
Water Quality in the Danube River Basin – 2020

International Commission for the Protection of the Danube River transformationale Kommission zum Schutz der Donau

TNMN – Yearbook 2020

Imprint

Published by:

ICPDR - International Commission for the Protection of the Danube River

Overall coordination and preparation of the TNMN Yearbook and database Lea Mrafková, Slovak Hydrometeorological Institute, Bratislava, in cooperation with the Monitoring and Assessment Expert Group of the ICPDR.

Editor: Igor Liska, ICPDR Secretariat © ICPDR 2022

Contact ICPDR Secretariat Vienna International Centre / D0412 P.O. Box 500 / 1400 Vienna / Austria T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895 secretariat@icpdr.org / www.icpdr.org

Table of content

1.	Introdu	ction	4
	1.1	History of the TNMN	4
	1.2	Revision of the TNMN to Meet the Objectives of EU WFD	4
2.	Descrip	tion of the TNMN Surveillance Monitoring 2: Monitoring of Specific Pressures	6
	2.1	Objectives	6
	2.2	Selection of Monitoring Sites	6
	2.3	Quality Elements	11
	2.3.1	Parameters Indicative of Selected Biological Quality Elements	11
	2.3.2	Priority Pollutants and Parameters Indicative of General Physico-Chemical Quality	
		Elements	11
	2.4	Analytical Quality Control (AQC)	12
	2.5	TNMN Data Management	14
3.	Results	of Basic Statistical Processing	15

4.	Profile	s and Trend Assessment of Selected Determinands	18	
	4.1 4.2	Saprobic Index Based on Macrozoobenthos The Sava and Tisza Rivers	38 39	
5.	Load /	Assessment	41	
	5.1 5.2 5.3 5.4 5.5	Introduction Description of Load Assessment Procedure Monitoring Data in 2020 Calculation Procedure Results	41 41 43 43	
6.	Groun	dwater Monitoring	59	
	6.1 6.2	Groundwater Bodies of Basin-Wide Importance Reporting on Groundwater Quality	59 59	
7.	. Abbreviations			

1. Introduction

1.1 History of the TNMN

In June 1994, the Convention on Cooperation for the Protection and Sustainable Use of the Danube River (DRPC) was signed in Sofia, coming into force in October 1998 with the main objectives of achieving sustainable and equitable water management, including the conservation, improvement and the rational use of surface and ground waters in the Danube catchment area. The DRPC also emphasizes that the Contracting Parties shall cooperate in the field of monitoring and assessment. In this respect, the operation of the Trans-National Monitoring Network (TNMN) in the Danube River Basin (DRB) aims to contribute to the implementation of the DRPC. This Yearbook reports on results of the basin-wide monitoring programme and presents TNMN evaluated data for 2020.

The TNMN has been in operation since 1996, although the first steps towards its creation were taken about ten years earlier. In December 1985 the governments of the Danube riparian countries signed the Bucharest Declaration. The Declaration had as one of its objectives to observe the development of the water quality of the Danube, and in order to comply with this objective, a monitoring programme containing 11 cross-sections of the Danube River was established.

1.2 Revision of the TNMN to Meet the Objectives of EU WFD

The original objective of the TNMN was to strengthen the existing network set up by the Bucharest Declaration, to enable a reliable and consistent trend analysis for concentrations and loads of priority pollutants, to support the assessment of water quality for water use and to assist in the identification of major pollution sources.

In 2000, having the experience of the TNMN operation, the main objective of the TNMN was reformulated: to provide a structured and well-balanced overall view of the status and long-term development of quality and loads in terms of relevant constituents in the major rivers of the Danube Basin in an international context.

Implementation of the EU Water Framework Directive (2000/60/EC, short WFD) after 2000 necessitated the revision of the TNMN in the Danube River Basin District. In line with the WFD implementation timeline, the revision process has been completed in 2007.

The major objective of the revised TNMN is to provide an overview of the overall status and long-term changes of surface water and – where necessary – groundwater status in a basin-wide context with a particular attention paid to the transboundary pollution load. In view of the link between the nutrient loads of the Danube and the eutrophication of the Black Sea, it is necessary to monitor the sources and pathways of nutrients in the Danube River Basin District and the effects of measures taken to reduce the nutrient loads into the Black Sea.

To meet the requirements of both EU WFD and the Danube River Protection Convention the revised TNMN for surface waters consists of following elements:

- Surveillance monitoring 1: Monitoring of surface water status
- Surveillance monitoring 2: Monitoring of specific pressures
- Operational monitoring
- Investigative monitoring

Surveillance monitoring 2 is a joint monitoring activity of all ICPDR Contracting Parties that produces annual data on concentrations and loads of selected parameters in the Danube and major tributaries (see map on page 10).

Surveillance monitoring 1 and the operational monitoring is based on collection of the data on the status of surface water and groundwater bodies in the DRB District to be published in the Danube River Basin Management Plan (DRBMP) once in six years.

Investigative monitoring is primarily a national task but at the basin-wide level the concept of Joint Danube Surveys was developed to carry out investigative monitoring as needed, e.g. for harmonization of the existing monitoring methodologies, filling the information gaps in the monitoring networks operating in the DRB, testing new methods or checking the impact of "new" chemical substances in different matrices. Joint Danube Surveys are carried out every 6 years.

A new element of the revised TNMN is monitoring of groundwater bodies of basin-wide importance. More information on this issue is provided in the respective chapter in this Yearbook.

Detailed description of the revised TNMN is given in the Summary Report to EU on monitoring programmes in the Danube River Basin District designed under WFD Article 8.

This Yearbook presents the results of the Surveillance monitoring 2: Monitoring of specific pressures.

2. Description of the TNMN Surveillance Monitoring 2: Monitoring of Specific Pressures

2.1 Objectives

Surveillance Monitoring 2 aims at long-term monitoring of specific pressures of basin-wide importance. Selected quality elements are monitored annually. Such denser monitoring programme is needed to identify the specific pressures in the Danube River Basin District in order to allow a sound and reliable long-term trend assessment of specific quality elements and to achieve a sound estimation of pollutant loads being transferred across states of Contracting Parties and into the Black Sea.

Surveillance Monitoring 2 is based on the set-up of the original TNMN and is fitted to respond to pressures of basin-wide importance. The monitoring network is based on the national monitoring networks and the operating conditions are harmonized between the national and basin-wide levels to minimise the efforts and maximise the benefits (Table 1).

2.2 Selection of Monitoring Sites

The selection of monitoring sites is based on the following criteria:

- Monitoring sites that have been monitored in the past and are therefore suitable for long-term trend analysis; these include sites:
 - o located just upstream/downstream of an international border,
 - located upstream of confluences between Danube and main tributaries or main tributaries and larger sub-tributaries (to enable estimation of mass balances),
 - o located downstream of the major point sources,
 - located to control important water uses.
- Sites required to estimate pollutant loads (e.g., of nutrients or priority pollutants) which are transferred across boundaries of Contracting Parties, and which are transferred into the marine environment.

The sites are located on the Danube River and its major primary or secondary tributaries near crossing boundaries of the Contracting Parties. All monitoring stations are listed in the Table 1, presented with differentiation of monitoring sites located on the Danube River (in bold) and tributaries. Information about monitoring sites reporting data in 2020 is included in the Table 3 - Chapter 3.

N°	Country code	Station code	River	Monitoring station name	Locations	x- coord	y-coord	River- km	Alti- tude	Catch- ment area
1	DE	DE2	Danube	Jochenstein	м	13.703	48.520	2 204	290	77 086
2	DE	DE5	Danube	Dillingen	L	10.499	48.568	2 538	420	11 315
3	DE	DE3	/Inn	Kirchdorf	М	12.126	47.782	195	452	9 905
4	DE	DE4	/Inn/Salzach	Laufen	L	12.933	47.940	47	390	6 113
5	AT	AT1	Danube	Jochenstein	м	13.703	48.521	2 204	290	77 086
6	AT	AT5	Danube	Enghagen	R	14.512	48.240	2 113	241	84 869
7	AT	AT3	Danube	Wien-Nussdorf	R	16.371	48.262	1 935	159	101 700
8	AT	AT6	Danube	Hainburg	R	16.993	48.164	1 879	136	130 759
9	CZ	CZ1	/Morava	Lanžhot	М	16.989	48.687	79	150	9 725
10	CZ	CZ2	/Morava/Dyje	Pohansko	М	16.885	48.723	17	155	12 540
11	SK	SK1	Danube	Bratislava	LMR	17.107	48.138	1 869	128	131 329
12	SK	SK2	Danube	Medveďov	MR	17.652	47.794	1 806	108	132 168
13	SK	SK4	/Váh	Komárno	MR	18.142	47.761	1.5	106	19 661
14	SK	SK5	Danube	Szob	LMR	18.853	47.813	1 707	100	183 350
15	SK	SK6	/Morava	Devín	М	16.976	48.188	1	145	26 575
16	SK	SK7	/Hron	Kamenica	М	18.723	47.826	1.7	114	5 417
17	SK	SK8	/lpeľ	Salka	М	18.763	47.886	12	110	5 060
18	HU	HU1	Danube	Medvedov	MR	17.652	47.792	1 806	108	131 605
19	HU	HU2	Danube	Komarom	LMR	18.121	47.751	1 768	101	150 820
20	HU	HU3	Danube	Szob	LMR	18.860	47.813	1 708	100	183 350
21	HU	HU4	Danube	Dunafoldvar	LMR	18.934	46.811	1 560	89	188 700
22	HU	HU5	Danube	Hercegszanto	LMR	18.715	45.984	1 435	79	211 503
23	HU	HU6	/Sio	Szekszard-Palank	LMR	18.720	46.380	13	85	14 693
24	HU	HU7	/Drava	Dravaszabolcs	LM	18.200	45.784	78	92	35 764
25	HU	HU8	/Tisza/Sajo	Sajopuspoki	LMR	20.340	48.283	124	148	3 224
26	HU	HU9	/Tisza	Tiszasziget	LMR	20.105	46.186	163	74	138 498
27	HU	HU10	/Tisza	Tiszabecs	LM	22.831	48.104	757	114	9707
28	HU	HU11	/Tisza/Szamos	Csenger	LM	22.693	47.841	45	113	15283
29	HU	HU12	/Tisza/Hármas- Körös/Sebes-Körös	Korosszakal	MR	21.657	47.020	59	92	2489
30	HU	HU13	/Tisza/Hármas- Körös/Kettős- Körös/Fekete-Körös	Sarkad	MR	21.431	46.694	16	85	4302
31	HU	HU14	/Tisza/Hármas- Körös/Kettős- Körös/Fehér-Körös	Gyulavari	MR	21.336	46.629	9	85	4251
32	HU	HU15	/Tisza/Maros	Nagylak	R	20.703	46.161	51	80	30149
33	SI	SI1	/Drava	Ormož most	L	16.155	46.403	300	192	15 356
34	SI	SI2	/Sava	JesenicenaDolenjskem	R	15.692	45.861	729	135	10 878
35	HR	HR1	Danube	Batina	MR	18.829	45.875	1 429	86	210 250
36	HR	HR11	Danube	llok	М	19.401	45.232	1 302	73	253 737
37	HR	HR9	/Drava	Ormoz	LMR	16.155	46.403	300	192	15356
38	HR	HR4	/Drava	Botovo	MR	16.938	46.241	227	123	31 038
39	HR	HR5	/Drava	DonjiMiholjac	MR	18.201	45.783	78	92	37 142
40	HR	HR6	/Sava	Jesenice	LR	15.692	45.861	729	135	10 834
41	HR	HR7	/Sava	UpstreamUnaJasenovac	М	16.915	45.269	525	87	30 953
			1		1	1				

Table 1: List of stations included in TNMN SM2

N°	Country code	Station code	River	Monitoring station name	Locations	x- coord	y-coord	River- km	Alti- tude	Catch- ment area
43	RS	RS1	Danube	Bezdan	L	18.860	45.854	1 426	83	210 250
44	RS	RS2	Danube	Bogojevo	L	19.079	45.530	1 367	80	251 593
45	RS	RS3	Danube	Novi Sad	R	19.842	45.225	1 255	74	254 085
46	RS	RS4	Danube	Zemun	R	20.412	44.849	1 173	71	412 762
47	RS	RS6	Danube	BanatskaPalanka	ML	21.339	44.826	1 077	70	568 648
48	RS	RS7	Danube	Tekija	R	22.419	44.700	954	68	574 307
49	RS	RS8	Danube	Radujevac	R	22.680	44.263	851	32	577 085
50	RS	RS10	/Tisza (Tisa)	Martonos	R	20.081	46.114	152	76	140 130
51	RS	RS11	/Tisza (Tisa)	Novi Becej	L	20.135	45.586	65	75	145 415
52	RS	RS12	/Tisza (Tisa)	Titel	М	20.312	45.198	9	73	157 174
53	RS	RS13	/Sava	Jamena	L	19.084	44.878	205	77	64 073
54	RS	RS15	/Sava	Sabac	R	19.699	44.770	106	74	89 490
55	RS	RS16	/Sava	Ostruznica	R	20.312	44.732	17	72	95 430
56	RS	RS17	/Velika Morava	Ljubicevski Most	R	21.132	44.586	22	71	37 320
57	BA	BA5	/Sava	Gradiska	М	17.255	45.141	457	86	39 150
58	BA	BA6	/Sava/Una	KozarskaDubica	М	16.836	45.188	16	94	9 130
59	BA	BA7	/Sava/Vrbas	Razboj	М	17.458	45.050	12	100	6 023
60	BA	BA8	/Sava/Bosna	Modrica	М	18.313	44.961	24	114	10 500
61	BA	BA9	/Sava/Drina	Foca	М	18.833	43.344	234	442	3 884
62	BA	BA10	/Sava/Drina	Badovinci	М	19.344	44.779	16	90	19 226
63	BA	BA11	/Sava	Raca	М	19.335	44.891	190	80	64 125
64	BA	BA12	/Sava/Una	Novi Grad	М	16.295	44.988	70	137	4 573
65	BA	BA13	/Sava/Bosna	Usora	М	18.074	44.664	78	148	7 313
66	BG	BG1	Danube	Novo Seloharbour	LMR	22.785	44.165	834	35	580 100
67	BG	BG2	Danube	Bajkal	R	24.400	43.711	641	20	608 820
68	BG	BG3	Danube	Svishtov	LMR	25.345	43.623	554	16	650 340
69	BG	BG4	Danube	UpstreamRusse	MR	25.907	43.793	503	12	669 900
70	BG	BG5	Danube	Silistra	LMR	27.268	44.125	375	7	698 600
71	BG	BG6	/lskar	Orechovitza	М	24.358	43.589	28	31	8 370
72	BG	BG7	/Jantra	Karantzi	М	25.669	43.389	12	32	6 860
73	BG	BG8	/Russenski Lom	Basarbovo	М	25.913	43.786	13	22	2 800
74	BG	BG12	/lskar	Gigen mouth	М	24.456	43.706	4	27	8 646
75	BG	BG13	/Vit	Guljantzi	Μ	24.728	43.644	7	29	3 225
76	BG	BG14	/Jantra	Novgrad mouth	Μ	25.579	43.609	4	25	7 869
77	BG	BG15	/Russenski Lom	mouth	М	25.936	43.813	1	17	2 974
78	RO	R01	Danube	Bazias	LMR	21.384	44.816	1 071	70	570 896
79	RO	R018	Danube	Gruia/Radujevac	LMR	22.684	44.270	851	32	577 085
80	RO	RO2	Danube	Pristol/Novo Selo	LMR	22.676	44.214	834	31	580 100
81	RO	RO3	Danube	Dunare – upstreamArges (Oltenita)	LMR	26.619	44.056	432	16	676 150
82	RO	RO4	Danube	Chiciu/Silistra	LMR	27.268	44.128	375	13	698 600
83	RO	RO5	Danube	Reni	LMR	28.232	45.463	132	4	805 700
84	RO	RO6	Danube	Vilkova-Chilia arm/Kilia arm	LMR	29.553	45.406	18	1	817 000
85	RO	RO7	Danube	Sulina - Sulinaarm	LMR	29.671	45.158	0	1	817 000
86	RO	RO8	Danube	Sf. Gheorghe-Ghorghearm	LMR	29.609	44.885	0	1	817 000
87	RO	RO9	/Arges	Conf. Danube (Clatesti)	М	26.599	44.145	0	14	12 550
88	RO	RO10	/Siret	Conf. Danube (Sendreni)	М	27.934	45.403	0	4	42 890
89	RO	R011	/Prut	Conf. Danube (Giurgiulesti)	M	28.203	45.469	0	5	27 480

