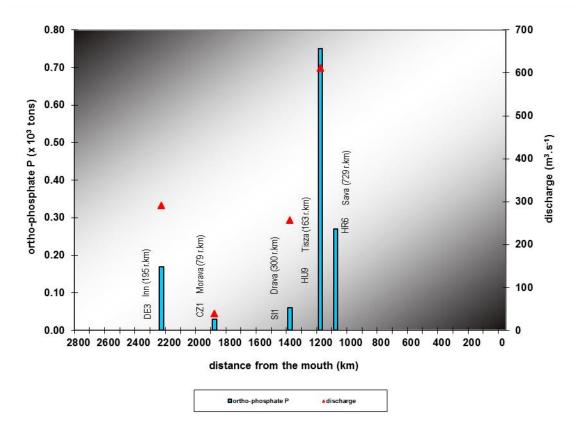


Figure 5.7.: Annual loads of total phosphorus at monitoring locations along the Danube River.

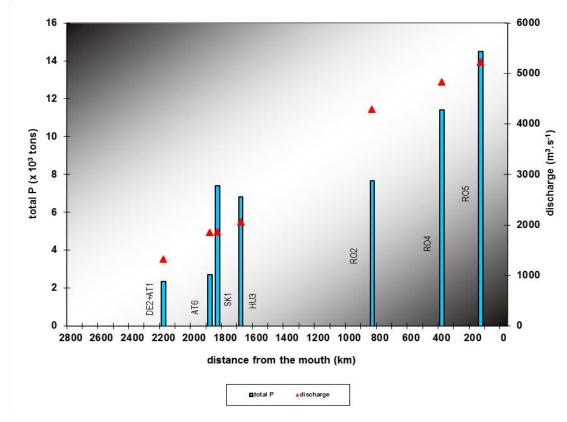


Figure 5.8.: Annual loads of total phosphorus at monitoring locations on tributaries.

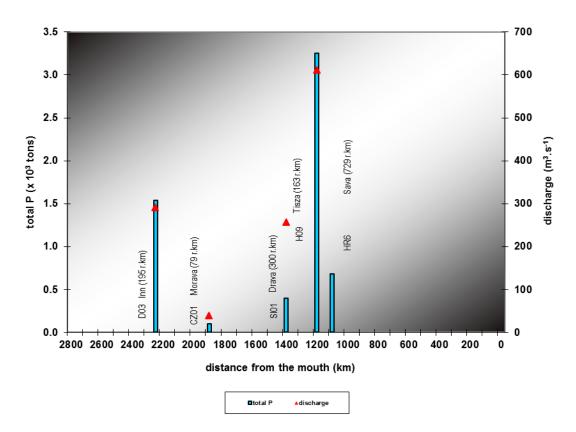


Figure 5.9.: Annual loads of BOD₅ at monitoring locations along the Danube River.

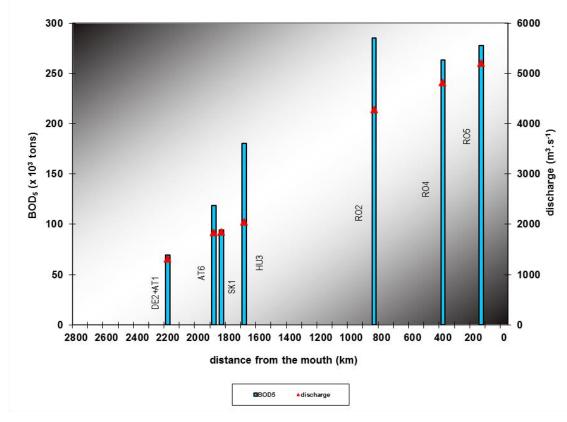


Figure 5.10.: Annual loads of BOD₅ at monitoring locations on tributaries.