N°	Country code	Station code	River	Monitoring station name	Locations	x- coord	y-coord	River- km	Alti- tude	Catch- ment area
90	RO	R012	/Tisza/Somes	Dara (frontiera)	М	22.720	47.815	3	118	15 780
91	RO	RO13	/Tisza/Hármas- Körös/Sebes- Körös/CrisulRepede	Cheresig	Μ	21.692	47.030	3	116	2 413
92	RO	RO14	/Tisza/Hármas- Körös/Kettõs- Körös/CrisulNegru	Zerind	Μ	21.517	46.627	13	86.4	3 750
93	RO	R015	/Tisza/Hármas- Körös/Kettős- Körös/CrisulAlb	Varsand	М	21.339	46.626	0.2	88.9	4 240
94	RO	RO16	/Tisza/Mures	Nadlac	М	20.727	46.145	21	85.6	27 818
95	RO	R017	/Tisza/Bega	Otelec	М	20.847	45.620	7	46	2 632
96	RO	RO19	/Jiu	Zaval	М	23.845	43.842	9	30.9	10 046
97	RO	RO20	/Olt	Islaz	М	24.778	43.764	3	32	24 050
98	RO	R021	/lalomita	DownstreamTandarei	М	27.828	44.655	24	8.5	10 309
99	MD	MD1	/Prut	Lipcani	L	26.804	48.254	658	100	8 750
100	MD	MD3	/Prut	Conf. Danube-Giurgiulesti	LMR	28.198	45.472	0	5	27 480
101	MD	MD5	/Prut	CostestiReservoir	L	27.229	47.842	557	91	11 800
102	MD	MD6	/Prut	Braniste	L	27.250	47.794	546	63	12 000
103	MD	MD7	/Prut	Valea Mare	L	27.875	47.108	387	55	15 200
104	UA	UA1	Danube	Reni	М	28.288	45.437	132	4	805 700
105	UA	UA2	Danube	Vylkove	М	29.592	45.394	18	1	817 000
106	UA	UA4	/Tisza	Chop	М	22.184	48.416	342	92	33000
107	UA	UA5	/Tisza/Bodrog/Latoritsa	Strazh	М	22.212	48.454	144	96	4418
108	UA	UA6	/Prut	Tarasivtsi	М	26.336	48.183	262	122	9836
109	UA	UA7	/Siret	Tcherepkivtsi	М	26.030	47.981	100	303	2070
110	UA	UA8	/Uzh	Storozhnica	R	22.200	48.617	106	112	1582
111	ME	ME1	/Lim	Dobrakovo	L	19.773	43.121	112	609	2875
112	ME	ME2	/Cehotina	Gradac	L	19.154	43.396	55.5	55	809.8

Explanations:

River km	The distance in kilometres from the mouth of the mentioned river
Catchment area	The area in square kilometres, from which water drains through the station
Conf.	Confluence tributary/main river
/	Indicates tributary to river in front of the slash. No name in front of the slash means Danube
Locations	Location from which the sample may be taken: L - left bank of the river, M - middle of the river, R - right
	bank of the river
Bold font	The monitoring site is located on the Danube river
Grey font	The station was not reported in 2020
Grey Ioni	The station was not reported in 2020

Danube TransNational Monitoring Network - Surveillance Monitoring 2 stations

2.3 Quality Elements

The background of the whole TNMN Yearbook isdata reported in 2020 by 13 countries. Data provided by all countries should serve for evaluation of trends, longitudinal development and to calculate and know the changes in loads status. Data imported into the database consist of different groups of determinands: biological quality elements, physico-chemical quality elements, organic micropollutants, heavy metals. Basic statistical characteristics are processed for all monitoring sites (including all relevant locations) individually in the Annex I (more detailed description is in the Chapter3).

2.3.1 Parameters Indicative of Selected Biological Quality Elements

To cover pressures of basin-wide importance as organic pollution, nutrient pollution and general degradation of the river, following biological quality elements have been agreed for SM2:

- Phytoplankton (chlorophyll-a)
- Benthic invertebrates (macrozoobenthos) (mandatory parameters: Saprobic index SI and number of families once yearly, both Pantle&Buck and Zelinka&Marvan SI are acceptable; optional parameters: ASPT and EPT taxa)
- Phytobenthos (benthic diatoms an optional parameter)

2.3.2 Priority Pollutants and Parameters Indicative of General Physico-Chemical Quality Elements

The list of parameters for assessment of trends and loads and their monitoring frequencies are given in Table 2.

	Surveillance Monitoring	2
	Water	Water
Determinand	concentrations	load assessment
Flow	annually / 12 x per year	Daily
Temperature	annually / 12 x per year	
Transparency (1)	annually / 12 x per year	
Suspended Solids (5)	annually / 12 x per year	annually / 26 x per year
Dissolved Oxygen	annually / 12 x per year	
pH (5)	annually / 12 x per year	
Conductivity @ 20 °C (5)	annually / 12 x per year	
Alkalinity (5)	annually / 12 x per year	
Inorganic Nitrogen	annually / 12 x per year	annually / 26 x per year
Total Nitrogen	annually / 12 x per year	
Total Phosphorus	annually / 12 x per year	annually / 26 x per year
Dissolved Phosphorus	annually / 12 x per year	annually / 26 x per year
Ortho-Phosphate (P-PO ₄ ³) (2)	annually / 12 x per year	annually / 26 x per year
Calcium (Ca ²⁺) (3, 4, 5)	annually / 12 x per year	
Magnesium (Mg ²⁺) (4, 5)	annually / 12 x per year	
Chloride (Cl ⁻)	annually / 12 x per year	annually / 26 x per year
Atrazine	annually / 12 x per year	
Cadmium (6)	annually / 12 x per year	
Lindane (7)	annually / 12 x per year	
Lead (6)	annually / 12 x per year	
Mercury (6,8)	annually / 12 x per year	
Nickel (6)	annually / 12 x per year	
Arsenic (6)	annually / 12 x per year	
Copper (6)	annually / 12 x per year	
Chromium (6)	annually / 12 x per year	

Table 2: Surface water determinands list for TNMN

	Surveillance Monitoring 2		
	Water	Water	
Determinand	concentrations	load assessment	
Zinc (6)	annually / 12 x per year		
p,p'-DDT and its derivatives (7)	see below		
COD _{Cr} (5)	annually / 12 x per year		
COD _{Mn} (5)	annually / 12 x per year		
Dissolved Silica		annually / 26 x per year	
BOD ₅	annually / 12 x per year	annually / 26 x per year	

(1) Only in coastal waters

(2) Soluble reactive phosphorus SRP

(3) Mentioned in the tables of the CIS Guidance document but not in the related mind map

(4) Supporting parameter for hardness-dependent EQS of PS metals

(5) Not for coastal waters

(6) Measured in a dissolved form. Measurement of total concentration is optional.

(7) In areas with no risk of failure to meet the environmental objectives for DDT and lindanethe monitoring frequency is 12 times per RBMP period; in case of risk the frequency is 12 times per year.

(8) Mercury in fish is reported in a three-year reporting cycle.

2.4 Analytical Quality Control (AQC)

Parameters covered and samples distributed in the 2020 QUALCODanube programme were as follows:

- Real surface water samples for nutrient analysis: preserved natural surface water, spiked if necessary and adequately homogenised. Sample codes were SW-N-1 and SW-N-2. 500 cm³ plastic bottles were provided for NH4⁺-N, NO₃⁻-N, organic N, total N, PO₄³⁻ -P and total P analysis. Measurement results were asked to be reported as mg/dm³ N and P, respectively.
- Real surface water samples for heavy metal analysis: preserved natural surface water, spiked and adequately homogenised. Sample codes were SW-M-1 and SW-M-2. 250 cm³ plastic bottles were provided for Cd, Ni and Pb analysis. Measurement results were asked to be reported as μg/dm³.
- Spike solutions together with matrix water for NO₂⁻-N and Hg analysis: due to stability concerns during transport, it was decided that participants should compose the proficiency testing items themselves in situ by mixing prescribed amounts of the spike solutions (synthetic concentrates) of the measurand with the matrix water provided (simulated surface water, pre-treated by bringing to boiling point) according to instructions. Spike solutions were put in 20 cm³ plastic containers with sample codes SW-N/M-1 and SW-N/M-2, whereas matrix water was provided in 500 cm³ plastic bottle labelled "WATER FOR DILUTION NO₂- N and WATER FOR DILUTION Hg". Measurement results were asked to be reported as mg/ dm³ N and µg/ dm³ Hg, respectively.
- Fish muscle samples for Hg analysis: freeze-dried samples with a particle size of < 0,5 mm in 30 cm³ amber glass bottles. Sample codes were FISH-M-1 and FISH-M-2. Samples were prepared from freshwater fish muscle and spiked with inorganic mercury. Homogeneity was demonstrated after preparation of samples and was performed on 10 sample items, divided into 2 test portions each. The 20 test portions were analysed at random order. Stability of samples was tested for an eight-week interval. Homogeneity test results were used as starting point of stability study (T0). At week eight (T1), 3 samples items were tested, divided into 2 test portions each. The 6 test portions were analysed at random order. Sample in take for homogeneity and stability testing was 0,4 g.

Evaluation of results was performed according to ISO 13528:2015. Reported results were first inspected for obviously erroneous results or blunders (e.g., results reported in measurement units other than requested, swapping samples or parameters etc.) which were excluded from the calculation of statistical characteristics in accordance with section B.2.5. of ISO/IEC 17043:2010.

Then statistical characteristics, i.e., the assigned value of the parameter (x_{pl}) , the standard uncertainty of the assigned value $[u(x_{pl})]$ and the standard deviation for proficiency assessment (σ_{pl}) was determined. Finally, performance statistics were calculated including z-scores, z'-scores and E_n numbers and performance assessment was given (section 9.4., 9.5. and 9.6. of ISO 13528:2015).

Calculation of performance statistics was also performed for results excluded from calculation of statistical characteristics in order to indicate clearly that appropriate measures should be taken by Participant.

Sixty-one laboratories were enrolled into the scheme in 2020, which is a slightly higher number than in previous years. All of the appointed laboratories reported results. Most of the participants were experienced laboratories who had formerly participated in and were familiar with the AQC scheme. As previously, nutrients were measured by the majority of participants (44 to 52 laboratories per parameter), with the exception of organic N, where only 7 and 8 results were available for evaluation of the two samples, respectively, which is the lowest seen in the AQC scheme. This parameter replaced Kjeldahl N analysis in 2013 at behest of participants, however, it remains unpopular with laboratories, which renders statistical evaluation difficult. Priority heavy metals were reported by 23 to 37 laboratories. Mercury in fish measurement, which was a novelty in the scheme, was performed by twelve participants altogether.

The 2020 proficiency testing scheme was successful overall, number and ratio of unsatisfactory results was lower or similar to previous years' values. In some cases, low spread of reported values led to calculated robust standard deviations being half or less of the standard deviation for proficiency assessment set by expert judgement (NO₃⁻-N, total N and total P) or general model (modified Howitz-equation, Hg in fish), which is outstanding.

Evaluation of results could not be performed for organic N. In both samples the ratio of the standard uncertainty of the assigned value (i.e., robust average) and the standard deviation of proficiency assessment were about 150%, which clearly exceeded the critical limit of 120%. All participants indicated calculation as the applied measurement method (from measurements of total N and other N forms), which is inherently laced with higher uncertainties than individual measurements. Diminishing number of interested laboratories (only 8 in 2020 compared to the equally low value of 11 in2019) questions the long-term feasibility of inclusion of this parameter in the AQC scheme.

In case of total P and total N, all reported results were in the satisfactory range. Proficiency testing of nitrite nitrogen is traditionally less successful; in 2020, however, there were only 2 out of 52 laboratories with unsatisfactory results in both samples. Their values exceed critical limits in the same direction (indicative of systematic error – in one case, probably attributable to use of wrong unit of measurement). This is a continuation of the favourable trend for this parameter that began in 2018.

Similarly to previous experience, determination of ammonium nitrogen proved to be challenging: the number of laboratories with results exceeding critical limits in the same direction (z/z' > 2,0 or z/z' < -2,0 for both samples), formerly called systematic errors, was relatively high (5), though slightly lower than in 2019. Most of the non-satisfactory results were in the unsatisfactory range, similarly to 2019. This, together with the fact that agreement between results was much better before 2018, presents a negative trend for NH₄⁺-N analysis.

Interestingly, mercury analysis in fish was more successful than in water: all but one results in one of the samples was satisfactory in the solid samples. On the other hand, unusually high spread of surface water reported values led to 17 and 20 satisfactory results (out of 23) in the two samples respectively, and necessitated the use of z'-scores as well. It should be noted though, that taken into consideration of the complexity of analysis and the low number of laboratories enrolled for this parameter, target mercury concentrations in fish were chosen to higher than natural levels, in order to facilitate analysis.

In summary, the 2020 QualcoDanube proficiency testing scheme was successful, the scheme remains a useful and relevant tool in the quality framework of the Danube region.

2.5 TNMN Data Management

The procedure of TNMN data collection is organized at national level. The National Data Managers (NDMs) are responsible for data acquisition from TNMN laboratories as well as for data checking, conversion into an agreed data exchange file format (DEFF) and sending it to the TNMN data management centre in the Slovak Hydrometeorological Institute in Bratislava. This centre performs a secondary check of the data and uploads them into the central TNMN database. In cooperation with the ICPDR Secretariat, the TNMN data are made available on the ICPDR website (www.icpdr.org).

3. Results of Basic Statistical Processing

In the whole Danube River Basin District in 2020, 156 sites at 110 TNMN monitoring stations were monitored (some monitoring station could contain two or three sampling sites –depending on where the sampling site is located, whether on the right or left bank of the river, or in its middle). This information is given in Table 1, in the column "Location"). Samples from 73 sampling sites at 39 stations were collected directly on the Danube River. Tributaries were monitored at 83 sampling sites representing 71 stations.

N°	Station code	Location	River	Monitoring station	River km
1	DE5	L	Danube	Dillingen	2538
2	DE2	Μ	Danube	Jochenstein	2204
3	DE3	М	Inn	Kirchdorf	195
4	DE4	L	Inn/Salzach	Laufen	47
5	AT1	М	Danube	Jochenstein	2204
6	AT5	R	Danube	Enghagen	2113
7	AT3	R	Danube	Wien-Nussdorf	1935
8	AT6	R	Danube	Hainburg	1879
9	CZ1	М	Morava	Lanžhot	79
10	CZ2	М	Morava/Dyje	Pohansko	17
11	SK1	L, M, R	Danube	Bratislava	1869
12	SK2	M, R	Danube	Medveďov	1806
13	SK4	M, R	Vah	Komárno	1,5
14	SK5	L, M, R	Danube	Szob	1707
15	SK6	М	Morava	Devín	1
16	SK7	М	Danube/Hron	Kamenica	1,7
17	SK8	М	Danube/Ipeľ	Salka	12
18	HU1	M, R	Danube	Medve/Medvedov	1806
19	HU2	M, R	Danube	Komarom/Medvedov	1768
20	HU3	L, M, R	Danube	Szob	1708
21	HU4	L, M, R	Danube	Dunafoldvar	1560
22	HU5	М	Danube	Hercegszanto	1435
23	HU6	L, M	Sio	Szekszard-Palank	13
24	HU7	М	Drava	Dravaszabolcs	78
25	HU8	М	Tisza/Sajo	Sajopuspoki	124
26	HU9	L, M, R	Tisza	Tiszasziget	163
27	HU10	М	Tisza	Tiszabecs	757
28	HU11	М	Tisza/Szamos	Csenger	45
29	HU12	M, R	Tisza/Hármas-Körös/Sebes-Körös	Korosszakal	9
30	HU13	M, R	Tisza/Hármas-Körös/Kettõs- Körös/Fekete-Körös	Sarkad	16
31	HU14	M, R	Tisza/Hármas-Körös/Kettõs- Körös/Fehér-Körös	Gyulavari	59
32	HU15	R	Tisza/Maros	Nagylak	51
33	SI1	L	Drava	Ormož most	300
34	SI2	R	Sava	JesenicenaDolenjskem	729
35	HR1	M, R	Danube	Batina	1429
36	HR11	M	Danube	llok	1301,5
37	HR9	М	Drava	Ormož	300

Table 3: List of TNMN stations reported in 2020

N°	Station code	Location	River Mo	onitoring station	River km
38	HR4	M, R	Drava Bo	tovo	227
39	HR5	M, R	Drava D.	Miholjac	78
40	HR6	R	Sava Jes	senice	729
41	HR7	М	Sava Up	stream UnaJasenovac	525
42	HR12	L	Sava Ra	činovci	218
43	RS1	L	Danube Be	zdan	1426
44	RS2	L	Danube Bo	ogojevo	1367
45	RS3	R		ovi Sad	1255
46	RS4	R	Danube Zer	mun	1173
47	RS6	L	Danube Ba	inatska Palanka	1077
48	RS7	R	Danube Tel	kija	954
49	RS8	R		dujevac	851
50	RS10	R		artonos	152
51	RS11	L		vi Becej	65
52	RS12	М	Tisa Tite	,	8,7
53	RS13	L		mena	205
54	RS15	R		bac	106
55	RS16	R		struznica	17
56	RS17	R		ibicevski Most	21,8
57	BA5	M	,	adiska	457
58	BA6	M		zarskaDubica	16
59	BA7	M		izboj	12
50	BA8	M		odrica	24
50 61	BA9	M	Sava/Dosna No		234
51 62	BA10	M		dovinci	16
63	BA10 BA11	M	Sava Ra		190
63 64	BA12	M		vi Grad	70
	BA12 BA13	M			70
65 66	-			iora	78 834
66 67	BG1 BG2	L, M, R R		ovo Selo Harbour/Pristol	641
				. Iskar-Bajkal	
68	BG3 BG4	M		ownstream Svishtov	554
69		M		. Russe	503
70	BG5	L, M, R		listra/Chiciu	375
71	BG6	M		echovitza	28
72	BG7	M		rantzi	12
73	BG8	M		sarbovo	13
74	BG12	M		gen mouth	4
75	BG13	M		ıljantzi	7
76	BG14	М		ovgrad mouth	4
77	BG15	М		buth	1
78	R01	L, M, R		zias	1071
79	RO18	L, M, R		uia/Radujevac	851
80	RO2	L, M, R	Danube Pri	istol/Novo Selo	834
31	RO3	L, M, R		inare - upstream Arges (Oltenita)	432
82	RO4	L, M, R	Danube Ch	iciu/Silistra	375
83	RO5	L, M, R	Danube Re	ni-Chilia/Kilia arm	132
84	RO6	L, M, R	Danube Vil	kova-Chilia arm/Kilia arm	18
85	R07	L, M, R	Danube Su	ılina - Sulina arm	0
86	RO8	L, M, R	Danube Sf.	. Gheorghe-Ghorghe arm	0
	RO9	М	Arges Co	onf. Danube (Clatesti)	0

N°	Station code	Location	River	Monitoring station	River km
88	RO10	М	Siret	Conf. Danube (Sendreni)	0
89	R011	М	Prut	Conf. Danube (Giurgiulesti)	0
90	R012	М	Somes	Dara (frontiera)	3
91	R013	М	CrisulRepede	Cheresig	3
92	R014	М	CrisulNegru	Zerind	13
93	R015	М	Crisul Alb	Varsand	0
94	RO16	М	Mures	Nadlac	21
95	R017	М	Bega	Otelec	7
96	RO19	М	Jiu	Zaval	9
97	RO20	М	Olt	Islaz	3
98	R021	М	Lalomita	Downstream Tandarei	24
99	MD1	L	Prut	Lipcani	658
100	MD3	L	Prut	Conf. Danube-Giurgiulesti	0
101	MD5	L	Prut	Costesti Reservoir	254
102	MD6	L	Prut	Braniste	254
103	MD7	L	Prut	Valea Mare	525
104	UA1	М	Danube	Reni	132
105	UA2	М	Danube	Vylkove	18
106	UA4	М	Tisza	Chop	342
107	UA5	М	Tisza/Bodrog/Latoritsa	Strazh	144
108	UA6	М	Prut	Tarasivtsi	262
109	UA7	М	Siret	Tcherepkivtsi	100
110	UA8	R	Uzh	Storozhnytsya	106

Explanations:

Bold font – for the Danube River sites Normal font – tributaries

4. Profiles and Trend Assessment of Selected Determinands

The basic processing of the TNMN data includes in the first step acalculation of selected statistical characteristics for each determinand/monitoring site. The results are presented in tables in the Annex I and some of them are presented also graphically in form of long-term trends (Figures 4.1-4.25) or on the annual basis (Figures 4.26-4.40).

ANNEX I - data format:

Term used	Explanation
Determinand name	name of the determinand measured according to the agreed method
Unit	unit of the measured determinand
N	number of measurements
Min	minimum value of the measurements done in the year 2020
Mean	arithmetical mean of the measurements done in the year 2020
Max	maximum value of the measurements done in the year 2020
C50	50 percentiles of the measurements done in the year 2020
C90	90 percentiles of the measurements done in the year 2020 (C10 for dissolved oxygen)

When processing the TNMN data and presenting them in the tables of the Annex, the following rules have been applied:

- If "less than the quantification limit" values were present in the dataset for a given determinand, then the ½ value of the limit of quantification was used in statistical processing of the data.
- If the number of measurements for a particular determinand was lower than four, then only the minimum, maximum and mean are reported in the tables of the Annex.
- The statistic value "C90" is equal to 90 percentile (10 percentile for dissolved oxygen and lower limit of pH value) if the number of measurements in a year was at least eleven. If the number of measurements in a year was lower than eleven, then the "C90" value is represented by a maximum value from a data set (a minimum value for dissolved oxygen and lower limit of pH value).

Since 2009, the analytical data method according to Directive 2009/90/EC with limit of quantification (LOQ) has been applied. In this case if values were less than the limit of quantification, in statistic processing of data $\frac{1}{2}$ limit of quantification (LOQ) was used.

A problem is the reduced monitoring frequency for certain determinands such as dissolved phosphorus, biological determinands, heavy metals and specific organic micropollutants, primarily in the lower part of the Danube River Basin.

Based on processed data from the Annex I, **Table 4** shows in an aggregated way the concentration ranges (minimum, maximum) and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2020. These include indicators of the oxygen regime, nutrients, heavy metals, biological determinands and organic micropollutants. Table 4 also includes information about the total number of monitoring locations/sites actually measured in 2020.

Determinand name	Unit	Danube				Tributaries					
		No.of monitoring					No.of monitoring				
		locations / No. of					locations / No. of				
		monitoring sites with		<i>.</i> .			monitoring sites		c .		
		measurements	Range of values		Mean		with	Range of values		Mean	
			Min	Max	Min _{avg}	Max _{avg}	measurements	Min	Max	Min _{avg}	Max _{avg}
Temperature	°C	69/39	1.5	27.6	4.5			0.2	31	< 0	19.725
Suspended solids	mg/l	69/39	< 0.25	233	3			< 1	772	< 1	538
Dissolved oxygen	mg/l	69/39	2.9	13.95	6.52	12.96		2.9	16.2	< 0.10	11.75
BOD (5)	mg/l	69/39	< 0.25	9.1	0.98	4.25		< 0.25	20	< 0.25	4.44
COD (Mn)	mg/l	63/33	1.02	10.6	2.25	4.83		< 0.25	200	2.16	8.5
COD (Cr)	mg/l	57/27	< 2.50	104.3	7.32	17.4	58/56	< 2.50	84.46	< 2.00	37.58
TOC	mg/l	45/25	0.8	35	2.23			< 0.50	34.1	1.59	8.83
DOC	mg/l	33/15	0.8	6.43	2.04	5.74		0.6	14	1.333	7.141
рН	-	69/39	6.3	9.04	7.71	8.45		6.1	9.06	< 1.00	8.39
Alkalinity - total	mmol/l	69/39	1.379	5.2	1.68			< 0.025	451.4	1.235	7.173
Ammonium (NH4-N)	mg/l	69/39	< 0.004	0.96	0.009	0.17	73/71	< 0.004	17.9	< 0.005	1.93
Nitrite (NO2-N)	mg/l	69/39	< 0.0010	0.12	0.009	0.03	73/71	< 0.001	0.77	< 0.0005	0.10
Nitrate (NO3-N)	mg/l	69/39	< 0.050	3.9	0.85			0.012	12.9	< 0.005	6.15
Total nitrogen	mg/l	61/31	0.5	6.61	1.36	3.27	64/62	0.5	35	< 0.05	7.44
Organic nitrogen	mg/l	31/21	0.01	4.3	0.17	1.92	34/32	< 0.01	5	< 0.25	2.55
Orthophosphate (PO4-P)	mg/l	69/39	< 0.0020	0.282	0.013	0.13	73/71	< 0.0020	0.86	< 0.0015	0.34
Total phosphorus	mg/l	67/37	< 0.0100	1.02	0.031	0.42	73/71	< 0.0035	1.15	< 0.01	0.56
Total phosphorus, dissolved	mg/l	40/18	< 0.0025	0.294	0.024	0.13	22/22	< 0.0035	0.46	0.023	0.25
Phytoplankton (biomass - chlorophyll-a)	μg/l	40/18	< 0.0015	77.9	4.18	32.13	45/42	< 0.0015	349	0.19	85.82
Conductivity	µS/cm	67/37	285	987	357	491	73/71	150	1477	219	1220
Calcium (Ca++)	mg/l	60/34	13.6	94.5	35.81	80.56	66/64	5.11	327	< 0.45	139.83
Sulphate (SO4)	mg/l	46/24	12	84.5	17.75	36.23		< 5.0	281	10.46	118.07
Magnesium (Mg++)	mg/l	60/34	2.3	86.2	10.89	25.14	65/63	< 2.0	85.12	< 0.30	96.42
Potassium (K+)	mg/l	29/17	< 0.30	9.21	1.27	4.01	34/32	< 0.3	28.6	1.15	9.06
Sodium (Na+)	mg/l	29/17	6.9	33.3	10.52	17.87	34/32	2.1	974.81	5.67	189.75
Manganese (Mn)	mg/l	9/7	< 0.0005	0.15	0.01	0.05	20/18	< 0.0003	318.4	0.0133	0.173
Iron (Fe)	mg/l	8/6	0.03	1.65	0.12	0.74	20/18	< 0.01	10	0.107	3.506
Chloride (Cl-)	mg/l	60/34	8.3	170	14.92	41.86	66/64	1.11	567	3.48	260.42
Silicates (SiÓ2)	mg/l	16/8	0.7	11.4	1.9	8.0	15/13	< 0.5	39.4	5.0	19.6
Silicates(SiO2), dissolved	mg/l	12/10	0.8	9.2	2.6	6.4		< 0.5	11.4	3.4	8.9
Macrozoobenthos- saprobic index		20/16	1.79	2.32	1.79	2.23	31/30	1.63	3.03	0.36	2.72

Table 4: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2020 (Part 1)

Determinand name	Unit	Danube					Tributaries					
		No.of monitoring					No.of monitoring					
		locations / No. of					locations / No. of					
		monitoring sites with					monitoring sites					
		measurements					with					
							measurements					
			Range of values		Mean			Range of values		Mean		
			Min	Max	Min _{avg}	Max _{avg}		Min	Max	Min _{avg}	Max _{avg}	
Zinc - Dissolved *	µg/l	67/37	< 0.5	124.00	0.98	43.75	73/71	0.25	173.00	< 0.585	61.26	
Copper - Dissolved	μg/l	67/37	< 0.25	38.40	1.03	7.22		< 0.25	59.62	< 0.5	15.11	
Chromium - Dissolved	μg/l	67/37	0.11	73.56	0.2	7.49		< 0.05	27.70	< 0.05	7.65	
Lead - Dissolved	μg/l	63/35	< 0.025	9.88	< 0.040	3.196		< 0.025	16.24	0.05	5.10	
Cadmium - Dissolved	μg/l	63/35	< 0.005	5.13	< 0.005	0.55		< 0.005	0.89	< 0.005	0.26	
Mercury - Dissolved	μg/l	63/35	< 0.0025	0.30	< 0.0025	0.04		< 0.0025	0.23	< 0.0025	0.06	
Nickel - Dissolved	µg/l	67/37	< 0.25	52.80	0.46	8.35		< 0.1	27.83	0.32	9.96	
Arsenic - Dissolved	µg/l	63/35	0.47	287.80	< 0.500	61.27		< 0.25	9.25	< 0.37	6.42	
Aluminium - Dissolved	µg/l	19/13	< 2.25	124.00	< 2.25	23.99	17/15	< 1.5	173.00	< 2.25	54.35	
Zinc *	µg/l	20/16	< 0.5	132.60	1.92	53.43	32/30	1.25	558.00	3.90	157.02	
Copper	µg/l	18/14	< 0.5	61.20	1.53	16.02	28/26	1.12	82.00	1.98	17.95	
Chromium - total	µg/l	18/14	< 0.25	6.70	0.28	1.98		< 0.05	108.00	< 0.5	18.84	
Lead	µg/l	14/12	< 0.1	7.90	0.37	2.51		< 0.15	57.50	< 0.5	12.75	
Cadmium	µg/l	14/12	< 0.005	0.63	0.02	0.17		< 0.01	3.27	< 0.025	0.67	
Mercury	µg/l	14/12	< 0.01	0.12	< 0.01	0.05		< 0.005	0.30	< 0.005	0.20	
Nickel	µg/l	18/14	< 0.25	92.70	0.83	16.93		< 0.5	99.20	0.64	24.71	
Arsenic	µg/l	14/12	< 0.5	361.10	0.83	84.82		< 0.5	283.40	0.82	51.99	
Aluminium	µg/l	8/6	29.0	1852.0	150.7	802.9		35.7	9800.0	148.8	3063.6	
Phenol index	mg/l	34/12	< 0.0015	0.0069	< 0.0015	0.0042		< 0.0015	0.016	< 0.0015	0.0052	
Anionic active surfactants	mg/l	40/16	< 0.01	0.17	0.01	0.13		< 0.0025	0.23	< 0.0025	0.08	
AOX	µg/l	14/8	< 1.0	16.20	< 5.0	< 10.0		< 3.0	31.0	6.75	19.25	
Petroleum hydrocarbons	mg/l	33/15	< 0.0100	0.21	< 0.01	0.14		< 0.0025	0.35	< 0.0025	0.13	
Lindane	µg/l	59/29	< 0.0002	0.02	< 0.0002	0.02		< 0.0002	9.9	< 0.0002	5.4	
pp ´DDT	µg/l	57/29	< 0.0002	0.02	< 0.0003	0.020		< 0.0002	5.4	< 0.0003	5.0	
Atrazine	µg/l	55/27	< 0.0005	< 0.09	< 0.0005	< 0.09		< 0.0005	0.31	< 0.0005	0.1083	
Chloroform	µg/l	6/4	< 0.05	0.5	< 0.05	0.5		< 0.015	< 0.25	< 0.015	< 0.25	
Carbon tetrachloride	µg/l	6/4	< 0.05	0.5	< 0.05	0.5		< 0.05	< 0.2	< 0.05	< 0.2	
Trichloroethylene	µg/l	6/4	< 0.05	0.500	< 0.05	0.5		< 0.05	< 0.150	< 0.05	< 0.15	
Tetrachloroethylene	µg/l	6/4	< 0.05	0.50	< 0.05	0.5	16/16	< 0.05	< 0.250	< 0.05	< 0.25	

Table 4: Concentration ranges and mean annual concentrations of selected determinands in the Danube River and its tributaries in 2020 (Part 2)

In this chapter, in Figures 4.1-4.16 **the development of selected determinands** (dissolved oxygen (DO), BOD₅, COD_{Cr}, N-NH₄, N-NO₃, P-PO₄, P_{total} and Cd) in last 10 years in the Danube River and also in its tributaries is presented by 90-percentile (C90) or 10-percentile (C10-DO).