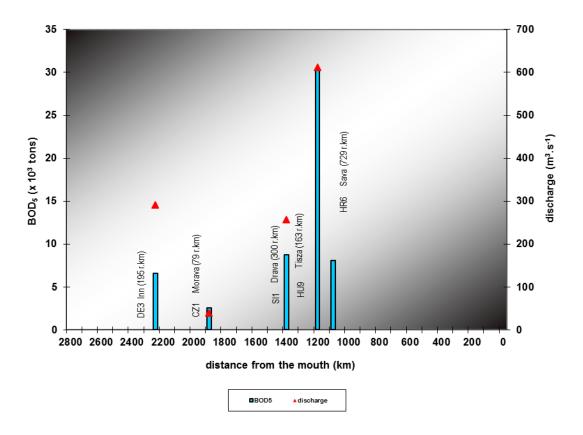


Figure 5.11.: Annual loads of chlorides at monitoring locations along the Danube River.

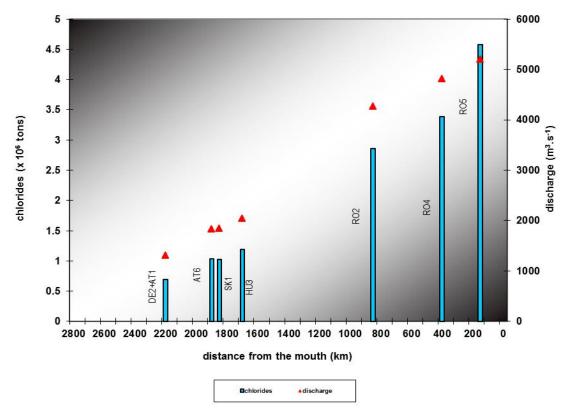


Figure 5.12.: Annual loads of chlorides at monitoring locations on tributaries.

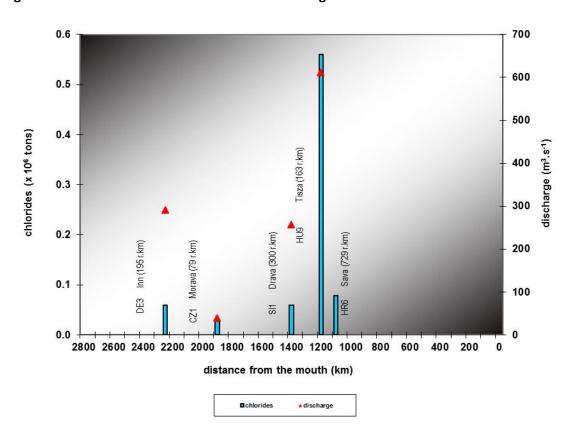


Figure 5.13.: Trends of annual loads of suspended solids at Reni.

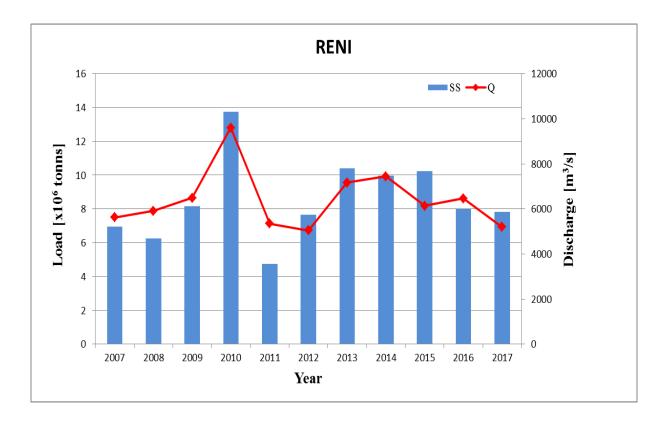


Figure 5.14.: Trends of annual loads of inorganic nitrogen at Reni.