Due to revision of the TNMN in 2006 the following monitoring points on the Danube were replaced: AT2 rkm 2120 to AT5 rkm 2113, AT4 rkm 1874 to AT6 rkm 1879 and DE1 rkm 2581 to DE5 rkm 2538. Among tributaries, the site HR3 rkm 288 was replaced by HR9 rkm 300 BG8 rkm 54 to BG14 rkm 4 and BG8 rkm 13 to BG15 rkm 1. In 2009, SK3 was replaced with SK5, this monitoring point is also in graphs illustrated as Hungarian point HU3. For trend graphs the illustration of SK5 and HU3 was used. In 2016, the Danube HR2 rkm 1337 was replaced with HR11 rkm 1301.5 and in the Sava River HR8 rkm 254 was replaced with HR12 rkm 218.

The long-term trends in the upper, middle and lower Danube and more detailed examples of analysis for selected parameters (BOD₅, N-NO₃, P_{total}) are provided for the sites SK1 Bratislava, HU5 Hercegszanto and RO5 Reni (Figures 4.17-4.25).

As regards a general spatial distribution of key water quality parameters along the Danube River in 2020, the **highest concentrations of biodegradable organic matter** were observed in the middle and lower parts of the Danube River with a maximum of 5.8 mg.l⁻¹ in BG2, but this concentration was lower than in 2019.

Taking into account the entire period of TNMN operations, positive changes in water quality can be seen at several TNMN stations. Decreasing tendencies of biodegradable organic matter in 2020 were observed in the upper and middle part at the monitoring sites SK1, SK2, SK5, RS1, and RS6 (see Figure 4.3).

The decrease of the BOD₅ has been observed in several tributaries: Inn, Salzach, Vah, Velika Morava, Jantra, Arges and Siret (Figure 4.4). In 2020, concentration of BOD₅ has increased in Morava, Dyje, Sio, Drava and Prut (MD1, MD3 and RO11). Maximal concentration was found in Dyje (CZ2 - 7.8 mg.l⁻¹).

At the monitoring point SK1, BOD₅ decreased in 2020, but at HU5 and RO5 the BOD₅ increased slightly (Figure 4.17-4.19).

The highest values of **dissolved oxygen** (DO) in the Danube River were observed in its upper and middle part (maximum: SK5 Danube –Szob 12.8 mg.l⁻¹), in the lower Danube the dissolved oxygen levels decreased, the minimum was 3.9 mg.l^{-1} in BG2 Danube – us. Iskar-Bajkal (Figure 4.1).

The maximum value of the dissolved oxygen in tributaries was at DE4 (10.7 mg.l⁻¹). The minimal concentration was at HU6 Sio - 4.38 mg.l⁻¹. In general, the DO concentrations have a stable character (Figure 4.2).

Concentrations of **chemical oxygen demand (COD**_{Cr}) (Figure 4.5 and Figure 4.6) show the difference in pollution between the Danube River and its tributaries. The concentrations in tributaries are higher (range of C90 values being $2.5 - 40.5 - \text{mg.l}^{-1}$ with the maximum in BG15 (Russenski Lom-mouth)), than in the Danube River sites (range of C90 values being $8.7 - 18 \text{ mg.l}^{-1}$), the maximum in the Danube was observed in BG2 Danube – us. Iskar-Bajkal.

The almost stable level of **ammonium-nitrogen** concentrations (C90) was recorded in the whole Danube River (Figure 4.7). In 2020, increased concentrations of ammonium-nitrogen were found in the tributaries Arges, Russenski Lom, Prut MD1 and MD3 (see Figure 4.8). The concentration of ammonium-nitrogen in 2020 decreased in Morava, Vah, and Sio (Figure 4.8).

The level of **nitrate-nitrogen** concentrations is rather stable during the recent years. In comparison with the previous year in the upper part of the Danube River the concentrations decrease (see Figure 4.9). A decrease of concentrations was also observed in the middle and lower Danube part. Maximal concentration was observed at DE5 3.3 mg.l⁻¹.

In the tributaries Dyje, Vah, Sio and Russenski Lom the nitrate-nitrogen concentration decreased in 2020. An increase was observed in Morava, Arges and Jantra (Figure 4.10).

Temporal changes of nitrate-nitrogen (presented in the Figures 4.20 - 4.22 for the Danube River in Bratislava (Slovakia), Hercegszanto (Hungary) and Reni (Romania) indicate a decrease in all monitoring points. The lowest value of C90 (y.2020) was 1.41 mg.l⁻¹ in Reni.

The data of **ortho-phosphate-phosphorus** in the Danube River are presented in Figure 4.11 showing that in 2020 the results were stable. An increase of ortho-phosphate-phosphorus was in the RS8 (Danube-Radujevac) which is the highest value in year 2020 (0.22 mg.l⁻¹).

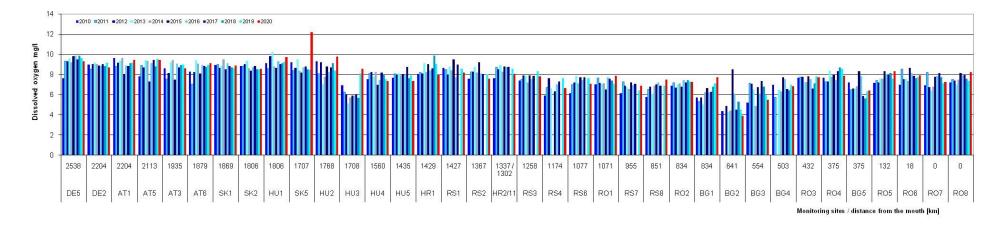
The increase of ortho-phosphate-phosphorus concentrations was observed in Russenski Lom, Arges and Siret with a maximum of 0.86 mg.l⁻¹ in Russenski Lom BG15 (Figure 4.12).

Concentrations of **total phosphorus** (Figure 4.13) in the upper and middle Danube were stable. In the Serbian part at RS4, RS6, RS7, and RS8 **total phosphorus** concentrations increased in 2020.

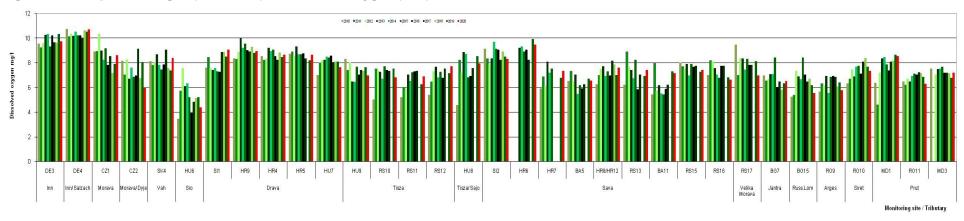
The **total phosphorus** values in 2020 show a decrease in the upper tributaries (Figure 4.14). Increasing values were observed in Sio and in the Serbian part of the Sava River (RS13, RS15 and RS16). The highest concentration in 2020 being 0.96 mg.l⁻¹ was found in Russenski Lom.

The temporal changes of **total phosphorus** (C90) at selected monitoring sites are shown in Figures 4.23-4.25. In the Danube at Bratislava and Reni a decreasing concentration was observed during 2020. In Hercegszanto the **total phosphorus** concentration slightly increased.

The **cadmium** concentration (Figure 4.15) is constant or slightly decreasing in the upper part of the Danube. In the Serbian part in 2020 **cadmium** concentrations increased and the maximum value was $0.63 \text{ mg.}1^{-1}$ at RS7.


Higher **cadmium** concentrations were detected in 2020 in tributaries, with the maximum of 0.66 mg.l⁻¹ in Velika Morava. In 2018, a higher C90 concentration of 89.2 mg.l⁻¹ was found in HU9 (Tisza-Tiszasziget) and this value decreased to 0.18 mg.l⁻¹ in 2020.

The comparison of statistical characteristics 90 and 10 percentiles (C90, C10) in 2020 for selected determinands (N-NH₄, P-PO₄, COD_{Cr}, BOD₅) is displayed in the Figures 4.26-4.33. These pictures indicate the ranges of annual concentrations for a given parameter and a monitoring site. The rkm values in graphs for the tributaries indicate the rkm of the Danube, at which the tributary anters the Danube River.


The annual differences between C90 and C10 have an insignificant variation for COD_{Cr}, P-PO₄, N-NH₄ and BOD₅ in the in the upper and middle Danube. Visible differences were observed for N-NH₄ in the middle and lower part of the Danube. The highest difference was observed for COD_{Cr} and BOD₅ at BG2.

The 10 and 90 percentile values fluctuate for COD_{Cr} and BOD_5 in all tributaries. The significant differences for the COD_{Cr} were observed in the lower tributaries Ialomita, Arges, Mures and Russenski Lom. For the BOD_5 the differences were visible also in the upper and middle tributaries Dyje, Morava, Sio, and Una and in the lower part in Vit, Mures and Bega.

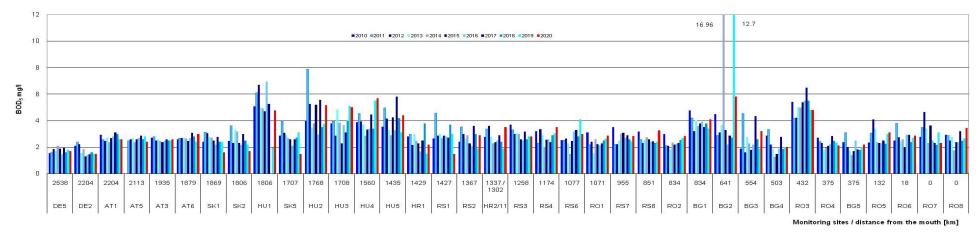
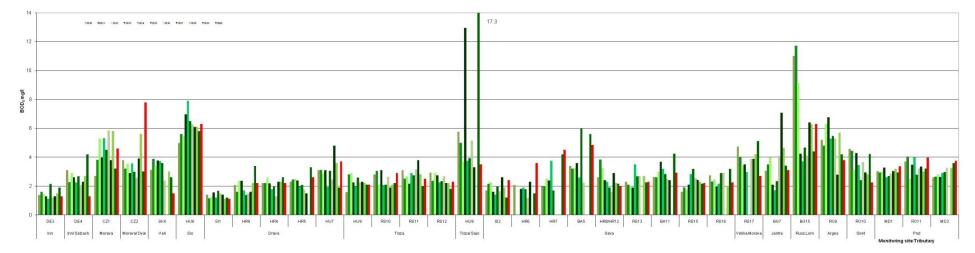

The differences in concentrations for ammonium-nitrogen are visible in the tributaries Bega, Arges, Ialomita and Prut. For ortho-phosphate-phosphorus the more significant differences were observed in Russenski Lom, Sio, Dyje, Arges and Bega.

Figure 4.1: Temporal changes (2010-2020) of dissolved oxygen (C10) in the Danube River



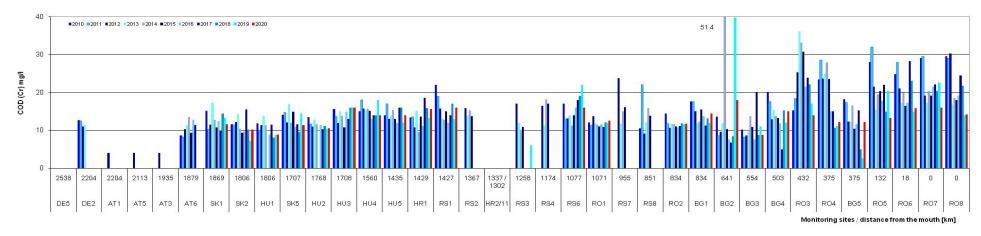
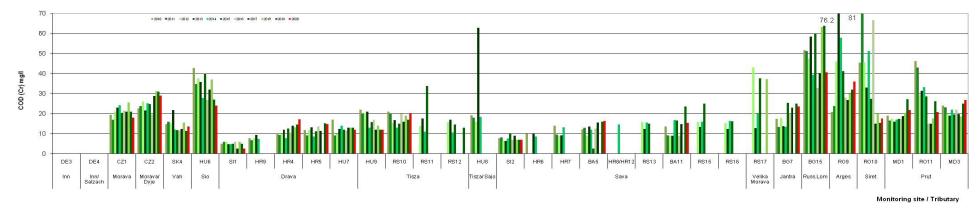

Figure 4.2: Temporal changes (2010-2020) of dissolved oxygen (C10) in tributaries

Figure 4.3: Temporal changes (2010-2020) of BOD₅ (C90) in the Danube River.


Figure 4.4: Temporal changes (2010-2020) of BOD₅ (C90) in tributaries.

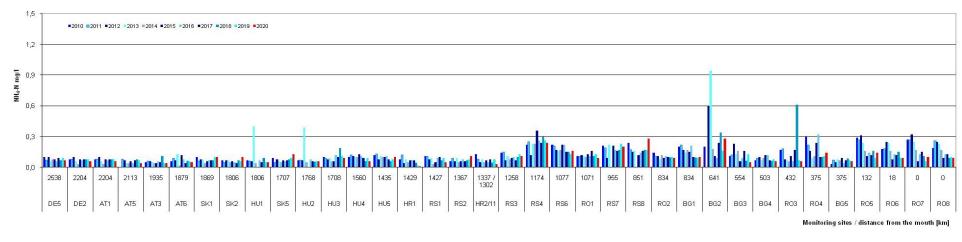
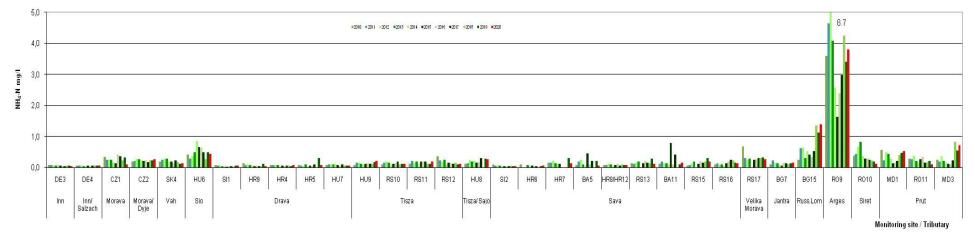


Figure 4.5: Temporal changes (2010-2020) of COD_{Cr} (C90) in the Danube River.


Figure 4.6: Temporal changes (2010-2020) of COD_{Cr} (C90) in tributaries.

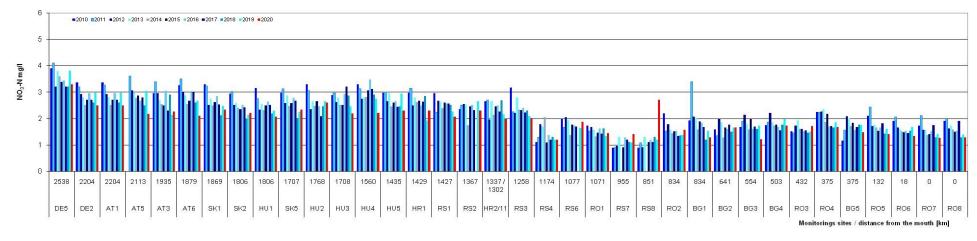
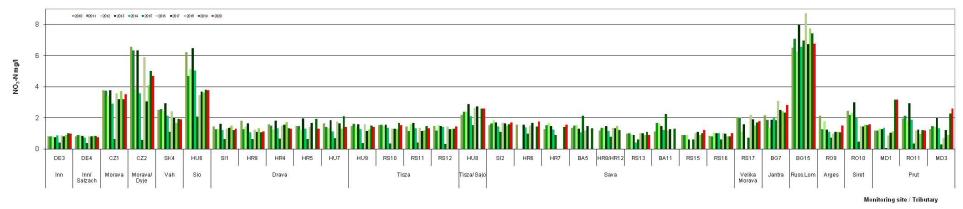


Figure 4.7: Temporal changes (2010-2020) of NH₄-N (C90) in the Danube River.


Figure 4.8: Temporal changes (2010-2020) of NH₄-N (C90) in tributaries.

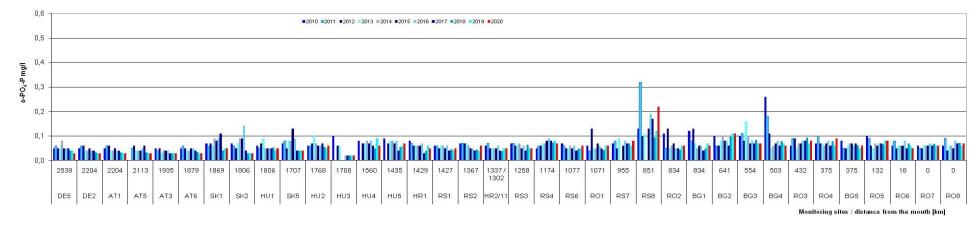
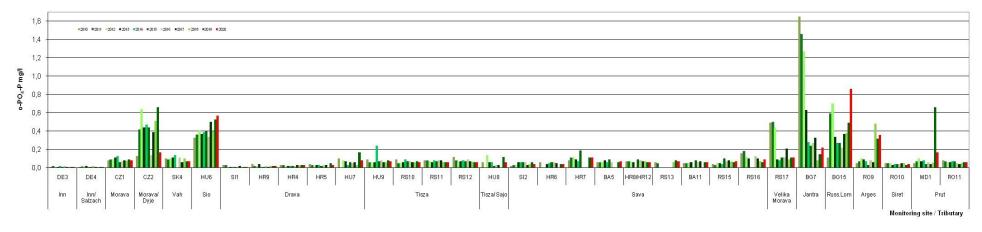


Figure 4.9: Temporal changes (2010-2020) of NO₃-N (C90) in the Danube River.


Figure 4.10: Temporal changes (2010-2020) of NO₃-N (C90) in tributaries.

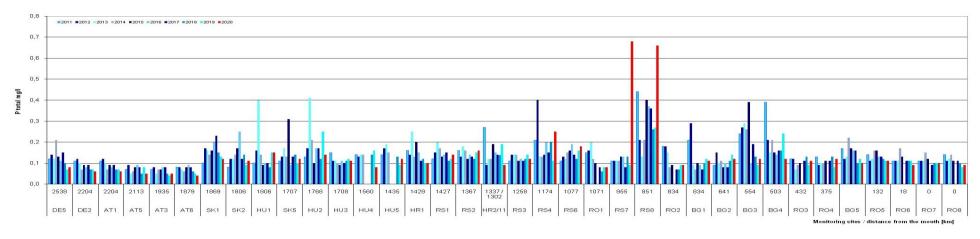
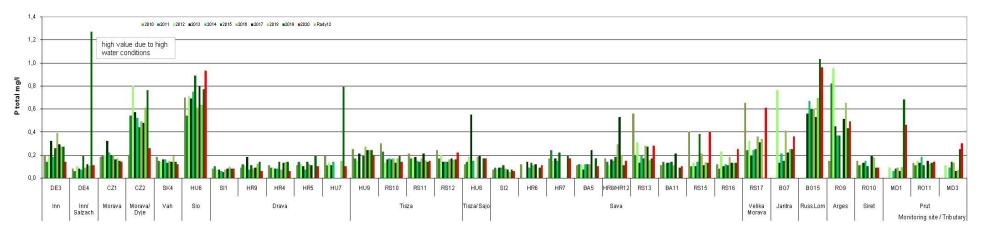


Figure 4.11: Temporal changes (2010-2020) of P-PO₄ (C90) in the Danube River.


Figure 4.12: Temporal changes (2010-2020) of P-PO₄ (C90) in tributaries

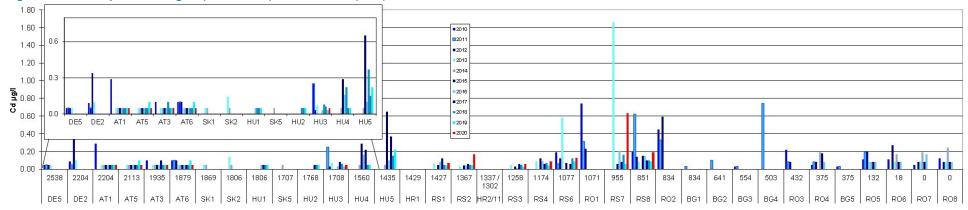


Figure 4.13: Temporal changes (2010-2020) of total phosphorus (C90) in the Danube River.

Figure 4.14: Temporal changes (2010-2020) of total phosphorus (C90) in tributaries.

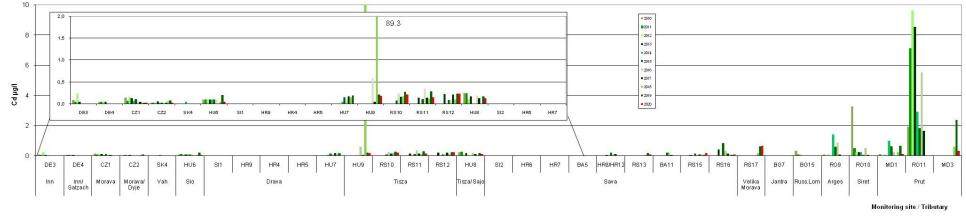


Figure 4.15: Temporal changes (2010-2020) of cadmium (C90) in the Danube River.

Monitoring sites / distance from the mouth [km]

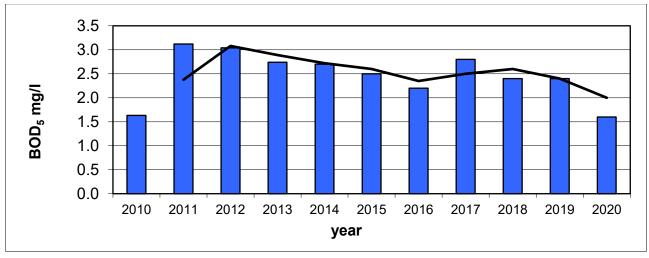
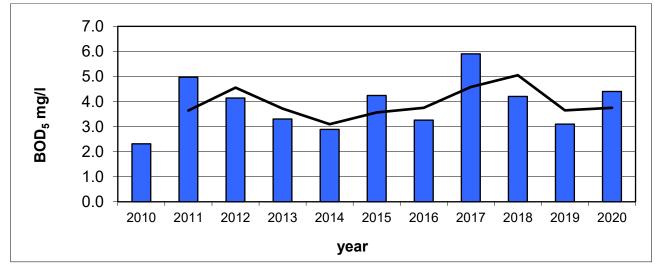
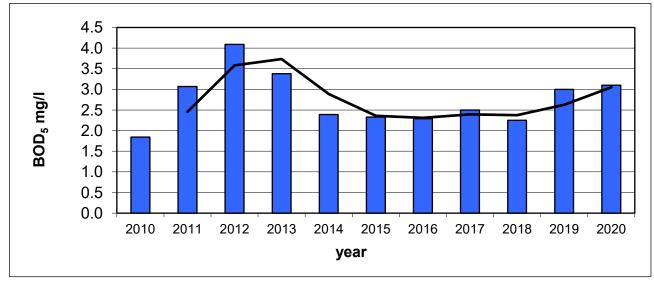




Figure 4.17: Temporal changes (2010-2020) of BOD₅ (C90) in Bratislava

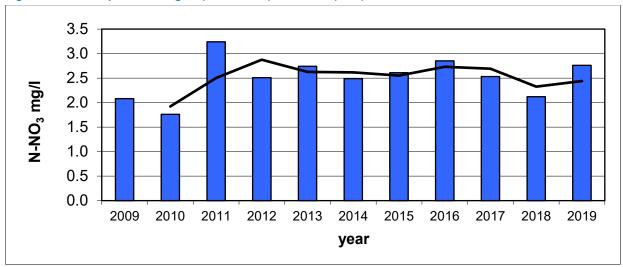
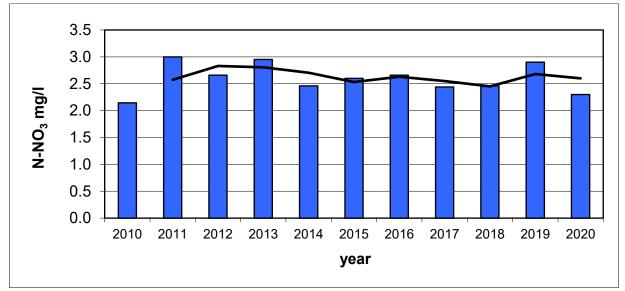
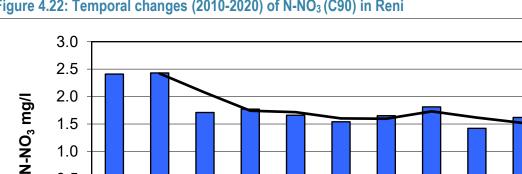




Figure 4.20: Temporal changes (2010-2020) of N-NO₃ (C90) in Bratislava

year

Figure 4.22: Temporal changes (2010-2020) of N-NO₃ (C90) in Reni

0.5

0.0

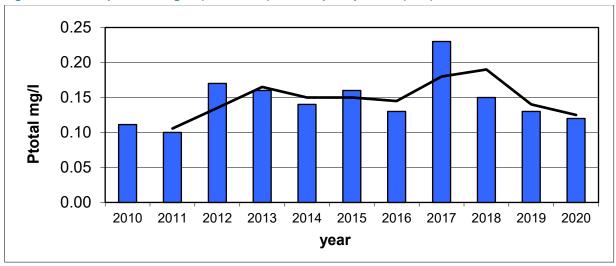
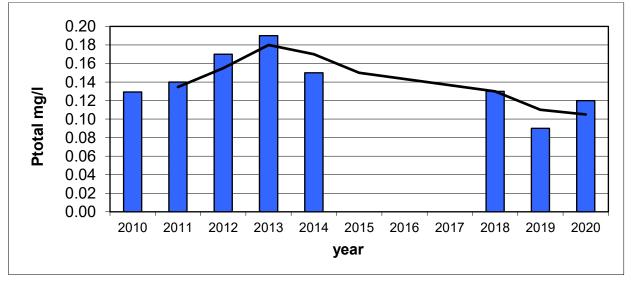
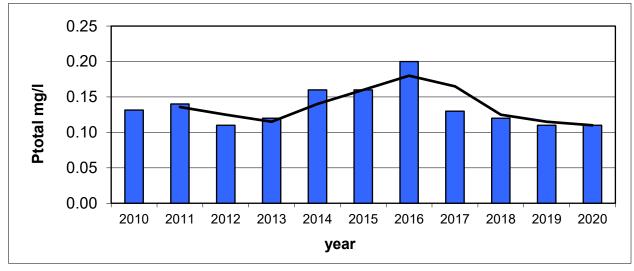
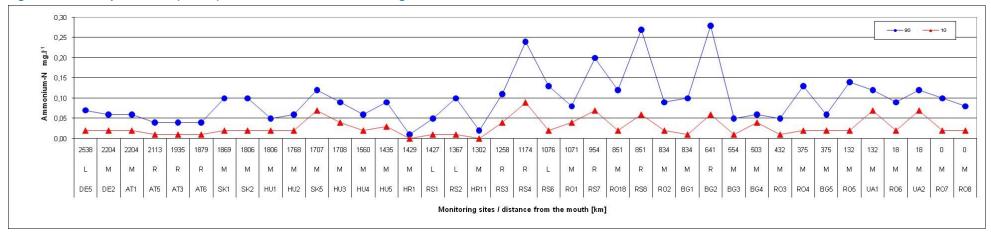
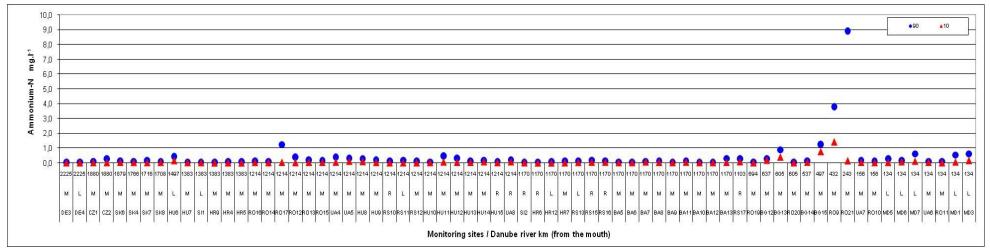



Figure 4.23: Temporal changes (2010-2020) of total phosphorus (C90) in Bratislava

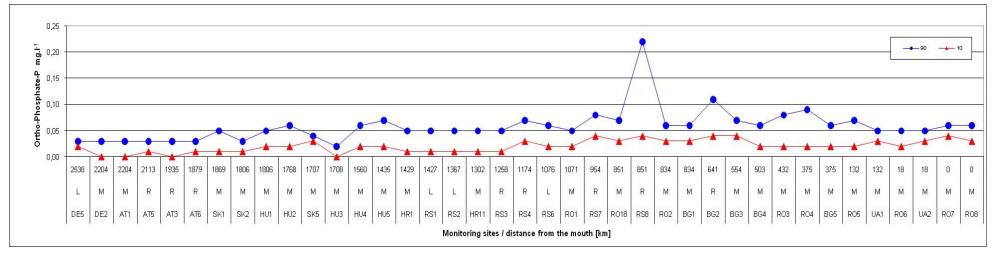
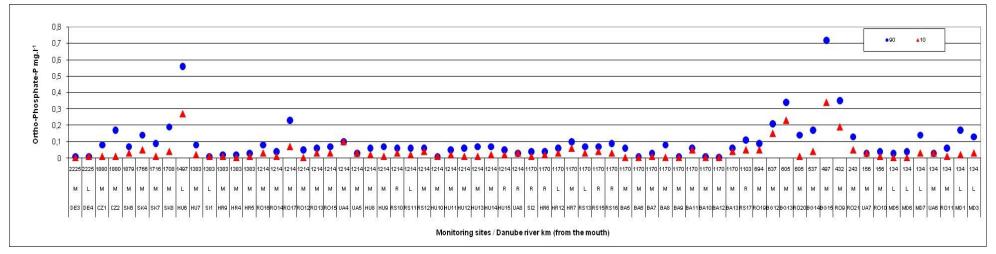

Figure 4.25: Temporal changes (2010-2020) of total phosphorus (C90) in Reni

Figure 4.26: The percentile (90, 10) of N-NH₄ concentration along the Danube River in 2020


Figure 4.27: The percentile (90, 10) of N-NH₄ concentration in the tributaries in 2020

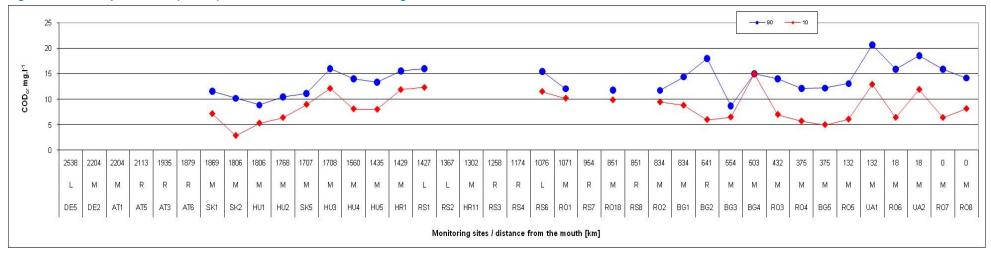
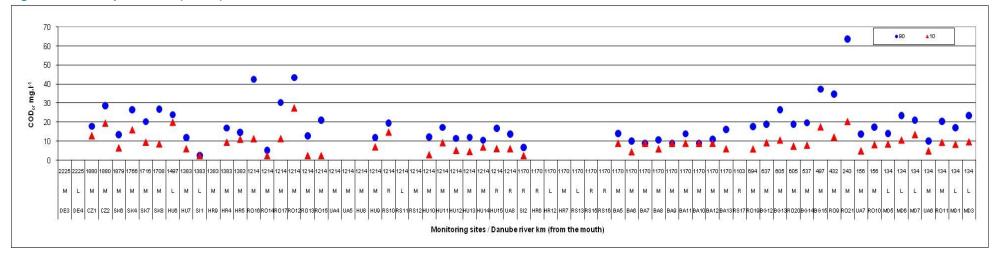


Figure 4.28: The percentile (90, 10) of P-PO₄ concentration along the Danube River in 2020


Figure 4.29: The percentile (90, 10) of P-PO₄ concentration in the tributaries in 2020