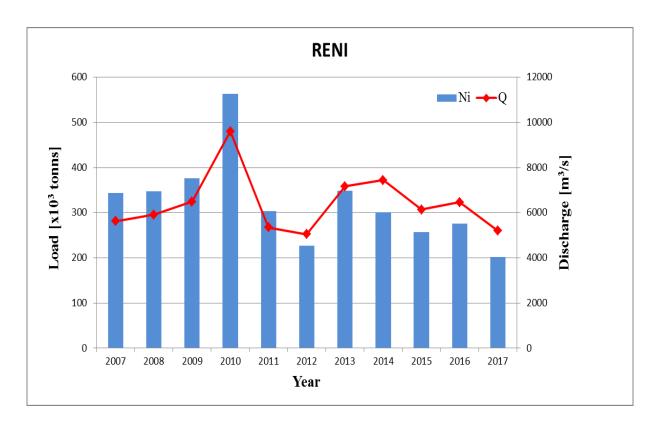


Figure 5.15.: Trends of annual loads of P-PO₄ and total phosphorus and dissolved phosphorus at Reni.

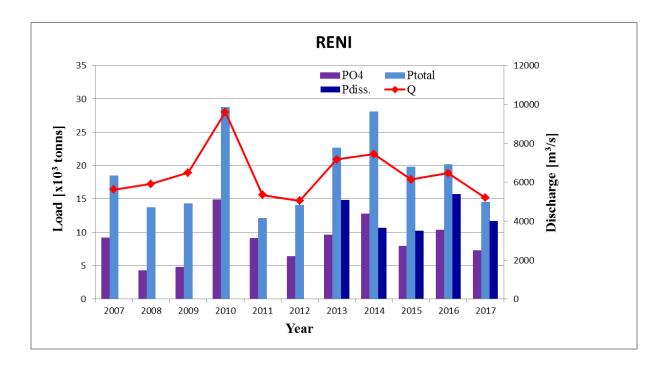


Figure 5.16.: Trends of annual loads of BOD₅ at Reni.

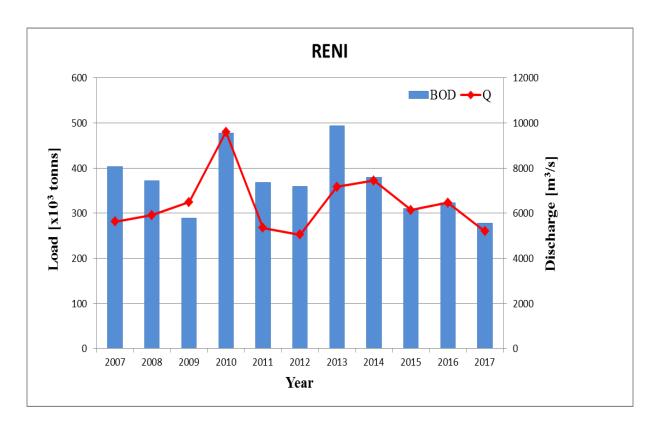


Figure 5.17.: Trends of annual loads of chlorides at Reni.

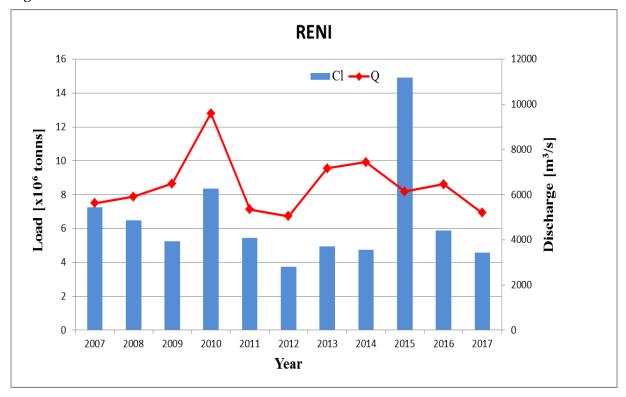
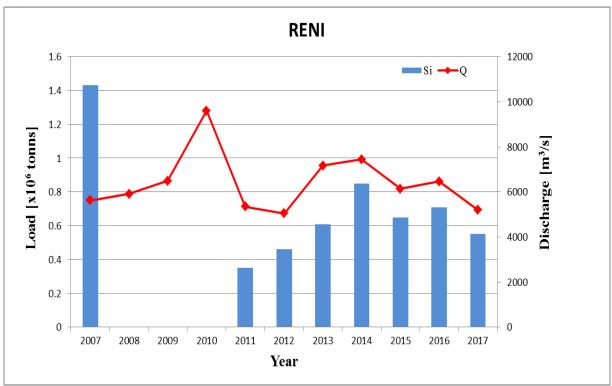