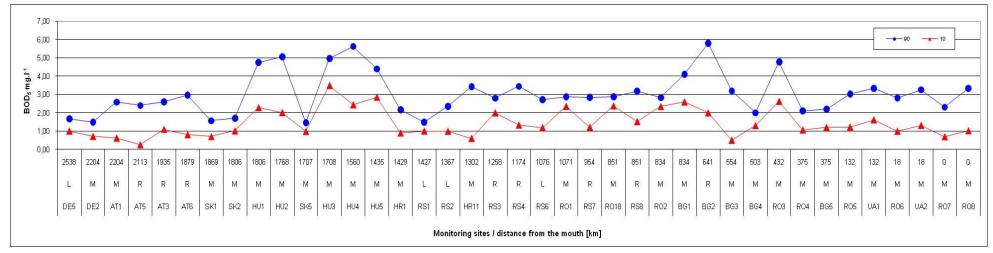


Figure 4.30: The percentile (90, 10) of COD_{Cr} concentration along the Danube River in 2020

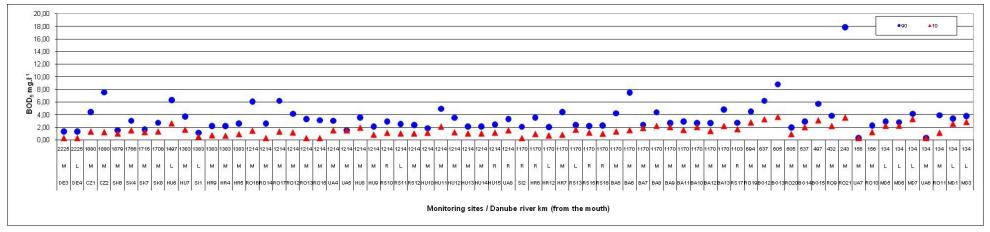
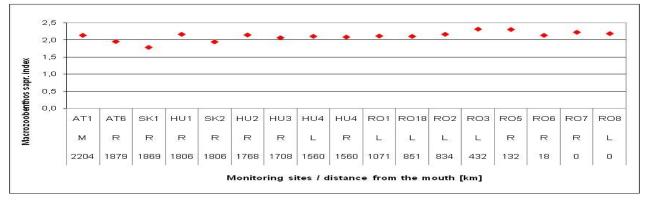
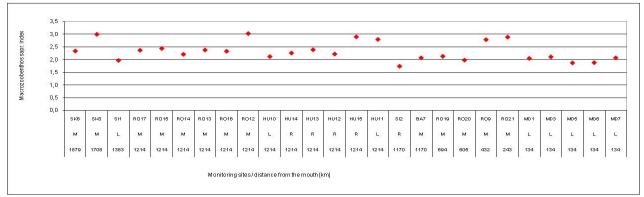

Figure 4.31: The percentile (90, 10) of COD_{Cr} concentration in the tributaries in 2020

Figure 4.32: The percentile (90, 10) of BOD₅ concentration along the Danube River in 2020


Figure 4.33: The percentile (90, 10) of BOD₅ concentration in the tributaries in 2020


4.1 Saprobic Index Based on Macrozoobenthos

The maximum values of saprobic index based on macrozoobenthos in the Danube River and its tributaries are presented in the Figures 4.34 and 4.35. The data of macrozoobenthos were delivered during the year 2020 for 17 monitoring points located in the Danube River and for 26 monitoring points in its tributaries. The maximal value of saprobic index was determined in RO3 and in RO12 (Somes tributary).

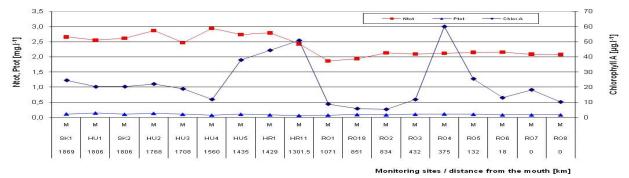
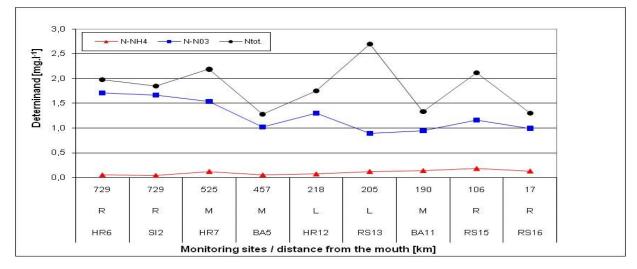
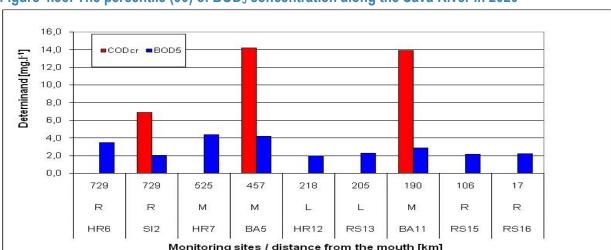

Figure 4.34: The maximum values of saprobic index based on macrozoobenthos along the Danube River in 2020

Figure 4.35: The maximum values of saprobic index based on macrozoobentos in the tributaries in 2020

Figure 4.36: The percentile (90) of total nitrogen, total phosphorus and chlorophyll-a concentration along the Danube River in 2020.

The concentration of nutrients (N_{tot} , P_{tot}) and the **chlorophyll-a** are presented in the Figure 4.36 (only those monitoring points are shown at which all three determinands were measured). The maximal concentration of chlorophyll-a was observed in RO4 Chiciu (60.4 µg.l⁻¹). The highest concentration of N_{total} and P_{total} was observed in the Hungarian part - HU4 Dunafoldvar (N_{total} 2.94 mg.l⁻¹) and P_{total} 0.15 mg.l⁻¹ in HU1 Medvedov.


4.2 The Sava and Tisza Rivers


The 90 percentiles of nutrients, and BOD_5 measured in 2020 in the Sava and Tisza rivers are presented in Figures 4.37-4.40.

The highest value of N-NH₄ in the Sava River (Figure 4.37) was found in monitoring point RS15 (0.18 mg.l⁻¹). The maximum concentration of N-NO₃ was observed in HR6 (Jesenice, 1.71 mg.l⁻¹) and the highest value of N_{total} was measured in RS13 (Jamena 2.70 mg.l⁻¹).

The highest value of BOD₅ in the Sava River was measured at the monitoring point HR7 Upstream Una Jasenovac (4.4 mg.l⁻¹). The maximum value of COD 14.2 mg.l⁻¹ was measured in BA5 Gradiska.

Figure 4.37: The percentile (90) of total nitrogen, N-NH₄ and N-NO₃ concentration along the Sava River in 2020

Figure 4.38: The percentile (90) of BOD₅ concentration along the Sava River in 2020

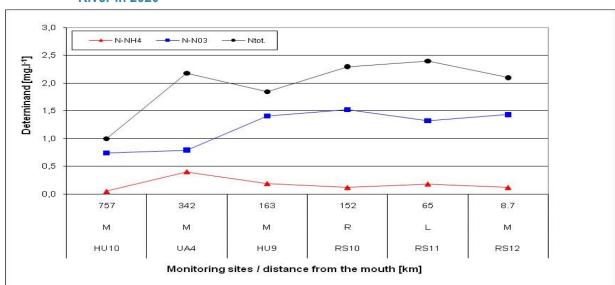
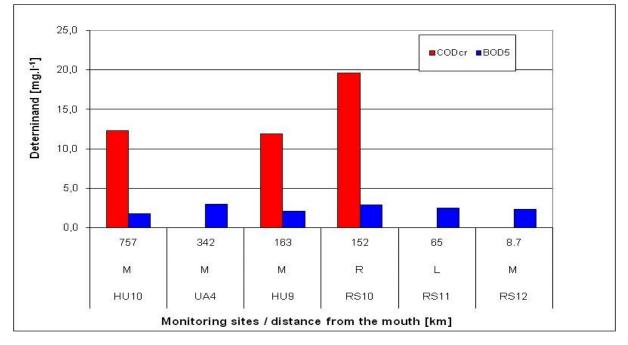



Figure 4.39: The percentile (90) of total nitrogen, N-NH₄ and N-NO₃ concentration along the Tisza River in 2020

Figure 4.40: The percentile (90) of BOD₅ and COD_{Cr} concentration along the Tisza River in 2020

The maximum value of N-NH₄ in the Tisza River was observed in UA4 Chop (0.4 mg.l⁻¹). The highest value of N-NO₃ was found in RS10 Martonos (1.52 mg.l⁻¹) and the maximum of N_{total} (2.34 mg.l⁻¹) was measured in RS10 Novi Becej. The highest value of BOD₅ was measured in UA4 Chop (3.0 mg.l⁻¹) and maximal COD_{cr} value being 19.6 mg.l⁻¹ was measured in RS10 Martonos (see Figure 4.40).

5. Load Assessment

5.1 Introduction

The long-term development of loads of agreed determinands (Table 2) in the important rivers of the Danube Basin is one of the main objectives of the TNMN. This is the reason why the load assessment program in the Danube River Basin started in 2000. For the calculation of loads, a commonly agreed standard operational procedure is used.

5.2 Description of Load Assessment Procedure

The following principles have been agreed for the load assessment procedure:

- Load is calculated for the following determinands: BOD₅, inorganic nitrogen, ortho-phosphatephosphorus, dissolved phosphorus, total phosphorus, suspended solids and - on a voluntary basis – chlorides and dissolved silica; based on the agreement with the Black Sea Commission, silicates are measured at the Romanian load assessment sites since 2004;
- The minimum sampling frequency is 24 times a year at sampling site selected for load calculation;
- The load calculation is processed according to the procedure recommended by the Project "Transboundary assessment of pollution loads and trends" and described in Chapter 5.4. Additionally, countries can calculate annual load by using their national calculation methods, results of which would be presented together with data prepared on the basis of the agreed method;
- Countries should select for load assessment those TNMN monitoring sites for which valid flow data is available (see Table 5).

Table 5 shows TNMN monitoring locations selected for the load assessment program. It also provides information about hydrological stations collecting flow data for load assessment.

Altogether 27 monitoring locations from nine countries are included in the list. One location – Danube-Jochenstein – has been included by two neighbouring countries, therefore, the actual number of locations is 26, with ten locations on the Danube River itself and 16 locations on the tributaries. The rivers Prut and Siret were added in the year 2010.

The second location that could potentially be processed by using combined data from two countries is Sava-Jesenice.

5.3 Monitoring Data in 2020

Table 5 provides an overview where monitoring sites for water quality and flow are measured in selected countries for TNMN load assessment. The monitoring frequency is an important factor for the assessment of pollution loads in watercourses. Data are shown in Tables 6-11. Table 6 summarizes information about the number of samples taken in 2020.

The differences are presented by different colours. The majority of determinands were measured at a frequency of >11.

In 2010, load calculation for Slovakian monitoring points on the tributaries Morava, Hron and Ipel' was added, at a monitoring frequency of 12.

The loads in the Danube at Jochenstein are being assessed based on data from Germany and Austria together; there is no issue with insufficient frequency there. There is still a lack of data on dissolved phosphorus, measured only at 21 locations. Also, the *silicates/ silicates dissolved* load was calculated at 18/4 monitoring points.

Country	River	Water qua	ality monitoring loca	tion	Hydrological station							
		Stationco de	Location	Distance from mouth (km)	Location	Distance from mouth (km)						
Germany	Danube	DE2	Jochenstein	2204	Achleiten	2223						
Germany	Inn	DE3	Kirchdorf	195	Oberaudorf	211						
Germany	Inn/Salzach	DE4	Laufen	47	Laufen	47						
Austria	Danube	AT1	Jochenstein	2204	Aschach	2163						
Austria	Danube	AT6	Hainburg	1879	Hainburg (Danube) Angern (March)	1884 32						
CzechRepublic	Morava	CZ1	Lanžhot	79	Lanzhot	79						
CzechRepublic	Morava/Dyje	CZ2	Pohansko	17	Breclav-Ladná	32,3						
SlovakRepublic	Danube	SK1	Bratislava	1869	Bratislava	1869						
SlovakRepublic	Váh	SK4	Komárno	1.5	Sum of: Maly Dunaj -Trstice Vah- Sala Nitra -Nove Zamky	22,5 58,8 12,3						
SlovakRepublic	Morava	SK6	Devín	1	Zahorska Ves	32,5						
SlovakRepublic	Hron	SK7	Kamenica	ica 1.7 Kamenin								
SlovakRepublic	lpeľ	SK8	Salka	12.0	Salka	12,2						
Hungary	Danube	HU3	Szob	1708	Nagymaros	1695						
Hungary	Danube	HU5	Hercegszántó	1435	Mohács	1447						
Hungary	Tisza	HU9	Tiszasziget	163	Szeged	174						
Croatia	Danube	HR11	llok	1302	llok	1302						
Croatia	Sava	HR06	Jesenice	729	Jesenice	729						
Croatia	Sava	HR7	Una Jesenovac	525	Una Jesenovac	525						
Croatia	Sava	HR8	Zupanja	254	Zupanja	254						
Slovenia	Drava	SI1	Ormoz	300	Borl HE Formin Pesnica-Zamusani	325 311 10.1(to the Drava)						
Slovenia	Sava	SI2	Jesenice	729	Catez Sotla -Rakovec	737 8.1 (to the Sava)						
Romania	Danube	RO2	Pristol-Novo Selo	834	Gruia	858						
Romania	Danube	RO4	Chiciu-Silistra	375	Chiciu	379						
Romania	Danube	RO5	Reni	132	Isaccea	101						
Romania	Siret	RO10	Sendreni	0	Sendreni	0						
Romania	Prut	R011	Giurgiulesti	0	Giurgiulesti	0						
Ukraine	Danube	UA2	Vylkove	18								

Table 5: List of TNMN locations selected for load assessment program

5.4 Calculation Procedure

Regarding several sampling sites in the profile, the average concentration at a site is calculated for each sampling day. In case of values "below the limit of quantification", the ½ of the limit of quantification is used in the further calculation. The average monthly concentrations are calculated according to the formula:

$$\sum_{i \in M} C_{i} [mg.l^{-1}] \cdot Q_{i} [m^{3}.s^{-1}]$$

$$i \in M$$

$$\sum_{i \in M} Q_{i} [m^{3}.s^{-1}]$$

$$i \in M$$

where	C_m	average monthly concentrations
	C_i	concentrations in the sampling days of each month
	\mathbf{Q}_{i}	discharges in the sampling days of each month

The monthly load is calculated by using the formula:

 L_{m} [tones] = C_{m} [mg.l⁻¹]. Q_{m} [m³.s⁻¹].days (m). 0,0864

where L_m monthly load

Q_m average monthly discharge

- If discharges are available only for the sampling days, then Q_m is calculated from those discharges.
- For months without measured values, the average of the products $C_m Q_m$ in the months with sampling days is used.

The annual load is calculated as the sum of the monthly loads:

12 $L_{a} [tones] = \sum_{m=1}^{\infty} L_{m} [tones]$

5.5 Results

The above described procedure allows calculation of loads, separately for selected group of Danube River monitoring sites (Table 9) and sites located on tributaries (Table 10), connected with hydrological stations for agreed determinands: suspended solids, inorganic nitrogen, and ortho-phosphate-phosphorus, total phosphorus, BOD₅, chlorides and – where available – dissolved phosphorus and silicates, or silicates dissolved. These results are supported by some statistical outputs and basic information. Table 6 informs about the number of measurements for selected monitoring sites and determinands (the ranges of measurements are distinguished by different colour). The mean annual concentrations for the Danube River are presented in Table 7 and for its tributaries in Table 8.

Term used	Explanation
Station Code	TNMN monitoring location code
Profile	location of sampling site in profile (L-left, M-middle, R-right)
River Name	name of river
Location	name of monitoring location
River km	distance to mouth of the river
Qr	mean annual discharge in the year 2020
Cmean	arithmetical mean of the concentrations in the year 2020
Annual Load	annual load of given determinand in the year 2020

The used abbreviations for these Tables are as follows:

The calculated loads for 2020, for the Danube monitoring sites are presented in Table 9 and for the sites on tributaries in Table 10. In addition, these two tables provide also information about load development, i.e., if the load for a given determinand decreases, increases or is stable against the previous year 2019 (distinguished by different font and/or colour, explanation is given below the tables).

Table 9 shows that the ortho-phosphate phosphorus increased at most of the assessed monitoring points on the Danube River. The suspended solids and ortho-phosphate load increased at 5 monitoring points. Total phosphorus load increased at 3 monitoring points and chlorides, inorganic nitrogen and silicates increased at 2 monitoring points. At one monitoring locality, the BOD₅ and dissolved phosphorus increased.