Figure 5.18.: Trends of annual loads of silicates at Reni.

Groundwater monitoring 6.

5.6 GW bodies of basin-wide importance

According to the Article 2 of the EU Water Framework Directive (2000/60/EC) 'Groundwater' means all water which is below the surface of the ground in the saturation zone and in direct contact with the ground or subsoil. The analysis and review of the groundwater bodies in the Danube River Basin as required under Article 5, Annex II of the WFD was performed in 2004, and it identified 11 GW-bodies or groups of GW-bodies of basin-wide importance, which are shown in Map 2.

GW-bodies of basin-wide importance were defined as follows:

- important due to the size of the groundwater body which means an area larger than 4000 km²
- important due to various criteria e.g. socio-economic importance, uses, impacts, pressures interaction with aquatic eco-system. The criteria need to be agreed bilaterally.

This means that the other groundwater bodies even those with an area larger than 4000 km², which are fully situated within one country of the DRB are dealt with at the national level. A link between the content of the DRBMP and the national plans is given by the national codes of the groundwater bodies.

Map 2: Transboundary GW-bodies of basin-wide importance and their transnational monitoring network

5.7 Reporting on groundwater quality

According to the WFD groundwater is an integral part of the river basin management district and therefore monitoring of groundwater of basin-wide importance was introduced into the TNMN in the Danube River Basin. The detailed description of the current status in development of the groundwater monitoring network in the Danube River Basin District is given in the TNMN Groundwater monitoring report (Part II of the Summary Report to EU on monitoring programs in the Danube River Basin District designed under Article 8).

Groundwater monitoring under TNMN is based on a six-year reporting cycle in line with the WFD reporting requirements. Information on status of the groundwater bodies of basin-wide importance is provided in the DRBM Plans published every six years. This sufficiently allows for making any relevant statement on significant changes of groundwater status for the GW-bodies of basin-wide importance.

7. Abbreviations

Abbreviation	Explanation
AQC	Analytical Quality Control
BSC	Black Sea Commission
DEFF	Data Exchange File Format
	Convention on Cooperation for the Protection and Sustainable Use of the Danube River
DRPC	(short: Danube River Protection Convention)
ICPDR	International Commission for the Protection of the Danube River
LOQ	Limit of Quantification
MA EG	Monitoring and Assessment Expert Group (former MLIM EG)
MLIM EG	Monitoring, Laboratory and Information Management Expert Group
NRL	National Reference Laboratory
SOP	Standard Operational Procedure
TNMN	Trans National Monitoring Network
WFD	EU Water Framework Directive
DRB	Danube River Basin
DRBMP	Danube River Basin Management Plan
GW	Groundwater
BOD₅	Biochemical oxygen demand (5 days)
COD _{Mn}	Chemical oxygen demand (Potassium permanganate)
COD _{Cr}	Chemical oxygen demand (Potassium dichromate)
TOC	Total organic carbon
DOC	Dissolved organic carbon
AOX	Adsorbable organic halogens
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls

ICPDR – International Commission for the Protection of the Danube River

Secretariat

Vienna International Centre / D0412

P.O. Box 500 / 1400 Vienna / Austria

T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895

secretariat@icpdr.org / www.icpdr.org