In tributaries, the load values increased at several monitoring points in case of ortho-phosphate phosphorus, BOD₅, inorganic nitrogen, total phosphorus and suspended solids. At six monitoring points the load of chlorides and dissolved phosphorus increased. The maximal load of suspended solids, total phosphorus and silicates was in HU9 Tiszasziget. The highest load of inorganic nitrogen in the Sava River was observed at HR12 and ortho-phosphate phosphorus and BOD₅ at HR7. The maximum of total phosphorus dissolved was found in Vah.

The longitudinal development of the annual load along the Danube River is presented for suspended solids (Figure 5.1), inorganic nitrogen (Figure 5.3), ortho-phosphate-phosphorus (Figure 5.5), total phosphorus (Figure 5.7), BOD₅ (Figure 5.9) and chlorides (Figure 5.11). In the lower part of the Danube River, at the monitoring sites RO2, RO4 and RO5 the highest loads were obtained for all determinands.

Table 11 shows information about the number of measurements for determinands used for calculation of loads at the Reni monitoring site. Based on the agreement with the Black Sea Commission, the profile Reni is monitored since 2005 and it is focused on nitrogen forms and heavy metals determinands. Mean annual concentrations are presented in the second part of the Table 11 and the calculated annual loads are shown in its third part. The loads of all determinands in 2020 – including heavy metals – were lower than in 2019; only the loads of N-NH₄ and of suspended solids increased in 2020.

Trends of the Danube loads to the Black Sea over the last 10 years are shown in Figures 5.13 - 5.18. In general, the loads for inorganic nitrogen, ortho-phosphate-phosphorus, total phosphorus, phosphorus dissolved, BOD₅, chlorides, silicates slightly decreased in 2020, only the load for suspended solids increased.

In 2020, the mean annual discharges on the whole Danube River were lower than in 2019. In the upper tributaries Inn and Salzach the discharges were lower and in the middle tributaries the mean annual discharges were higher in the Morava, Dyje, Vah, Ipoly, Hron, Tisza and Drava. In Sava, Siret and Prut the annual discharges were lower than in 2019.

Number of meausrements in 2020 Country River Location Location River BOD₅ Ninorg Code in profile Qr (2019) SS P-PO₄ Ptotal CI Pdiss SiO₂ Km DE2 Danube Jochenstein Μ DE3 Inn Kirchdorf Μ DE4 Inn/Salzach Laufen L AT1 Danube Jochenstein Μ Danube R AT6 Hainburg CZ1 Lanzhot Μ Morava CZ2 Morava/Dvie Pohansko Μ SK1 Danube Bratislava L SK1 Μ Danube Bratislava SK1 Danube Bratislava R Μ SK4 Váh Komárno SK6 Morava Devín Μ SK7 Hron Μ Kamenica SK8 vlogl М Salka HU3 Danube Szob L Μ R Μ HU5 Danube Hercegszántó HU9 Tisza Tiszasziget L Μ R 12* HR11 Μ Danube llok HR6 R 12* Sava Jesenice HR7 us Una Jesenovac Μ 12* Sava HR12 11* Sava Račinovci L SI1 Drava Ormoz L SI2 Sava Jesenice R RO2 Danube Pristol-Novo Selo L Μ R RO4 Danube Chiciu-Silistra L Μ R RO5 Danube Reni L Μ R RO10 М Siret Μ R011 Μ м Prut UA2 Danube Vylkove Μ

Table 6: Number of measurements at TNMN locations selected for assessment of pollution load in 2020

*Silicates (SiO2) in dissolved form

11 and more samples

Station	Profile	River Name	Location	River km	Qr (2020)			C _{mean}					
Code				ſ		Suspended	Inorganic	Ortho-	Total	BOD ₅	Chlorides	Phosphorus -	Silicates
						Solids	Nitrogen	Phosphate	Phosphorus	-		dissolved	
								Phosphorus					
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l⁻¹)	(mg.l ⁻¹)					
DE2													
+AT1	М	Danube	Jochenstein	2204	1285	15.49	1.66	0.02	0.04	1.28	16.59	0.03	
AT6	R	Danube	Hainburg	1879	1829	23.04	1.53	0.02	0.03	1.89	15.90	0.03	
SK1	LMR	Danube	Bratislava	1869	1841	25.73	1.65	0.03	0.08	1.02	17.39	0.04	5.80
HU3	LMR	Danube	Szob	1708	2026	19.58	1.55	0.02	0.10	4.18	18.70		4.18
HU5	М	Danube	Hercegszántó	1435	2160	13.71	1.69	0.05	0.06	3.76	17.93		4.33
HR11	М	Danube	llok	1302	2215	17.35	1.40	0.03	0.06	1.77	18.05		3.47*
RO2	LMR	Danube	Pristol-Novo Selo	834	4095	34.95	1.27	0.05	0.07	2.69	22.72	0.06	
RO4	LMR	Danube	Chiciu-Silistra	375	4659	15.64	1.31	0.06	0.69	1.53	21.35	0.08	
RO5	LMR	Danube	Reni	132	4894	62.19	1.21	0.05	0.09	2.05	24.07	0.08	2.78*
UA2	М	Danube	Vylkove	18	2388	18.23	1.42	0.04		2.44	30.40	0.09	1.90

Table 7: Mean annual concentrations in monitoring locations selected for load assessment on Danube River in 2020

Table 8: Mean annual concentrations in monitoring locations selected for load assessment on tributaries in 2020

Station	Profile	River Name	Location	River km	Qr (2020)				C _{mea}	n			
Code						Suspended Inorganic Ortho- Solids Nitrogen Phosphate Ph Phosphorus		Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates	
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)
DE3	М	Inn	Kirchdorf	195	316	44.29	0.71	0.01	0.07	0.85	5.92		
DE4	L	Inn/Salzach	Laufen	47	245	47.33	0.61	0.01	0.05	0.96	7.00		
CZ1	М	Morava	Lanzhot	79	68	22.50	2.77	0.05	0.11	2.38	26.88		
CZ2	L	Morava/Dyje	Pohansko	17.00	39	16.13	2.75	0.11	0.19	2.98	46.98		
SK4	М	Váh	Komárno	1	203	14.63	1.58	0.06	0.10	1.23	18.60	0.06	6.34
SK6	М	Morava	Devín	1	114	17.00	2.71	0.10	0.17	2.25	37.25	0.11	10.25
SK7	М	Hron	Kamenica	2	48	13.75	1.61	0.06	0.12	1.36	17.50	0.07	13.82
SK8	М	Ipoly	Salka	12	14	25.75	1.77	0.11	0.20	2.06	27.94	0.13	21.02
HU9	LMR	Tisza	Tiszasziget	163	603	51.03	0.89	0.04	0.13	1.45	34.34		9.97
SI1	L	Drava	Ormoz	300	355	11.45			0.04	0.85	7.24		
SI2	R	Sava	Jesenice	729	249	4.98	1.29	0.03	0.04	0.99	7.44		
HR6	R	Sava	Jesenice	729	547	8.26	1.32	0.03	0.06	1.78	8.01		2.68*
HR7	М	Sava	us. Una Jasenovac	525	244	7.14	1.37	0.08	0.12	2.12	8.76		3.05*
HR12	L	Sava	Račinovci	218	786	25.25	1.16	0.05	0.09	1.25	25.32		3.29*
RO10	М	Siret	Conf. Danube (Sendreni)	729	168	113.50	1.13	0.02	0.06	1.71	59.74	0.05	
R011	М	Prut	Conf. Danube (Giurgiulesti)	729	76	50.04	0.90	0.04	0.08	2.35	37.26	0.08	

*Silicates (SiO₂) in dissolved form

Station	Profile	River Name	Location	River km				Annual Lo	oad in 2020			
Code					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)
DE2+AT1	М	Danube	Jochenstein	2204	0.69	67.42	0.87	1.87	50.68	0.66	1.15	
AT6	R	Danube	Hainburg	1879	1.72	85.12	1.23	2.01	112.83	0.89	1.60	
SK1	LMR	Danube	Bratislava	1869	1.79	98.71	1.81	4.70	63.28	0.99	2.24	0.34
HU3	LMR	Danube	Szob	1708	1.32	100.85	1.07	6.84	269.68	1.18		0.27
HU5	М	Danube	Hercegszántó	1435	0.93	117.65	3.65	4.50	252.75	1.26		0.29
HR11	М	Danube	llok	1302	1.55	121.33	3.10	5.50	148.49	1.55		0.31*
RO2	LMR	Danube	Pristol-Novo Selo	834	4.50	167.70	6.73	9.53	347.77	2.95	8.08	
RO4	LMR	Danube	Chiciu-Silistra	375	2.41	191.98	8.2	13.43	220.64	3.13	12.37	
RO5	LMR	Danube	Reni	132	9.69	189.93	8.07	13.76	301.23	3.68	12.09	0.43*
UA2	М	Danube	Vylkove	18	1.45	109.17	3.15		184.09	2.26	6.65	0.15

Table 9: Annual load in selected monitoring locations on Danube River in 2020

*Silicates (SiO₂) in dissolved form

Explanations for comparison of values:

Bold font increased value in comparison with 2019

9.69 maximum value of determinand in 2020 and also increased value in comparison with 2019

191.98 maximum value of determinand in 2020, but decreased value in comparison with 2019

missing value in 2020 - not assessed

Table 10: Annual load in selected monitoring locations on tributaries in 2020

Station Code	Profile	River Name	Location	River km				Annual Lo	oad in 2020			
out					Suspended Solids	Inorganic Nitrogen	Ortho- Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates
					(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)
DE3	М	Inn	Kirchdorf	195	0.59	6.94	0.10	0.87	8.49	0.05		
DE4	L	Inn/Salzach	Laufen	47	0.41	4.21	0.07	0.45	6.29	0.05		
CZ1	М	Morava	Lanzhot	79	0.04	6.38	0.10	0.22	4.23	0.05		
CZ2	L	Morava/Dyje	Pohansko	17	0.02	3.50	0.13	0.20	2.55	0.05		
SK4	М	Váh	Komárno	1	0.10	10.31	0.35	0.64	8.02	0.11	0.39	0.043
SK6	М	Morava	Devín	1	0.06	9.84	0.33	0.55	6.81	0.11	0.36	0.040
SK7	М	Hron	Kamenica	2	0.03	2.61	0.09	0.19	2.07	<u>0.02</u>	0.11	0.023
SK8	М	Ipoly	Salka	12	0.02	0.98	0.05	0.09	0.91	<u>0.01</u>	0.06	0.010
HU9	LMR	Tisza	Tiszasziget	163	1.18	17.78	0.87	2.75	24.84	<u>0.57</u>		0.198
SI1	L	Drava	Ormoz	300	0.16	10.46	0.07	0.47	9.18	0.08		
SI2	R	Sava	Jesenice	729	0.05	9.62	0.19	0.27	6.59	0.05		
HR6	R	Sava	Jesenice	729	0.10	9.46	0.22	0.41	16.13	0.06		0.020*
HR7	М	Sava	us. Una Jasenovac	525	0.15	23.93	1.55	2.20	42.00	0.15		0.048*
HR12	L	Sava	Račinovci	218	0.62	26.44	1.04	1.88	30.14	0.52		0.070*
RO10	М	Siret	Conf. Danube (Sendreni)	0	0.96	6.02	0.12	0.32	9.22	0.30	0.27	
R011	М	Prut	Conf. Danube (Giurgiulesti)	0	0.18	1.50	0.14	0.25	7.86	0.07	0.22	

*Silicates (SiO₂) in dissolved form

Explanations for comparison of values:

Bold font increased value in comparison with 2019

1.18 maximum value of determinand in 2020 and also increased value in comparison with 2019

2.75 maximum value of determinand in 2020, but decreased value in comparison with 2019

0.57 maximum value of determinand in 2020, but equal value in comparison with 2019

0.13 stability

missing value in 2020 - not assessed

Country	River	Location	Location	River									Number of measure	surements	in 2020										
Code			in profile	km	Qr 2020	Suspended Solids	Inorganic Nitrogen	Ortho-Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates diss.	N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss}
RO5	Danube	Reni	LMR	132	366	24	26	26	26	12	12	12	26	i 26	6 26	26	24		12		12		12		1
ountry	River	Location	Location	River									C _{mean}												—
Code			in profile	km	Qr 2020	Suspended Solids	Inorganic Nitrogen	Ortho-Phosphate Phosphorus	Total Phosphorus	BOD₅	Chlorides	Phosphorus - dissolved	Silicates diss.	N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{di}
					(m ³ .s ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.1 ⁻¹)	(mg.1 ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.1 ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(mg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ⁻¹)	(µg.l ^{.1})	(µg.l ⁻¹)	(µg.l
RO5	Danube	Reni	LMR	132	4894	62.19	1.21	0.053	0.090	2.05	24.07	0.08	2.78	0.07	0.02	1.12	1.60		4.45		1.18		0.16		0.0
				5.	1								Annual Landin	0000											
ountry	River	Location	Location	River									Annual Load in	2020											
Code			in profile	km		Suspended Solids	Inorganic Nitrogen	Ortho-Phosphate Phosphorus	Total Phosphorus	BOD ₅	Chlorides	Phosphorus - dissolved	Silicates diss.	N-NH ₄	N-NO ₂	N-NO ₃	N _{total}	Cu	Cu _{diss.}	Pb	Pb _{diss.}	Cd	Cd _{diss.}	Hg	Hg _{diss}
						(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ⁶ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(x10 ³ tonns)	(tonns)	(tonns						
RO5	Danube	Reni	LMR	132		9.69	189.93	8.07	13.76	301.23	3.68	12.09	0.43	11.04	2.81	176.23	231.04		665.22		163.91		21.82		1

Table 11: Additional annual load data at Reni for reporting to the Black Sea Commission

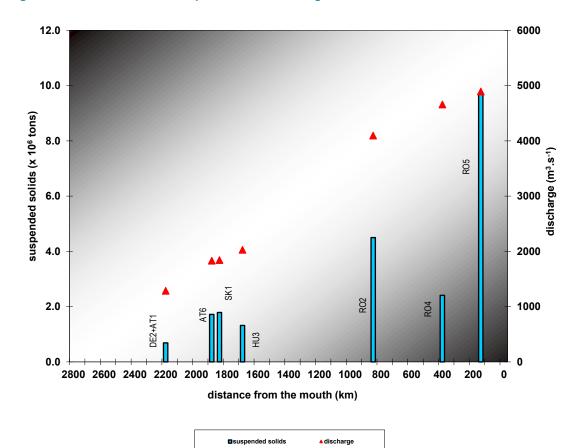
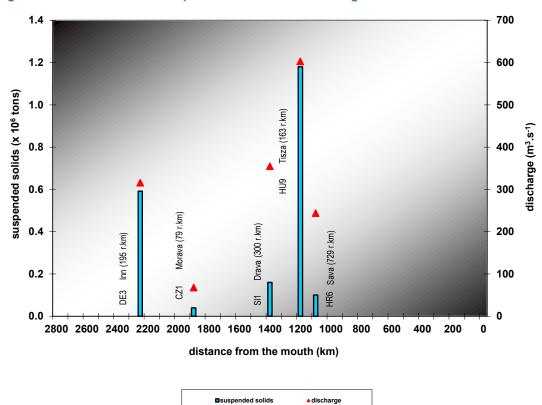



Figure 5.1: Annual load of suspended solids along the Danube River in 2020

Figure 5.2: Annual load of suspended solids at monitoring locations on tributaries in 2020

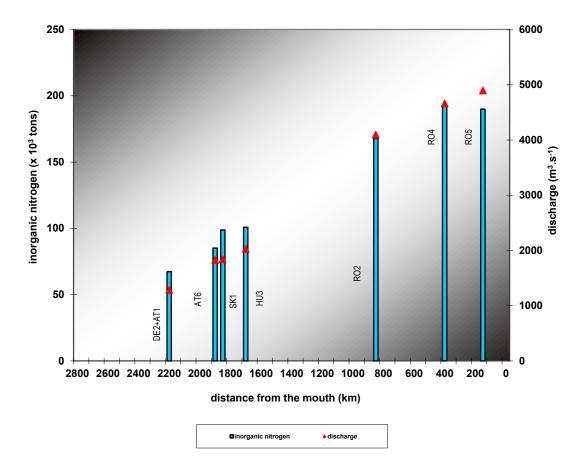
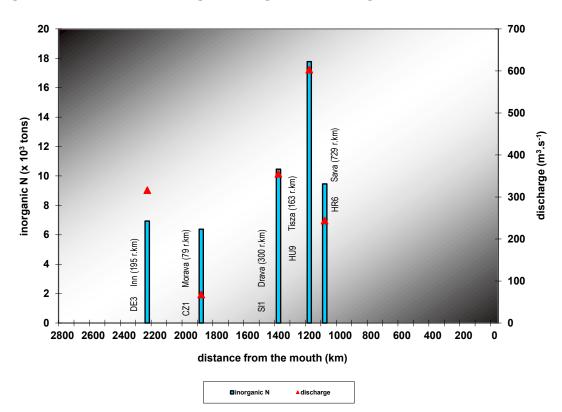



Figure 5.3: Annual loads of inorganic nitrogen along the Danube River in 2020

Figure 5.4: Annual loads of inorganic nitrogen at monitoring locations on tributaries in 2020

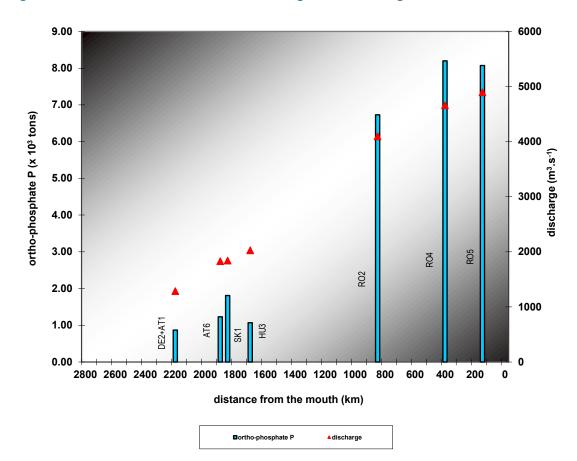
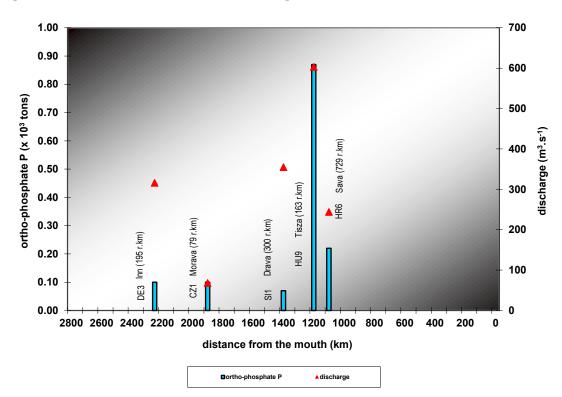



Figure 5.5: Annual loads of P-PO₄ at monitoring locations along the Danube River in 2020

Figure 5.6: Annual loads of P-PO4 at monitoring locations on tributaries in 2020

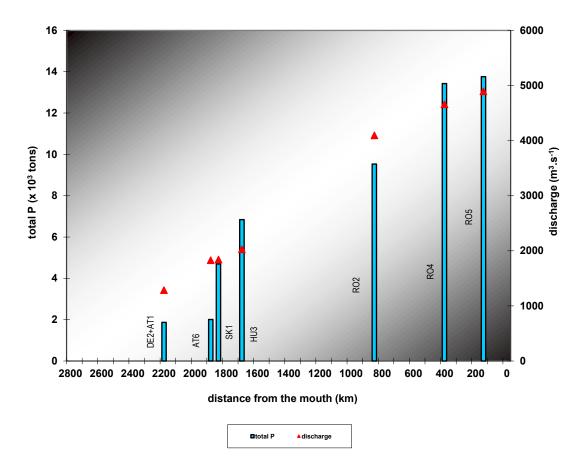
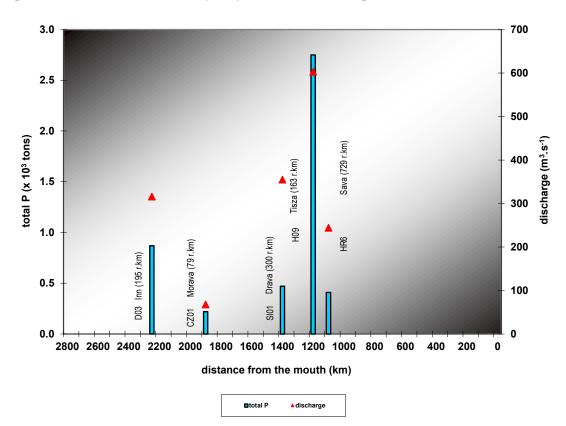



Figure 5.7: Annual loads of total phosphorus along the Danube River in 2020

Figure 5.8: Annual loads of total phosphorus at monitoring locations on tributaries in 2020

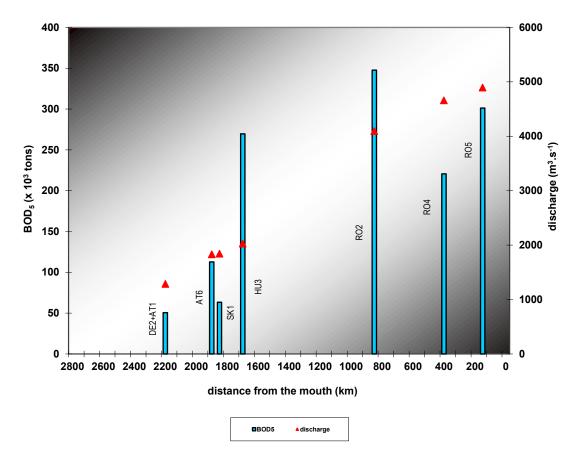
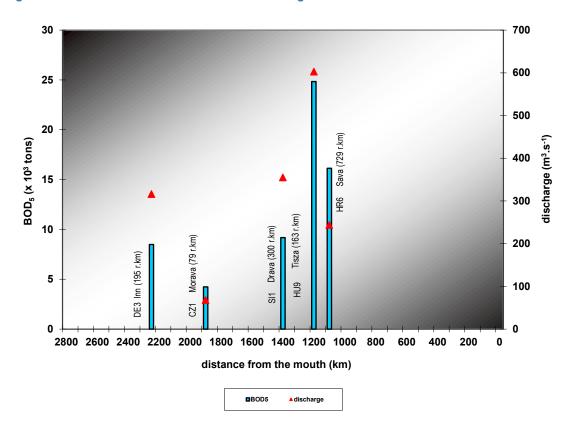



Figure 5.9: Annual loads of BOD₅along the Danube River in 2020

Figure 5.10: Annual loads of BOD₅ at monitoring locations on tributaries in 2020

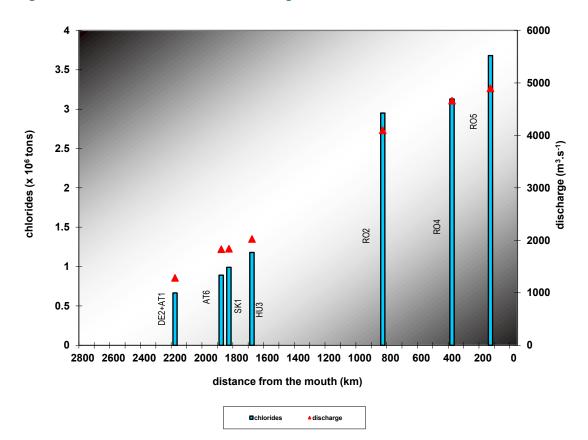
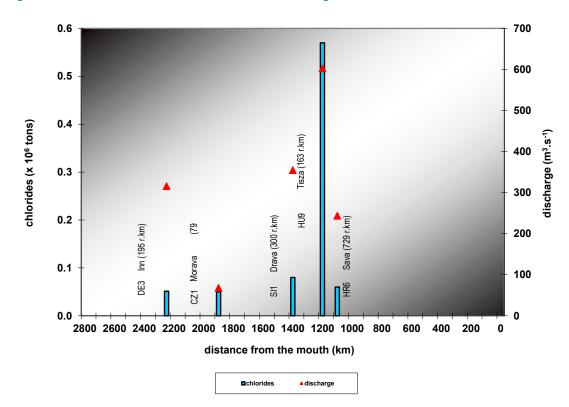



Figure 5.11: Annual loads of chlorides along the Danube River in 2020

Figure 5.12: Annual loads of chlorides at monitoring locations on tributaries in 2020

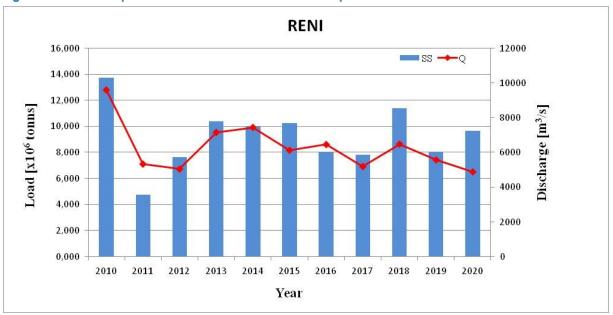
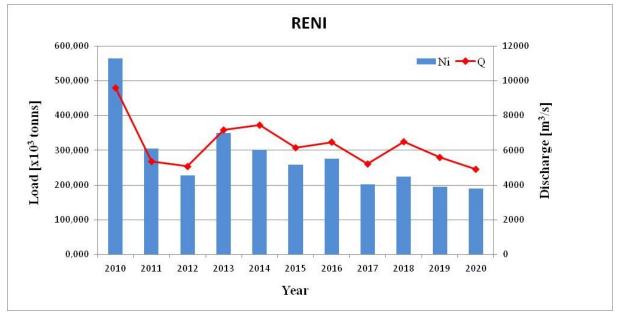
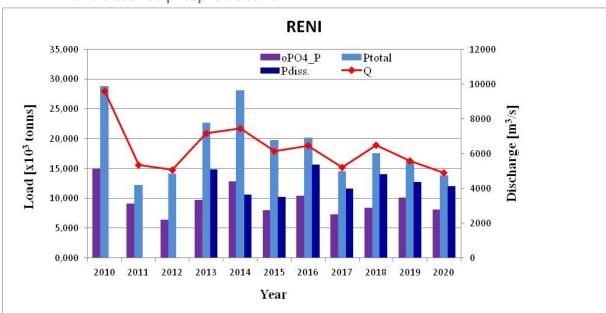




Figure 5.13: Development trend of annual loads of suspended solids at Reni.

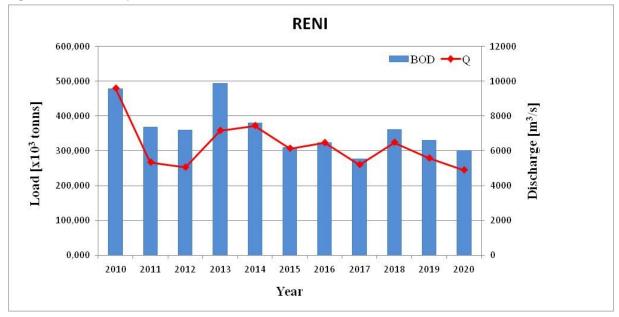


Figure 5.15: Development trend of annual loads of ortho-phosphate phosphorus, total phosphorus and dissolved phosphorus at Reni.

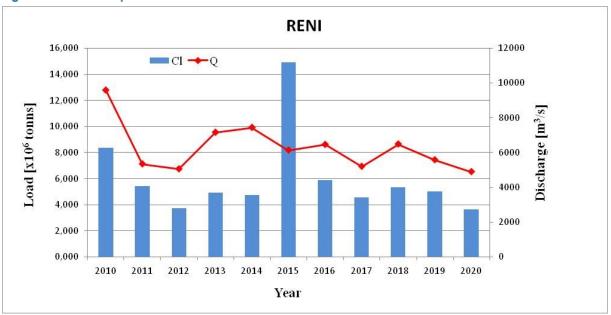
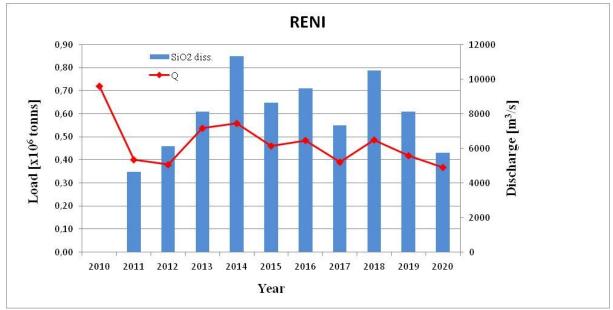



Figure 5.17: Development trend of annual loads of chlorides at Reni.

6. Groundwater Monitoring

6.1 GroundwaterBodies of Basin-Wide Importance

According to the Article 2 of the EU Water Framework Directive (2000/60/EC) 'Groundwater' means all water which is below the surface of the ground in the saturation zone and in direct contact with the ground or subsoil. The analysis and review of the groundwater (GW) bodies in the Danube River Basin as required under Article 5 and Annex II of the WFD was performed in 2004 and it identified 11 GW-bodies or groups of GW-bodies of basin-wide importance. In 2019, SK/HU Transboundary commission agreed on a proposal of creating a new GWB-12 on Ipel/Ipoly. The ICPDR adopted GWB-12 at StWG-17 in June 2019. All 12 GW bodies of basin-wide importance are shown on the map below (Figure 6.1).

Figure 6.1: Transboundary groundwater bodies of basin-wide importance and their transnational monitoring network

GW-bodies of basin-wide importance were defined as follows:

- important due to the size of the groundwater body which means an area larger than 4000 km² or
- important due to various criteria e.g., socio-economic importance, uses, impacts, pressures interaction with aquatic eco-system. The criteria need to be agreed bilaterally.

This means that the other groundwater bodies even those with an area larger than 4000 km², which are fully situated within one country of the DRB, are dealt with at the national level. A link between the content of the DRBMP and the national plans is given by the national codes of the groundwater bodies (see DRBMP 2021 Annex 8 Table 2).

6.2 Reporting on Groundwater Quality

According to the WFD, groundwater is an integral part of the river basin management district and therefore monitoring of groundwater of basin-wide importance was introduced into the TNMN in the

Danube River Basin. Groundwater monitoring under TNMN is based on a six-year reporting cycle in line with the WFD reporting requirements. Information on status of the groundwater bodies of basin-wide importance is provided in the DRBM Plans published every six years. This sufficiently allows for making any relevant statement on significant changes of groundwater status for the GW-bodies of basin-wide importance.

7. Abbreviations

Abbreviation	Explanation
AQC	Analytical Quality Control
AOX	Adsorbable organic halogens
BOD₅	Biochemical oxygen demand (5 days)
BSC	Black Sea Commission
COD _{Cr}	Chemical oxygen demand (Potassium dichromate)
COD _{Mn}	Chemical oxygen demand (Potassium permanganate)
DEFF	Data Exchange File Format
DOC	Dissolved organic carbon
DRB	Danube River Basin
DRBMP	Danube River Basin Management Plan
DRPC	Convention on Cooperation for the Protection and Sustainable Use of the Danube River
	(short: Danube River Protection Convention)
GW	Groundwater
ICPDR	International Commission for the Protection of the Danube River
LOQ	Limit of Quantification
MA EG	Monitoring and Assessment Expert Group (formerly MLIM EG)
MLIM EG	Monitoring, Laboratory and Information Management Expert Group
SS	Suspended solids
Ni	Inorganic nitrogen
N-NO ₂	Nitrite-nitrogen
N-NO ₃	Nitrate-nitrogen
Ntot.	Total nitrogen
P-PO ₄	Orto-phosphate-phosphorus
Pdiss.	Phosphorus dissolved
Ptot.	Total phosphorus
SiO ₂	Silicates
SiO ₂ diss.	Silicates dissolved
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls
Qr	Mean annual discharge
SOP	Standard Operational Procedure
TNMN	Trans-National Monitoring Network
TOC	Total organic carbon
WFD	EU Water Framework Directive

ICPDR – International Commission for the Protection of the Danube River Secretariat Vienna International Centre / D0412 P.O. Box 500 / 1400 Vienna / Austria T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895 secretariat@icpdr.org / www.icpdr.org